
Plasma proteomics in the UK Biobank reveals youthful brains and immune systems 1 
promote healthspan and longevity 2 

 3 
Hamilton Se-Hwee Oh1,2,3,*, Yann Le Guen4,5, Nimrod Rappoport6, Deniz Yagmur Urey2,3, Jarod 4 
Rutledge6, Anne Brunet3,6,7, Michael D. Greicius8, Tony Wyss-Coray2,3,8,* 5 
 6 
1 Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA.  7 
2 The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA. 8 
3 Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. 9 
4 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. 10 
5 Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. 11 
6 Department of Genetics, Stanford University, Stanford, CA, USA. 12 
7 Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA 13 
8 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA 14 
 15 
* correspondence to twc@stanford.edu and hoh3@stanford.edu 16 
 17 
 18 
ABSTRACT 19 
Organ-derived plasma protein signatures derived from aptamer protein arrays track organ-20 
specific aging, disease, and mortality in humans, but the robustness and clinical utility of these 21 
models and their biological underpinnings remain unknown. Here, we estimate biological age of 22 
11 organs from 44,526 individuals in the UK Biobank using an antibody-based proteomics 23 
platform to model disease and mortality risk. Organ age estimates are associated with future 24 
onset of heart failure (heart age HR=1.83), chronic obstructive pulmonary disease (lung age 25 
HR=1.39), type II diabetes (kidney age HR=1.58), and Alzheimer’s disease (brain age HR=1.81) 26 
and sensitive to lifestyle factors such as smoking and exercise, hormone replacement therapy, or 27 
supplements. Remarkably, the accrual of aged organs progressively increases mortality risk while 28 
a youthful brain and immune system are uniquely associated with disease-free longevity. These 29 
findings support the use of plasma proteins for monitoring organ health and the efficacy of drugs 30 
targeting organ aging disease. 31 
  32 
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MAIN 33 
Aging leads to global dysfunction of organ systems, chronic disease, and ultimately death. 34 
Interventions including exercise, young plasma treatment, or rapamycin treatment seem to slow 35 
aging in model organisms, extending healthspan and lifespan1, but whether these findings would 36 
extrapolate to humans is unclear, as both our molecular understanding of human aging and our 37 
ability to efficiently assess the efficacy of aging interventions in humans is limited. Thus, molecular 38 
biomarkers of human biological age that are linked with age-related health and disease are 39 
needed.  40 
 41 
Recent studies show that human organs age at different rates2–5 similar to what has been reported 42 
in animals6–8, which suggests a need for organ-specific measures of biological age. Previously 43 
developed organ age estimates include those developed from clinical metrics of organ function 44 
(glomerular filtration rate, blood pressure, etc), clinical blood chemistry, brain MRI scans, immune 45 
cell DNA methylation profiles, and the levels of organ-specific proteins in blood plasma2–5. Many 46 
questions regarding the reproducibility and utility of organ age estimates remain. For example, it 47 
is unclear the extent to which organ age estimates are stable across cohorts and longitudinal 48 
sampling, are sensitive to organ-specific diseases and modifiable lifestyle choices, and whether 49 
they predict mortality independent of each other and established aging biomarkers. Furthermore, 50 
it is unclear which organs are key to longevity in humans. 51 

 52 
Given that plasma is simple to acquire, the levels of plasma proteins provide molecular 53 
information on organ function, and technologies to measure the levels of plasma proteins are 54 
rapidly advancing, we sought to further investigate the utility of plasma proteomics in estimating 55 
organ-specific biological age and understanding human longevity. In comparison to our previous 56 
study where we introduced our organ age estimation approach using SomaScan plasma 57 
proteomics data from 5,678 individuals4, here we aimed to test our approach in a much larger 58 
cohort of 44,526 individuals in the UK Biobank (age 40-70), using an orthogonal proteomics 59 
platform (Olink). The dramatically increased sample size and deeper tracking of age-related 60 
phenotypes allowed us to address several important questions in the field. Specifically, we 61 
assessed whether plasma protein-based age estimates for 11 major organs could identify 62 
different subtypes of organ agers in the population, predict risk of age-related organ diseases, 63 
track with beneficial/detrimental lifestyle choices, and predict mortality versus longevity (Fig. 1a). 64 
 65 
 66 
Plasma protein-derived organ age estimates in the UK Biobank 67 
To derive measures of organ-specific physiological state and biological age from the plasma 68 
proteome, we 1) identified plasma proteins likely derived from a specific organ (Supplementary 69 
Tables 1-2), 2) trained a machine learning model to predict chronological age based on the levels 70 
of identified organ-specific proteins (Supplementary Tables 3-4), and 3) calculated the age gap 71 
based on each person’s predicted age (the relative predicted age compared to individuals of the 72 
same chronological age; See methods; Fig. 1a). The age gap provides a measure of relative 73 
biological age compared to same-aged peers. 74 
 75 
We performed these three steps for each of 11 major organs including adipose tissue, artery, 76 
brain, heart, immune tissue, intestine, kidney, liver, lung, muscle, and pancreas. To compare 77 
organ age gaps to organ-agnostic measures of biological age, we also derived age gaps from an 78 
“organismal” aging model trained on non-organ-specific proteins and a “conventional” aging 79 
model trained on all proteins on the Olink assay. We confirmed the top proteins in the conventional 80 
