
P7C3-A20 boosts NAD in a more targeted, “on-demand” way than typical NAD boosters like

NR, NMN, niacin, or CD38 inhibitors, because it directly stimulates NAMPT and mainly restores

NAD when it is pathologically low, rather than driving chronic supraphysiologic elevations.

Feature P7C3-A20
NR / NMN / Niacin / CD38

inhibitors

Primary target Direct NAMPT activation
Precursor supply or NADase

inhibition

Pathway NAD salvage, rate‑limiting step
NAD biosynthesis (precursors) or

breakdown

mechanistic comparison vs. other NAD boosters

[1] [2]

What P7C3-A20 Does

P7C3-A20 binds and activates nicotinamide phosphoribosyltransferase (NAMPT), the

rate‑limiting enzyme of the nicotinamide salvage pathway that converts nicotinamide to

NMN and then to NAD. [3] [1]

In models of NAD depletion, P7C3-A20 increases neuronal NAD back toward baseline and

protects against cell death, but shows little effect on NAD when levels are already normal,

acting like an allosteric enhancer that “kicks in” under stress. [2] [4]

This NAD restoration supports neuronal survival and function across diverse

neurodegeneration and injury models, likely via preserved mitochondrial metabolism and

downstream sirtuin signaling. [5] [6]

How Other NAD Boosters Work

Niacin/niacinamide (NAM): Provide vitamin B3 that enters the same salvage pathway but

increase NAD by mass action, not by directly modulating NAMPT activity; high chronic

doses can push NAD broadly in many tissues and cause side effects like flushing or liver

strain. [7] [2]

NR (nicotinamide riboside) and NMN: Serve as precursors upstream of NAD; oral dosing

reliably raises circulating NAD ~1.3–1.5× in humans, but does so continuously and

systemically rather than being preferentially engaged only in NAD‑depleted cells. [8] [9]

CD38 inhibitors / NR dual action: CD38 breaks down NAD; inhibiting it reduces NAD

consumption, while NR may both act as a precursor and covalent CD38 inhibitor, thereby

increasing NAD by lowering its degradation. [10] [11]

Mechanistic Comparison Table



Feature P7C3-A20
NR / NMN / Niacin / CD38

inhibitors

Triggering condition
Preferentially active in

NAD‑depleted cells

Active regardless of baseline

NAD status

Magnitude of NAD

change
Restores to physiological range Often drives sustained elevation

Tissue emphasis
Neurons, neuroprotection

models

Systemic (liver, muscle, blood,

etc.)

Risk of

supraphysiologic NAD

Designed to avoid

overproduction

Possible at high or chronic

dosing

Evidence base
Strong in animal neuro models,

no humans yet

Human NAD raising shown;

clinical outcome mixed

⁂

# <q>P7C3-A20</q> cas number

The CAS number for P7C3-A20 is 1235481-90-9.

⁂

P7C3-A20 is an aminopropyl carbazole with a dibrominated carbazole core, a fluorinated propyl

linker at the 9‑position, and a 3‑methoxyaniline moiety on the terminal amine.

[1] [2] [9]

[6] [12]

Practical Implications

Mechanistically, P7C3-A20 behaves more like a condition-dependent NAMPT agonist,

whereas standard boosters are condition‑independent “substrate loading” or

“brake‑removal” strategies. [1] [2]

This may translate to a better therapeutic window in neurodegeneration by rescuing

stressed neurons without chronically pushing NAD in otherwise healthy tissues, but this

remains speculative until human data exist. [6] [5]

Conversely, currently available boosters (NR, NMN, niacin, etc.) are far more studied in

humans, raise NAD reliably but show modest and sometimes conflicting functional benefits,

and their broad, non‑targeted action can include trade‑offs like altered inflammatory or

cardiovascular risk in some settings. [9] [13] [12]

[22] [23] [24]

chemical structure

[38] [39]

Text description

Core ring system: A carbazole (tricyclic indole-like system) bearing bromine atoms at the 3

and 6 positions, giving a 3,6‑dibromo‑9H‑carbazole scaffold. [39] [38]

Linker: The nitrogen at the 9‑position of the carbazole is substituted with a three‑carbon
propyl chain that carries a fluorine on the β‑carbon (2‑position), making a β‑fluoropropyl side



⁂

P7C3-A20 is sold only as a laboratory research chemical, not for human use, by several

specialty suppliers.

