Study: Aging is associated with a systemic length-associated transcriptome imbalance

Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.

1 Like

This is also relevant:

All of this is consistent with my hypothesis that problems with gene transcription are behind the phenotype of aging.

I think it is a metabolic problem which holds back the acetylation of the histone.

This is the interleukin-10 issue.

The reason I don’t think it is TBLs is because my experiments point to it being reversible.

I have done a blog entry about gene length and aging: Its the long genes that stop working