aging model overlapped with a previous proteomic aging model developed on the UK Biobank 81 
dataset9. 82 
 83 
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Data from ten of twenty-one plasma collection centers were used for model training and the 84 
remaining eleven for testing (Fig. 1a). Model performance was highly stable across train and test 85 
centers (Extended Data Fig. 1a-b). Age gaps were z-scored per aging model to allow for direct 86 
comparison between organs in downstream analyses (Fig. 1a). We observed some sex 87 
differences between organ age gaps with males having older kidneys, immune systems, and 88 
intestines, while females had older adipose tissue, arteries, and hearts (Extended Data Fig. 1c-89 
d). 90 
 91 
After deriving organ age gaps, we first determined the uniqueness of each measure. If organs 92 
truly aged at different rates, then the age gap of one organ should be independent from the age 93 
gap of another in the same individual. Thus, we calculated pairwise correlations between organ 94 
age gaps. As expected, based on previous literature, we found organ age gaps were only mildly 95 
correlated (mean r=0.21; Fig. 1b). Of note, organ age gaps were largely different from the 96 
conventional age gap, suggesting they capture information not measured by conventional 97 
proteomic aging models in the field. Instead, the conventional age gap was strongly correlated 98 
with the organismal age gap (r=0.87). Estimated organismal, brain, and artery age were sufficient 99 
to explain 97% of the variance in estimated conventional age, with organismal age carrying 74% 100 
of the weight (Fig. 1c). 101 
 102 
We previously identified extreme organ agers who displayed especially fast aging in just a single 103 
organ or many organs4. We searched for extreme agers in the UK Biobank by identifying 104 
individuals with age gaps above or below 1.5 standard deviations from the population average in 105 
any organ (top and bottom ~6-7% percentiles). Indeed, we found groups of fast (>=1.5 z-age gap) 106 
and slow (<= –1.5 z-age gap) organ agers who had extreme age gaps in only a single organ (1-107 
2% of samples each, 33% total; Fig. 1d; Extended Data Fig. 1e). We also identified multi-organ 108 
agers who had two or more extreme organ age gaps (26% of samples; Extended Data Fig. 1e). 109 
14% of samples were ambiguous, with both positive and negative extreme age gaps and 27% of 110 
remaining samples were defined as normal agers (Extended Data Fig. 1e). Multi-organ agers 111 
were significantly older than normal and single organ agers, suggesting aged organs accumulate 112 
over time (Extended Data Fig. 1f-g). Youthful agers were not identified in our previous study4 113 
based on SomaScan data, potentially due to limited sample size and detection of different proteins 114 
between platforms. 115 
 116 
We next sought to determine the longitudinal stability of organ age gaps over several years within 117 
an individual. In other words, does a person with a biologically older heart at age 50 still have an 118 
older heart at age 60? We analyzed a subset of 937 individuals who had plasma proteomics data 119 
from two to three visits, spanning 1 to 15 years from baseline. We assessed the correlations 120 
between age gaps at baseline versus visit two, for each organ. We found medium to strong 121 
correlations across visits (mean r=0.6), suggesting age gaps are relatively stable, while also likely 122 
reflecting dynamic alterations to biological age based on lifestyle and disease as well as technical 123 
variability (Extended Data Fig. 2a). 124 
 125 
Examining longitudinal stability of extreme ager status, we found that individuals who were 126 
extreme agers in a given organ at visit 1 were 3-22 times more likely to be an extreme ager in 127 
that same organ at visit 2, compared to individuals who were not extreme agers in that organ at 128 
visit 1 (Extended Data Fig. 2b). Still, a considerable proportion (68%) of visit 1 extreme agers 129 
were no longer categorized as extreme agers for their respective organs in visit 2. Therefore, we 130 
examined changes in age gap status by bins separated by 0.5 standard deviations up to +/-1.5, 131 
rather than binary extreme ager status. We found that the vast majority of visit 1 extreme agers 132 
stayed within the same signed bins across visit 2 (76%) and visit 3 (72%), suggesting that the 133 
overall directionality of their age gaps was stable (Extended Data Fig. 2c-e).  134 
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 135 
Together, these data show that organ-specific biological age estimates can be derived from 136 
plasma proteomic data in the UK Biobank, and that each organ age estimate provides unique 137 
information about the individual, perhaps related to organ-specific health. Moreover, within 2 138 
independent visits, deviation from chronological age tends to be stable within individuals. 139 
  140 
 141 
Organ age estimates predict future age-related disease 142 
For an estimate of biological age to be informative, it must robustly associate with the 143 
physiological state of the organ or individual and consequently, with age-related health and 144 
disease outcomes. Hence, we sought to determine whether organ age gaps could predict future 145 
diseases in their respective organs. We tested the associations between all 13 z-scored age gaps 146 
and 15 incident age-related diseases (2-17 year follow-up) using Cox proportional hazard 147 
regression, while adjusting for age and sex. Following Benjamini-Hochberg correction for multiple 148 
hypothesis testing, we identified 176 positive and 4 negative significant associations out of 195 149 
tests (Fig. 2a; Supplementary Table 5). 150 
 151 
We discovered highly significant associations between heart aging and atrial fibrillation (hazard 152 