⁂

In mouse studies, P7C3-A20 has been given mainly by intraperitoneal (IP) injection and oral

gavage, at doses around 10–20 mg/kg once or twice daily.

chain. [40] [38]

Terminal aryl amine: The distal end of that propyl chain is attached to a 3‑methoxyaniline
ring (meta‑methoxy‑substituted phenyl bearing an anilide nitrogen), yielding an

N‑(3‑methoxyphenyl)‑aminopropyl connection. [39] [40]

Key identifiers

IUPAC / formal name examples:

N‑(3‑(3,6‑dibromo‑9H‑carbazol‑9‑yl)‑2‑fluoropropyl)‑3‑methoxyaniline. [41] [40]

3,6‑dibromo‑β‑fluoro‑N‑(3‑methoxyphenyl)‑9H‑carbazole‑9‑propanamine. [42] [39]

Molecular formula: C₂₂H₁₉Br₂FN₂O; molecular weight ≈ 506.21 g/mol. [43] [44] [39]

sources

[55] [56]

Major research suppliers

Focus Biomolecules: Markets P7C3-A20 as a NAMPT activator/proneurogenic agent (5–25

mg sizes), explicitly labeled “for laboratory research use only; not for human or veterinary

applications.” [57] [55]

Aobious: Offers high‑purity (≈98%) P7C3-A20 under CAS 1235481‑90‑9 in multiple mg

quantities with typical storage at 0 to −20 °C and DMSO solubility. [56]

Other catalog vendors: MedChemExpress, Selleck, MedKoo, LKT Labs, Abbexa, TargetMol,

and similar companies list P7C3-A20 as a neuroprotective NAMPT activator for in vitro/in

vivo research, again strictly labeled research‑only and not for diagnostic or therapeutic

use. [58] [59] [60] [61] [62] [63]

How was this administered in mouse studies

[75] [76] [77]

Intraperitoneal injection

Traumatic brain injury and stroke models: P7C3-A20 is commonly dissolved in a

DMSO/Kolliphor/D5W vehicle and administered IP at 10–20 mg/kg, starting 30 minutes after

injury and continued once or twice daily for 7 days to 1 month. [78] [76] [77]

ICH and BBB studies: Mice received 10 mg/kg IP, either as a single dose shortly after insult

or as daily injections, which reduced lesion volume, BBB damage, and neurodegeneration.
[75] [78]



⁂

Across mouse experiments, daily P7C3-A20 dosing ranges from very brief (about 1 week) up to

about 1 month, depending on the disease model.

Oral (gavage) dosing

Metabolic / liver and gut microbiota models: P7C3-A20 has been formulated for oral gavage

and given at 20 mg/kg/day, often split b.i.d. (twice daily) in mice. [79]

Pharmacokinetic work: Earlier P7C3-class studies show that oral administration achieves

sustained plasma exposure, and oral formulations were optimized in rodents before primate

studies. [80] [81]

General patterns and context

Typical mouse dose range: 10–20 mg/kg per day, with treatment windows from 7 days

(acute injury) up to several weeks depending on the model. [82] [76] [83]

Formulation: Usually dissolved in DMSO plus a surfactant (e.g., Kolliphor/cremophor) and

diluted in aqueous dextrose or similar vehicle for IP, or in oil/syrup-type vehicles for oral

dosing, always as a research intervention, not a clinical regimen. [80] [78]

How long was daily dosing continued in mouse
experiments

[95] [96]

Short courses (about 1–2 weeks)

Ischemic stroke and acute injury: In stroke models, P7C3-A20 was typically given for about

7 days (often twice daily) after the ischemic event to test acute neuroprotection and early

behavioral effects. [97] [98]

Stress/depression paradigms: In neurogenesis/antidepressant studies with related P7C3

compounds, daily (or twice‑daily) injections were continued for around 10 days during the

stress protocol. [99]

Intermediate courses (about 2 weeks)

Metabolic/NAFLD model: In a fatty‑liver and gut‑microbiota study, high‑fat–fed mice

received P7C3-A20 by oral gavage at 20 mg/kg/day for 2 weeks. [100]

Some injury/inflammation models: Certain intracerebral hemorrhage or inflammatory brain

injury experiments used daily IP P7C3-A20 for roughly 10–14 days to assess lesion size, BBB

integrity, and microglial activation. [101] [102]



Overall, most mouse work clusters around 7–30 days of daily dosing, with chronic‑injury and

safety studies using the upper end (≈30 days) and acute models using 1–2 weeks.