ratio [HR]=1.75, q<1x10–230) and heart failure (HR=1.83, q=1.39x10–230), pancreas aging 153 
(HR=1.77, q=5.03x10–220) and kidney aging (HR = 1.64, q = 5.25x10–217) with chronic kidney 154 
disease, brain aging with Alzheimer’s disease (HR=1.81, q=2.29x10–72) and lung aging with 155 
chronic obstructive pulmonary disease (HR=1.39, q=7.20x10–32). Liver aging was associated with 156 
chronic liver disease (HR=1.18, q=4.31x10–11), albeit the strength of the association was modest 157 
and similar compared to other organs. Importantly, organ-specific age gaps consistently exhibited 158 
stronger predictive power than conventional age gaps across all diseases (Fig. 2a). 159 
 160 
The widespread significant associations between organ aging (176/195) and disease underscore 161 
the systemic nature of aging. While certain diseases may have notably systemic causes, others 162 
may stem primarily from dysfunction in a single organ. Identifying the degree of systemic versus 163 
local contributions in disease onset could yield insights into biological mechanisms and prevention 164 
strategies. Thus, for each disease, we calculated the Gini-coefficient, a measure of statistical 165 
dispersion (originally intended to measure income inequality), of organ age gap log hazard ratios. 166 
 167 
Interestingly we found that chronic kidney disease, ischemic heart disease, heart failure, and 168 
chronic obstructive pulmonary disease (COPD) were predicted by aging of many organs, 169 
suggesting systemic underpinnings (Fig. 2b). Whether these diseases are caused by systemic 170 
aging or the prodromal phases of these diseases induce aging across the body is unclear. 171 
Conversely, Alzheimer’s disease was predicted primarily by brain aging (Fig. 2c-d). Other more 172 
organ-specific diseases included atrial fibrillation which was primarily predicted by heart aging 173 
and type 2 diabetes which was predicted primarily by kidney (HR=1.58, q=2.54x10–206), intestine 174 
(HR=1.54, q=1.18x10–126), and immune (HR=1.49, q=1.03x10–103) aging (Fig. 2c). 175 
 176 
We also investigated the associations between extreme organ age and disease risk (Extended 177 
Data Fig. 3a; Supplementary Table 6). Individuals with more than one aged organ had 178 
significantly increased risk for nearly every disease we examined. Individuals with only aged 179 
brains, hearts, kidneys, or lungs also showed broad increased risk of disease. On the other hand, 180 
individuals with 2-4 youthful organs were protected from some disease including chronic kidney 181 
disease, osteoarthritis, and COPD; however, individuals with 5-7 youthful organs were not globally 182 
significantly protected and instead had increased risk for diabetes and Parkinson’s disease, 183 
suggesting a youthful appearing aging signature is not always beneficial. Among youthful organ 184 
profiles, only the brain and immune system were protective for at least three diseases (nominal 185 
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p-value<0.05) while not conferring increased risk of any other diseases. A youthful brain was 186 
especially protective of Alzheimer’s disease (HR=0.13, p=0.046, q=0.15) and other dementias, 187 
while a youthful immune system was protective of diabetes (HR=0.52, p=0.0073, q=0.044), atrial 188 
fibrillation, and cerebrovascular disease (Extended Data Fig. 3a). 189 
 190 
We further examined all individuals with youthful or aged brains – regardless of single or multi-191 
organ ager status – and their associations with Alzheimer’s disease risk (Fig. 2e). We found that 192 
individuals with aged brains had a 3.4-times increased risk (HR=3.43, p=7.26x10–34) while those 193 
with youthful brains had a striking 81% reduced risk (HR=0.19, p=4.21x10–5) of Alzheimer’s 194 
disease compared to those with normal aging brains (Fig. 2e). Regarding sample size, 121 of 195 
2,618 individuals (4.6%) with aged brains developed Alzheimer’s disease over 17 years, while 196 
only 6 of 2,002 individuals (0.3%) with youthful brains developed the disease. 197 
 198 
The specificity of the association between brain aging and dementia led us to determine whether 199 
organ age gaps were associated with brain volume based on magnetic resonance imaging (MRI) 200 
data from follow-up visits (Extended Data Fig. 3b). We confirmed that brain aging was uniquely 201 
associated with increased volume of the ventricles and decreased volume of cortical regions. 202 
 203 
We also assessed organ age gap associations with disease progression, by regressing age gaps 204 
against years since diagnosis, for individuals who were diagnosed with disease before blood draw 205 
(Extended Data Fig. 3c). We found that many organ age gaps increased throughout chronic 206 
kidney disease progression. Interestingly, the brain age gap was not associated with dementia 207 
progression (Extended Data Fig. 3d), suggesting the brain aging model uniquely captures age-208 
related changes leading up to dementia but not after. 209 
 210 
Given these robust associations, we sought to gain further insights into organ aging by examining 211 
aging model proteins and their weights (Extended Data Fig. 4a). The strongest weighted protein 212 
in the brain aging model was neurofilament light chain (NEFL; Fig. 2f), which increases with age 213 
and is a clinical biomarker of neurodegeneration that is often measured in clinical trials for 214 
Alzheimer’s disease10,11 and was recently approved as a surrogate endpoint for a clinical trial to 215 
treat superoxide dismutase 1 amyotrophic lateral sclerosis (SOD1-ALS)12,13. Our data suggest it 216 
may also be a viable surrogate endpoint for functional deterioration of the brain, risk of dementia, 217 
and brain aging. Other highly weighted brain aging proteins include myelin oligodendrocyte 218 
protein (MOG), a component of the outer surface of myelin sheaths, and glial fibrillary acidic 219 
protein (GFAP) a marker of reactive astrocytes, which both increased with age, as well as 220 
brevican (BCAN), a brain extracellular matrix component produced by oligodendrocyte precursor 221 
cells, and protein tyrosine phosphatase receptor type R (PTPRR), which decreased with age (Fig. 222 
2f). Plasma NEFL, GFAP, and BCAN were previously highlighted as predictors of future dementia 223 
risk14. Model weights between UK Biobank-Olink and SomaScan4 brain aging models were 224 
moderately correlated (Spearman ρ=0.5), with NEFL, BCAN, and PTPRR being most aligned in 225 
effect and directionality across platforms (Extended Data Fig. 5a). Using the permutation feature 226 
importance for biological aging (FIBA) algorithm4, we found that all of the top seven most highly 227 
weighted brain aging proteins contributed to the prediction of Alzheimer’s disease risk, showing 228 
the importance of leveraging the information from many brain-derived proteins to understand brain 229 
aging and disease (Extended Data Fig. 5b). 230 
 231 
We then sought to determine which cell types these proteins were likely derived from by analyzing 232 
public human brain single-cell RNA-sequencing data15 (Extended Data Fig. 5c-d). Interestingly, 233 
we found that around half of brain aging proteins were specific to the oligodendrocyte lineage, 234 
with the rest expressed mostly in neurons, then astrocytes (Extended Data Fig. 5d), pointing to 235 
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white matter as a key aging region, as suggested by human brain MRI and mouse brain RNA-236 
sequencing studies16,17. 237 
 238 
Lung aging was explained primarily by lysosome-associated membrane glycoprotein 3 (LAMP3), 239 
a protein expressed specifically in type II alveolar stem cells, secretoglobin family 1A member 1 240 
(SCGB1A1) also known as club cell secretory protein (CCSP), a marker of club cells, and C-C 241 
Motif Chemokine Ligand 18 (CCL18), a cytokine expressed by alveolar macrophages, potentially 242 
reflective of stem cell dysfunction and inflammation in the lung with age. Heart aging was 243 
explained primarily by N-terminal pro b-type natriuretic peptide (NT-proBNP), a vasodilating 244 
hormone that increases in response to heart damage, while kidney aging was explained by renin 245 
(REN), a protein involved in blood pressure regulation. Both NT-proBNP and REN were previously 246 
identified as key heart and kidney aging proteins, respectively, based on SomaScan plasma 247 
proteomics data4 and are well-established biomarkers of heart and kidney function. All aging 248 
model protein weights are provided in Supplementary Table 4 and the top 20 proteins for each 249 
model are shown in Extended Data Fig. 4a. 250 
 251 
Together, these data show that plasma protein-derived organ age estimates are linked with age-252 
related organ diseases and can reveal insights into the aging biology of their respective organs. 253 
 254 
 255 
Organ age estimates are sensitive to modifiable lifestyle choices  256 
We next explored whether biological age estimates grounded in physiological states of organ 257 
function are sensitive to changes in lifestyle. We tested the associations between all 13 z-scored 258 
age gaps and 15 lifestyle factors (diet, alcohol, smoking, exercise), adjusted for age and sex using 259 
linear regression (Supplementary Table 7). We found 66 positive and 79 negative significant 260 
associations after correcting for multiple hypothesis testing. In line with their known health impacts, 261 
smoking, alcohol, and processed meat intake were associated with age acceleration across 262 
several organs, while “vigorous exercise” and oily fish consumption were associated with youthful 263 
organs (Fig. 4a). 264 
 265 
We also tested the associations between all 13 z-scored age gaps and consumption of 137 266 
drugs/supplements (n cases>=100; Supplementary Table 8). After multiple hypothesis test 267 
correction, we found 5 products – Premarin, ibuprofen, glucosamine, cod liver oil, multivitamins, 268 
vitamin C – that were significantly (q<0.01) associated with more youthful age in at least two 269 
organs (Fig. 4b). Ibuprofen, glucosamine, cod liver oil, multivitamins, and vitamin C products were 270 
associated with youth primarily in the kidneys, brain, and pancreas (Fig. 4b).  271 
 272 
Premarin is a conjugated estrogen medication typically prescribed to women experiencing post-273 
menopausal symptoms, and estrogen medication has been recently shown to be associated with 274 
reduced mortality risk in the UK Biobank18. Thus, we wondered whether estrogen medications 275 
may extend longevity by preventing menopause-induced accelerated aging of organs. We 276 
grouped all post-menopausal estradiol/oestrogen medications together and identified 47 women 277 
with normal, early, or premature menopause (but not late menopause) who were treated with 278 
estrogen by the time of blood draw. We subsetted our analysis to women among these 279 
menopausal groups and tested the independent associations of age at menopause and estrogen 280 
treatment with organ age gaps using linear regression. Interestingly, women with earlier 281 
menopause were age accelerated across nearly all organs, in line with the well-documented 282 
adverse health consequences of early menopause19 (Fig. 4c). Conversely, estrogen treatment 283 
was associated with more youthful immune systems, livers, and arteries suggesting intervention 284 
with estrogen treatment may protect these organs from menopause-induced age acceleration 285 
resulting in extended survival (Fig. 4d). 286 
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 287 
Though these cross-sectional findings should be interpreted with caution, they underscore the 288 
sensitivity of plasma protein-derived organ age estimates to various lifestyle choices with known 289 
health impacts and their potential utility in assessing the effects of novel interventions in more 290 
rigorous experimental settings. 291 