⁂

The main “related” P7C3 compounds used in neurogenesis/antidepressant mouse studies are

the parent P7C3 molecule, the more active analog P7C3-A20, and the inactive analog P7C3-

S184; later work also highlights P7C3-S243 as an improved analog.

Longer courses (about 1 month)

Chronic TBI model (key paper): In the “1 year after TBI” mouse study, animals received 10

mg/kg IP once daily for 4 weeks (30 days), starting 12 months post‑injury, with benefits

persisting at least 4 months after stopping treatment. [103] [104] [95]

Safety and tolerability: A broader overview notes that P7C3-A20 has been dosed in mice at

up to 40 mg/kg/day for 30 days without obvious toxicity in behavior, weight, or

appearance. [96]

[105] [95] [97]

“In neurogenesis/antidepressant studies with related

P7C3 compounds” what are the other related
compounds

[114] [115] [116]

Core P7C3-class molecules

P7C3: The original aminopropyl carbazole, proneurogenic and neuroprotective; shows

antidepressant‑like effects in chronic social defeat stress (CSDS) by preserving

hippocampal neurogenesis. [116] [117] [114]

P7C3-A20: A fluorinated, methoxy‑substituted analog with greater neuroprotective and

antidepressant efficacy than P7C3; strongly enhances hippocampal neurogenesis and is the

lead compound in many later studies. [118] [119] [114]

P7C3-S184: An “inactive” analog used as a negative control; lacks neuroprotective and

antidepressant effects in the same CSDS and neurogenesis paradigms, helping confirm that

behavioral effects depend on neuroprotection. [120] [114]

Optimized later analog

P7C3-S243: A more drug‑like aminopropyl carbazole analog with increased polarity and an

aminopyridine in place of aniline, reported to retain or improve neuroprotective activity while

offering better pharmacokinetic properties. [115] [116]



⁂

# <q>P7C3-S243</q> cas number

The CAS number for P7C3-S243 -P7C3-S243) is 1597443-57-6.

⁂

P7C3-S243 is an aminopropyl carbazole with a dibrominated carbazole core, a β‑fluoropropyl
linker, and a 6‑methoxypyridin‑2‑amine head group, making it more polar and drug‑like than

P7C3-A20.

⁂

Broader P7C3 analog set

Structure–activity work describes “dozens” of P7C3 analogs; at least eight additional

analogs were tested in hippocampal neurogenesis assays, where proneurogenic potency

tracked with neuroprotection in Parkinson’s and other models. [121] [119] [118]

Patents and reviews refer to the entire P7C3 class of aminopropyl carbazoles, but in

published antidepressant/neurogenesis work the named comparators are mainly P7C3,

P7C3‑A20, P7C3‑S184, and later P7C3‑S243. [122] [114] [116]

[133] [134]

chemical structure

[153] [154]

Text description

Core scaffold: A 3,6‑dibromo‑9H‑carbazole ring system (same carbazole core as P7C3-

A20) substituted at the 9‑position. [155] [154]

Linker: A three‑carbon propyl chain bearing a fluorine on the 2‑position (β‑fluoro) connects

the carbazole nitrogen (N‑9) to the terminal heterocycle. [155] [153]

Terminal heterocycle: Instead of an aniline, P7C3‑S243 carries a

6‑methoxypyridin‑2‑amine moiety, increasing polarity and removing the aniline group that

limited drug‑likeness in earlier analogs. [156] [153]