 292 
 293 
Accrual of aged organs progressively increases mortality risk while brain and immune 294 
system youth is associated with longevity 295 
We next sought to determine whether organ age estimates were associated with future mortality 296 
risk. We tested associations between organ age gaps and all-cause mortality risk, adjusting for 297 
age and sex, over a 2-17 year follow-up using Cox proportional hazards regression 298 
(Supplementary Table 9). We found significant associations in all organs with a standard 299 
deviation increase in age gaps conferring 20%-60% increased risk of death (Fig. 4a), similar to 300 
findings from SomaScan-based organ aging models4. These associations were robust to 301 
additional adjustment with blood cystatin-C, a marker of kidney filtration rate, and PhenoAge, an 302 
established blood biochemistry/cell counts-based biological age estimate (whose age gap has a 303 
mortality risk hazard ratio of 1.38 in the UK Biobank), suggesting that organ age estimates provide 304 
independent information not captured by existing clinical biomarkers. Surprisingly, brain aging 305 
was most strongly predictive of mortality (HR=1.58, p=4.40x10–291) (Fig. 4a), suggesting that the 306 
brain may be a central regulator of lifespan in humans similar to findings in animal models (worms, 307 
flies, mice)20–22. Indeed, individuals with aged brains had increased risk for several diseases 308 
beyond dementia including COPD and heart failure (Extended Data Fig. 3a) consistent with 309 
previous studies showing that the brain regulates systemic inflammation23–27. 310 
 311 
These data suggested that organ age estimates may provide additional predictive power for 312 
mortality, beyond cystatin-C and PhenoAge. We compared the concordance-index, a metric of 313 
Cox model performance equivalent to area under the curve (AUC), of regularized Cox proportional 314 
hazard models trained on cystatin-C alone, PhenoAge alone, organ ages alone, and combinations 315 
of these aging biomarkers, with chronological age and sex as covariates in each model. We found 316 
that the model with all variables had the strongest performance, comparable to the performance 317 
of the model with organ ages alone (Fig. 4b), suggesting that organ ages not only provide 318 
additional predictive power, but also that they sufficiently capture the information from other 319 
clinical aging biomarkers. Examination of the combined model coefficients revealed that 320 
conventional age, brain age, PhenoAge, and biological sex were the strongest independent 321 
predictors of mortality (Fig. 4c). Application of FIBA to understand contributions of brain and 322 
conventional aging model proteins on mortality risk highlighted BCAN, NEFL, and PTPRR from 323 
the brain as well as ectodysplasin A2 receptor (EDA2R, organismal protein), chemokine C-X-C 324 
motif ligand 17 (CXCL17, organismal protein), and elastin (ELN, artery protein) from the 325 
conventional aging model as important proteins (Extended Data Fig. 6a-d). 326 
 327 
While each organ age gap was associated with risk of death, we wondered whether the accrual 328 
of aged organs would be increasingly detrimental. Hence, we tested whether single-organ 329 
extreme agers and multi-organ agers (bins of 2-4, 5-7, 8+ organs) had an increased risk of death 330 
compared to normal agers, while adjusting for age and sex (Supplementary Table 10). 331 
Interestingly, we found that while having a single aged organ (brain, lung, intestine, heart, immune, 332 
kidney, liver, pancreas) conferred a 1.5-3 times increased risk, having 2-4, 5-7, and 8+ extremely 333 
aged organs conferred a 2.3-, 4.5-, and 8.2- times (q=3.52x10–70, q=1.11x10–104, and q=1.72x10–334 
123) increased risk of death, respectively (Fig. 4d-e). Notably, over 60% of individuals with 8+ 335 
extremely aged organs at blood draw died within 15 years (Fig. 4d). 336 
 337 
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We then sought to determine whether youthful organ profiles were associated with longevity 338 
(Supplementary Table 10). We found individuals with youthful appearing arteries had increased 339 
mortality risk, and those with multi-organ youth had no difference in mortality risk compared to 340 
normal agers (Fig. 4d). Using FIBA, we found that artery-protein thrombospondin 2 (THBS2), a 341 
protein that decreases with age but has a positive association with mortality risk, was responsible 342 
for the non-linear association between the artery age gap and mortality risk (Extended Data Fig. 343 
6c; Extended Data Fig. 4a). Why individuals with broad multi-organ youth are not protected is 344 
unclear. 345 
 346 
Notably though, individuals with youthful brains (HR=0.53, q=6.58x10–3) and immune systems 347 
(HR=0.63, q=0.034) had significantly reduced mortality risk (Fig. 4d), similar to their unique 348 
protective associations with disease (Extended Data Fig. 3a). We therefore assessed individuals 349 
with both youthful brains and immune systems and found that this group was most strongly 350 
protected from mortality (HR=0.37, p=0.027; Fig. 4d-e), underscoring the additive longevity 351 
benefits of having a resilient brain and immune system. Regarding sample size, 792 of 10,000 352 
individuals (7.92%) of normal agers died within 17 years, while only 5 of 157 individuals (3.2%) 353 
with youthful brains and immune systems died. 354 
 355 
To probe the underlying mechanisms implicated in brain- and immune system- related longevity, 356 
we performed gene ontology enrichment analyses of the top ten brain and immune aging model 357 
proteins based on mortality risk FIBA scores (Extended Data Fig. 6f-g; Fig. 4f-g). Selection of 358 
brain- or immune system- specific plasma proteins as background for the enrichment test did not 359 
result in significant associations, so we used all genes as background. Perineuronal net was the 360 
most enriched brain pathway (BCAN, PTPRZ1, NCAN) and secretory granule was the most 361 
enriched immune system pathway. Intriguingly, neuroinflammation was another enriched immune 362 
system pathway, composed of metalloproteinase-9 (MMP9), a regulator of perineuronal net 363 
composition, as well as tumor necrosis factor receptor superfamily member 1B (TNFSRF1B), and 364 
integrin alpha M (ITGAM) also known as CD11B. Youthful brain agers had higher levels of BCAN 365 
and NCAN and youthful immune agers had lower levels of MMP9 (Extended Data Fig. 6f-g), 366 
suggesting that global preservation of brain extracellular matrix partly due to reduced degradation 367 
by peripheral inflammatory factors and reduced chronic inflammation partly regulated by the brain 368 
could be crucial for promoting longevity. 369 
 370 
Together, these data reveal that plasma-protein derived organ age estimates improve upon 371 
existing aging biomarkers for mortality risk prediction, the accrual of aged organs progressively 372 
increases mortality risk, and a youthful brain and immune system are key to longevity. 373 
 374 
 375 
DISCUSSION 376 
Our findings based on plasma proteomics data (~3,000 proteins) from nearly 45,000 individuals 377 
in the UK Biobank establish plasma protein-derived organ age estimates as robust indicators of 378 
organ age, health, and disease/mortality risk beyond gold-standard clinical aging biomarkers and 379 
reveal key proteins implicated in the aging process. Furthermore, we show that organ age 380 
estimates are stable across train/test centers and longitudinal visits and are cross-sectionally 381 
associated with modifiable lifestyle choices and therapeutic use, and thus, lay the foundation for 382 
human experiments testing the effects of novel longevity interventions on the biological age of 383 
organs at the individual level. 384 
 385 
Though we define correlates of organ aging that explain heterogeneity in disease and mortality, 386 
future work is needed to understand the molecular and environmental determinants and sequence 387 
of organ aging. Our discovery of multi-organ agers and their increased prevalence with age (Fig. 388 
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1d, Extended Data Fig. 1g) suggests that aged organs likely accumulate over time within an 389 
individual, but how and why is unclear. Consistent longitudinal sampling combined with 390 
comprehensive patient phenotyping regarding environmental stresses and genetic background 391 
are needed to elucidate the dominant sequences and causes of organ aging at the population 392 
and individual levels. Improved technologies that allow for the sampling of thousands of more 393 
molecules (proteins, lipids, and metabolites) from human tissue will aid in obtaining a more global 394 
understanding of human aging heterogeneity and its causes. 395 
 396 
Furthermore, additional studies are needed to understand why individuals with youthful profiles in 397 
many organs are not protected from disease and mortality (Fig. 4d, Extended Data Fig. 3a). 398 
While this may be commonly assumed to be true, numerous studies have shown non-linear 399 
associations between clinical biomarkers of health (ie. BMI, blood ALT, platelet count) and 400 
mortality risk with extreme “youthful” phenotypes being associated with higher risk28–30. This 401 
observation emphasizes the complexities of biological age estimation and the importance of 402 
investigating non-linear associations between aging signatures with disease and mortality to 403 
derive interpretable and actionable insights.  404 
 405 
Here, we find evidence that the brain and immune system may be central regulators of aging and 406 
longevity in humans, as accelerated brain aging is most strongly predictive of earlier mortality and 407 
a youthful brain and immune system is most predictive of longevity (Fig. 4a-d). After all, the brain 408 
regulates numerous critical age-related functions throughout the body including circadian rhythm, 409 
blood pressure, energy homeostasis, and stress response via the neuroendocrine and autonomic 410 
nervous systems, and chronic inflammation has been heavily implicated in aging1,31. Intriguingly, 411 
recent studies show bidirectional communication between the brain and immune system in aging 412 
and disease relevant contexts, such as chronic stress, atherosclerosis, and infection23–27. These 413 
observations suggest that accelerated aging or maintenance of youth in the brain and immune 414 
system likely has broad age-related effects across the body, though additional studies are needed 415 
to test this hypothesis more rigorously in humans. 416 
 417 
Regarding the molecular alterations that occur with brain aging, we find many unexpected age- 418 
and disease- associated changes in oligodendrocyte lineage- and extracellular matrix- proteins, 419 
implying extensive changes beyond neuroinflammation and neurodegeneration. Indeed, myelin 420 
degeneration and defective remyelination with mouse aging causes cognitive deficits32 and 421 
aggravates Alzheimer’s disease pathology33, and APOE4, the strongest genetic risk factor for 422 
late-onset Alzheimer’s disease, impairs myelination via cholesterol dysregulation in 423 
oligodendrocytes34. Moreover, the observation that white matter regions exhibit the most 424 
pronounced shifts in aging microglial transcriptomes17, coupled with the enrichment of genetic risk 425 
variants for neurodegenerative diseases in microglial and oligodendrocyte genes35, underscores 426 
a potential link between oligodendrocyte aging and neuroinflammation, and their relevance to 427 
neurodegeneration. Future studies exploring these multi-cellular interactions in the aging brain 428 
and their interactions with the periphery may reveal key insights into human health and longevity.  429 
  430 
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METHODS 431 
 432 
Participants 433 