Key identifiers

Representative full name (IUPAC-style): -

N‑(3‑(3,6‑dibromo‑9H‑carbazol‑9‑yl)‑2‑fluoropropyl)‑6‑methoxypyridin‑2‑amine. [157] [154]

Class: Single‑enantiomer, neuroprotective aminopropyl carbazole optimized for oral

bioavailability, BBB penetration, and reduced toxicity versus earlier P7C3 analogs. [158] [153]



Both P7C3-A20 and P7C3-S243 share the same dibrominated carbazole core and

β‑fluoropropyl linker, but they differ in the “head group”: P7C3-A20 carries a 3‑methoxyaniline,

whereas P7C3-S243 carries a 6‑methoxypyridin‑2‑amine, making S243 more polar and

drug‑like.

⁂

There are no published human clinical trials of any P7C3-family compound as of late 2025; all

in vivo work is in rodents and non‑human primates.

Compare structures of P7C3 S243 and P7C3 A20

[171] [172]

Shared structural features

Core scaffold: Both are 3,6‑dibromo‑9H‑carbazole derivatives substituted at the 9‑nitrogen.
[173] [174]

Linker: Both use a three‑carbon propyl chain with a fluorine on the 2‑position (β‑fluoro),

giving an N‑(3‑(3,6‑dibromo‑9H‑carbazol‑9‑yl)‑2‑fluoropropyl) backbone. [175] [176]

Key differences

P7C3-A20 “head group”: Terminal aniline ring (3‑methoxyaniline), i.e., N‑(3‑methoxyphenyl)
at the end of the linker. [177] [174]

P7C3-S243 “head group”: Terminal aminopyridine ring (6‑methoxypyridin‑2‑amine),

replacing the aniline with a pyridine nitrogen and shifting the methoxy to the 6‑position. [172]

[176]

Consequences of the substitution

Polarity and drug‑likeness: Replacing the aniline of A20 with an aminopyridine in S243

increases polarity and removes the aniline moiety that was considered less desirable for

drug‑like properties. [171] [173]

Enantiomeric form: P7C3-S243 is developed as the single  enantiomer -P7C3‑S243),

whereas A20 is typically used as a single active fluorinated analog without the same

emphasis on chirality optimization. [176] [172]

are there any human studies on any P7C3- family
of compounds

[192] [193]

What has been done so far

Rodents: P7C3, P7C3-A20, and P7C3-S243 have extensive mouse and rat data in models

of TBI, stroke, Parkinson’s, Alzheimer’s, depression, fatty liver disease, and others, all

preclinical. [194] [195] [196] [192]

Non‑human primates: Daily oral P7C3-A20 for 38 weeks in monkeys increased hippocampal

neurogenesis without detectable toxicity, supporting translational potential but still not



⁂

Using standard body‑surface‑area scaling, the human‑equivalent dose (HED) corresponding to

the 10 mg/kg/day oral dose used in rhesus monkeys is about 3.2 mg/kg/day in humans (≈220

mg/day for a 70‑kg adult).

constituting human testing. [193] [197]

Explicit statements about human data

A 2018–2023 series of reviews on P7C3 compounds describes them as “preclinical” agents

and highlights primate safety/efficacy as a step toward first‑in‑human studies, with no

human trial results reported. [192] [193]

No entries for P7C3, P7C3-A20, or P7C3-S243 appear in these reviews as having Phase I or

later trials; any discussion of human use is framed as future, hypothetical translation. [198]

[192]

Takeaway for practical use

At present, P7C3-family compounds should be regarded strictly as experimental research

tools, with safety and efficacy established only in animals and cell systems, not in people.
[193] [192]

Even where news releases mention P7C3-A20 as a potential treatment for TBI or

Alzheimer’s, they refer to animal models and non‑human primate work, not to completed or

ongoing human trials. [199] [200] [201]

what would the HED for P7C3-A20 based on
primate studies

[212] [213]

Step 1 – Primate dose used

Adult male rhesus monkeys received 10 mg/kg/day oral P7C3‑A20 for 38 weeks, with no

detected central or peripheral toxicity and sustained plasma exposure. [214] [212]

This 10 mg/kg dose is the relevant starting point for HED estimation. [212]

Step 2 – HED calculation

Standard BSA conversion:

Km (monkey, rhesus) ≈ 12; Km (human, adult) ≈ 37. [213]

HED (mg/kg) = Animal dose × (Km_animal / Km_human).