The UK Biobank is a population-based prospective cohort with ‘omics and phenotypic data 434 
collected on approximately 500,000 participants, aged 40 to 69 years at recruitment between 435 
2006 and 2010. A subset of these had subsequent visits after the initial assessment 20,337 436 
participants had a first repeat assessment (2012-2013), approximately 85,000 had a first MRI 437 
imaging visit (from 2014 to ongoing), and approximately 9,000 had a second MRI imaging visit 438 
(from 2019 to ongoing). Details on available phenotypes can be found online at 439 
https://biobank.ndph.ox.ac.uk/showcase/ and all participants provided informed consent. 440 
A subset of these participants had their blood sample processed with the Olink proteomics 441 
assessed, which selection, data processing and quality control are described in (Sun et al., 2023, 442 
https://www.nature.com/articles/s41586-023-06592-6). Briefly, 53,014 samples were from the 443 
initial assessment visit, 1,172 were from the first imaging visit, and 1,123 were from the second 444 
imaging visit. 445 
 446 
We defined participants’ last-known-age as either age-at-death, or the difference between the 447 
latest date available in ICD9, ICD10, operating procedure, cancer registry or UKB assessment 448 
visit fields and birth date, this age corresponds to censoring in the following survival analyses. 449 
Additionally, we define the age-at-onset of several groups of diseases based on a combination of 450 
information in ICD10, ICD9, operating procedure, and cancer registry. The following disease 451 
groups were defined, as in 452 
(https://www.medrxiv.org/content/10.1101/2023.09.13.23295486v1.full), Type-2 diabetes (E11), 453 
Ischemic heart disease (I20 to I25), Cerebrovascular disease (I60 to I69), Chronic liver disease 454 
(K70, K73 to K76), Chronic kidney disease (N18), All cause dementia (A81, F00 to F03, F05, F10, 455 
G30, G31, I67), Vascular dementia (F01, I67), Alzheimer’s disease (F00, G30), Parkinson’s 456 
disease and parkinsonism (G20 to G22), Rheumatoid arthritis (M05, M06), Macular degeneration 457 
(H35), Osteoporosis (M80, M81), Osteoarthritis (M15 to M19), Prevalent hypertension (I10 to I13, 458 
I15), Colorectal cancer (C18, C19, C20), Lung cancer (C33, C34), Esophageal cancer (C15), 459 
Liver cancer (C22), Pancreatic cancer (C25), Brain cancer (C71), Leukemia (C91, to C95), Non-460 
Hodgkin lymphoma (C82 to C86), Breast cancer (C50), Ovarian cancer (C56, C57), Prostate 461 
cancer (C61). For heart-related diseases the group definitions were based on 462 
https://www.medrxiv.org/content/10.1101/2023.12.19.23300218v1, Heart failure (ICD9: 4254, 463 
4280, 4281, 4289, ICD10: I110, I130, I132, I255, I420, I428, I429, I500, I501, I509), and Atrial 464 
fibrillation or flutter (ICD9: 4273, ICD10: I480, I481, I482, I483, I484, I489, OPCS4: K571, K621, 465 
K622, K623, K624, X501, X502). 466 
 467 
Medications reported in the verbal interview 468 
(https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100075) were also analyzed with a minimum of 469 
100 participants per medication. 470 
 471 
Brain MRI-derived phenotypes extracted with Freesurfer 472 
(https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=110) were analyzed, and age-at-MRI as well as 473 
estimated-total-intracranial volume were regressed out. 474 
 475 
UK Biobank data were analyzed under Application Number 45420. 476 
 477 
Identification of organ-specific plasma proteins 478 
We used the same methods we developed in our previous study4 to identify organ-specific plasma 479 
proteins. Briefly, we identified organ-enriched genes: genes that were expressed at least four 480 
times higher in a single organ compared to any other organ based on human tissue bulk RNA-481 
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seq data from the Gene Tissue Expression Atlas (GTEx). We refer to our previous study for details. 482 
Our classification of organ-enriched genes are provided in Supplementary Table 1. We mapped 483 
these genes to proteins measured by Olink to identify organ-specific plasma proteins in the UK 484 
Biobank dataset (Supplementary Table 2). 485 
 486 
Organ age estimation 487 
We used LASSO regression models to build chronological age predictors, a.k.a. aging models, to 488 
estimate biological age. The LassoCV function from the scikit-learn36 Python package was used 489 
to identify the optimal lambda parameter value using 5-fold cross validation. The lambda value 490 
that achieved 95% of the performance of the highest performing lambda value was applied to 491 
scikit-learn’s Lasso function to derive sparse aging models. Each organ aging model was trained 492 
using a distinct set of organ-specific plasma proteins. An organismal aging model was trained 493 
using non-organ-specific proteins. A conventional aging model was trained using all proteins. Age 494 
gaps were calculated as the residual of predicted age linearly regressed against actual age. Age 495 
gaps were z-scored per aging model to normalize for differences in age prediction accuracy. Z-496 
scored age gaps were used for all analyses. Extreme agers were defined as individuals with an 497 
age gap z-score > 1.5 or z-score <  –1.5 in a given aging model. Conventional age gaps were not 498 
included in the extreme ager analyses due to their high similarity to organismal age gaps (Fig. 499 
1b-c). 500 
 501 
Aging models were trained and tested on 44,526 baseline assessment plasma samples which 502 
had measurements for 2,923 proteins from Olink Explore proteomics. 7 proteins with missing 503 
values in over 10% of samples were removed, leaving 2,916 proteins for model development. 504 
Remaining missing values were imputed using scikit-learn’s KNNImputer function. The knn-505 
imputer was trained on 21,504 samples from 10 randomly selected sample collection centers 506 
(train centers: 11013, 11009, 11014, 11008, 11018, 11007, 11017, 11005, 11002, 11023) and 507 