Plugging in:

HED ≈ . [213]

For a 70‑kg human, that is ~225 mg/day, often rounded to ~200–250 mg/day as a

theoretical equivalent to the primate neurogenesis study. [212] [213]



⁂

Using standard regulatory practice (FDA MRSD approach), a conservative starting clinical dose

from the primate HED of ~3.2 mg/kg/day would be about 0.3 mg/kg/day (≈20 mg/day for a

70‑kg adult).

⁂

Critical caveats

P7C3‑A20 has no human safety data, and PK/PD in humans are unknown; this HED is a

regulatory toxicology convention, not a recommended or permissible dose. [215] [216]

Route, formulation, and metabolism can differ substantially between monkeys and humans;

any real first‑in‑human study would start far below this HED and escalate cautiously. [217] [213]

Estimate starting clinical dose after applying
safety factor to HED

[233] [234]

How that estimate is derived

From primate data, the HED for P7C3‑A20 was ~3.2 mg/kg/day based on 10 mg/kg/day in

rhesus monkeys. [235] [236]

FDA guidance: After converting an animal NOAEL to an HED, a default safety factor of 10 is

typically applied to get the maximum recommended starting dose (MRSD) for healthy

volunteers. [237] [233]

Applying that factor:

MRSD ≈ 3.2 mg/kg ÷ 10 ≈ 0.32 mg/kg. [238] [233]

For 70 kg, that is ≈ 22 mg/day, usually rounded to ~20 mg/day as a theoretical

first‑in‑human starting dose. [239] [233]

Important cautions

This calculation assumes the monkey dose is at or below the NOAEL, which has not been

formally established for P7C3‑A20 in GLP tox; without a defined NOAEL, a real program

might use an even larger safety factor (e.g., 10–30+). [234] [233]

Modern practice often also considers a MABEL (minimal anticipated biological effect level)

approach, which can yield lower starting doses than NOAEL/HED‑based MRSD. [240] [234]

P7C3‑A20 remains a purely preclinical compound; these numbers are only illustrative of

regulatory math, not a dosing recommendation for human use. [241] [242]



There is no published LD₅₀ (median lethal dose) for P7C3‑A20 in any species.

⁂

For P7C3‑class compounds, including P7C3‑A20, reported in vivo half‑lives are on the order of

>6 hours, but precise species‑ and route‑specific  values for P7C3‑A20 are not consistently

published.

is there an established LD50 dose
[256] [257]

What is known about toxicity instead

Mouse/rat studies describe P7C3 and P7C3‑A20 as “non‑toxic at doses several‑fold higher”

than those needed for neuroprotection, but do not report an LD₅₀ value. [258] [259]

Non‑human primate work reports daily oral 10 mg/kg P7C3‑A20 for 38 weeks with no

detectable central or peripheral toxicity, again without defining an LD₅₀. [260] [261]

Implications

Without formal acute toxicity studies designed to determine LD₅₀, only a general statement

of “well tolerated” at tested doses is possible; any precise LD₅₀ number you might see online

is not supported by the primary literature. [262] [257]

P7C3‑A20 should therefore be considered an experimental compound with incomplete

toxicology, not a drug with a characterized lethal‑dose profile. [257] [263]

what is the half life

[276] [277]

What is reported

A review of P7C3 chemistry states that both P7C3 and P7C3‑A20 have “long half-lives…

in vivo (t₁/₂ > 6 h)”, based on hepatocyte and animal PK studies, without giving exact

numbers by route or species. [276]

For the parent P7C3, one pharmacology overview notes oral bioavailability ~32% and a

terminal plasma half‑life of about 6.7 h after IP dosing in rodents, used as a benchmark

for the series’ PK behavior. [277]

What is not available

No open-source paper or datasheet gives a definitive numeric half‑life curve (e.g., “t₁/₂ = 7.2

h IV, 9.1 h PO in mouse”) specifically for P7C3‑A20. [278] [279]

Human half‑life is completely unknown, as there are no clinical PK studies with any

P7C3‑family compound. [280] [278]



⁂

# <q>P7C3-S243</q> are there any in vivo studies on this

Yes. P7C3-S243 has been tested extensively in vivo in multiple rodent models, but not in

humans.

⁂

Yes. P7C3‑S243 has been used in multiple in vivo rodent models, mainly rats and mice, across

neurodegenerative and injury paradigms.

Practical interpretation

P7C3‑A20 is generally characterized as having a “long half‑life” sufficient for once‑daily
dosing in rodent and primate experiments, but current literature only supports saying t₁/₂ is

greater than roughly 6 hours in vivo, not a precise value. [281] [276]

[297] [298]

Parkinson’s disease models

Mouse/rat 6-OHDA and MPTP models: P7C3-S243 protects dopaminergic neurons in the

substantia nigra and improves motor behavior when given systemically (e.g., 5–10

mg/kg/day), showing robust neuroprotection in vivo. [299] [297]

Mechanistic work shows preserved nigral neuron survival and striatal innervation, with S243

outperforming earlier P7C3 analogs in potency and tolerability. [300] [297]

Alzheimer’s disease models

TgF344-AD rat model: -P7C3-S243) chronically treated aging wild-type and transgenic

rats, protecting them from cognitive decline and depressive-like behavior without changing

amyloid deposition. [301] [298]

Treated AD-model rats retained neuron numbers and synaptic markers despite persistent

plaques and tangles, indicating direct neuroprotection rather than disease-modifying effects

on amyloid. [302] [303]

Other in vivo contexts

Blast/TBI and axonal injury: Reviews and mechanistic papers note P7C3-S243 efficacy in

mouse blast-TBI and axonal degeneration paradigms, similar to P7C3-A20. [304] [300]

General summary: A 2014–2023 body of work classifies P7C3-S243 as an “optimized”

aminopropyl carbazole with improved drug-like properties and proven in vivo

neuroprotection across multiple rodent models of neurodegenerative disease. [305] [297]

Summarize in vivo models and species used with
P7C3‑S243

[317] [318]



⁂

Species used

Rats

6‑OHDA Parkinson’s disease models (unilateral nigrostriatal lesion). [319] [317]

TgF344‑AD transgenic rats (Alzheimer’s disease model, both sexes, long‑term dosing).
[320] [318]

Mice

Blast‑mediated traumatic brain injury (TBI) and axonal degeneration models. [321]

Additional mouse neurodegeneration and injury paradigms referenced in reviews (e.g.,

ALS and age‑related decline) for the P7C3 series including S243. [322] [323]

Parkinson’s disease models (rat)

6‑OHDA lesion: Systemic P7C3‑S243 (often 5–10 mg/kg/day) before and/or after toxin

exposure protected dopaminergic neurons in substantia nigra, preserved striatal dopamine

and metabolites, and improved motor behavior. [317] [319]

These studies showed efficacy even when S243 was started after lesioning, modeling

delayed treatment. [317]

Alzheimer’s disease model (rat)

TgF344‑AD rats: Long‑term daily P7C3‑S243 from 6 months of age for 9–18 months

prevented cognitive deficits and depressive‑like behavior and blocked neurodegeneration,

without altering amyloid or neuroinflammation markers. [318] [320]

Traumatic brain injury / axonal injury (mouse)

Blast‑TBI: In mice exposed to blast, orally administered P7C3‑S243 (e.g., 30 mg/kg/day)

reduced axonal degeneration in hippocampal circuits and preserved synaptic and

electrophysiologic function. [321]

These experiments established that S243 crosses the intact blood–brain barrier and blocks

early axonal damage preceding neuron loss. [324] [321]

High‑level summary

Across models, P7C3‑S243 has in vivo evidence in:

Rat: Parkinson’s (6‑OHDA), Alzheimer’s (TgF344‑AD), neuropsychiatric/behavioral

endpoints. [318] [317]

Mouse: Blast/TBI and axonal degeneration, with additional support from series‑wide
reviews. [323] [321]

All studies are preclinical; there are no human in vivo data for P7C3‑S243. [322] [323]
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