tested on 23,022 samples from the remaining 11 centers (test centers: 11010, 11011, 11016, 508 
11020, 11021, 11004, 11003, 11006, 11012, 11001, 11022, 10003). The number of neighbors 509 
used for the knn-imputer was set to the square root of the sample size of the training dataset 510 
(n=147). Protein values were z-score normalized based on the means and standard deviations of 511 
proteins in the training split (Supplementary Table 3) prior to model training. Aging models were 512 
trained and tested using the same train-test split as the knn-imputer. Aging models performed 513 
near equally across train and test samples (Extended Data Fig. 1b; Fig. 4b), demonstrating 514 
robustness of missing value imputation and biological age estimation. Aging model weights are 515 
provided in Supplementary Table 4. 516 
 517 
Longitudinal age gap analyses 518 
Longitudinal age gap analyses (Extended Data Fig. 2) required use of plasma proteomics data 519 
collected across multiple visits from the same individual. However, proteomics data from post-520 
baseline samples were obtained from an earlier version of the Olink assay with 1,459 proteins 521 
and were not compatible with models trained on the ~3k protein platform. Therefore, for 522 
longitudinal age gap analyses, we trained a distinct set of organ aging models using the subset 523 
of ~1.5k proteins that were measured across all visits.  524 
 525 
1,463 proteins were measured across all visits. 4 proteins with missing values in over 10% of 526 
samples were removed, leaving 1,459 proteins for model development. Missing values for 527 
baseline samples were knn-imputed as described above. Post-baseline samples were not 528 
imputed to prevent biased imputation towards baseline data from the same individual. 1.5k-529 
protein-based aging models were trained on 44,406 baseline samples from individuals who did 530 
not have follow-up proteomics data. Importantly, samples from individuals with longitudinal 531 
proteomics data were not included in model training to prevent model training-evaluation 532 
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contamination. 1k-protein-based aging models were LASSO regression models trained to predict 533 
the predicted age from the 3k protein-based organ aging models. The lambda value that achieved 534 
90% of the performance of the highest performing lambda value was used for sparsity. Recursive 535 
feature elimination using scikit-learn’s RFECV function was additionally used to further simplify 536 
the models to maximize the number of testable samples with unimputed data. Liver and muscle 537 
1k-based aging models were removed due to low correlation (r<0.8) with 3k-based aging models. 538 
Models were tested and evaluated on longitudinal data from 1,176 unique individuals who had 539 
non-missing values for all remaining aging model proteins (880 baseline, 843 imaging-visit-1, and 540 
786 imaging-visit-2 samples). The mean number of years between imaging-visit-1 and baseline 541 
was 9.1 years (st. dev.=1.8), and the mean number of years between imaging-visit-2 and imaging-542 
visit-1 was 3.3 years (st. dev.1.6). 543 
 544 
Statistical analyses 545 
Cox proportional hazards regression (CoxPHFitter function from lifelines37 Python package) was 546 
used to assess the associations between organ age gaps and future disease or mortality risk. 547 
Linear regression (OLS function from statsmodels38 Python package) was used to assess the 548 
associations between organ age gaps and lifestyle factors recorded at the time of blood draw. All 549 
Cox and linear regression models included age and sex as additional covariates. Multiple 550 
hypothesis testing correction was applied, when appropriate, using the Benjamini-Hochberg 551 
method, and the significance threshold was a 5% false discovery rate. Corrected p-values are 552 
referred in the manuscript as q-values. Results and sample sizes for these statistical tests are 553 
provided in Supplementary Tables 5-10. 554 
 555 
 556 
DATA AVAILABILITY 557 
Organ age estimates for all UK Biobank participants will be returned to the UK Biobank and 558 
available through Showcase.  559 
 560 
 561 
CODE AVAILABILITY 562 
Organ aging models can be accessed in a Python package called organageUKB (at the time of 563 
publication) to easily estimate organ age from any Olink plasma proteomics sample. All aging 564 
model weights are provided in Supplementary Table 4. Means and standard deviations to z-565 
score protein levels before applying model weights are provided in Supplementary Table 3. 566 
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Figures 682 

 683 
Figure 1. Plasma protein-derived organ age estimates in the UK Biobank. 684 
 685 
a, Study design to estimate organ-specific biological age from plasma proteomics data in the UK Biobank. 686 
A protein was called organ-specific if the gene encoding the protein was expressed at least four-fold 687 
higher in one organ compared to any other organ in the GTEx organ bulk RNA-seq atlas. Organ-specific 688 
protein sets were used to train LASSO chronological age predictors. Samples from 10/21 centers 689 
(n=21,504) were used for training and the remaining samples (n=23,022) were used for testing. An 690 
‘organismal’ model, which was trained on the levels of non-organ-specific (organ-shared) proteins, and a 691 
‘conventional’ model, which was trained on all proteins on the Olink assay, were also developed and 692 
assessed. Model age gaps were calculated and then z-score normalized per organ to allow for direct 693 
comparisons across organs. Age gaps were characterized (Fig. 1), and tested for associations with 694 
disease risk (Fig. 2), modifiable lifestyle choices (Fig. 3), and mortality risk (Fig. 4). 695 
 696 
b, Pairwise correlation of organ age gaps from all samples. Inset histogram shows the distribution of all 697 
pairwise correlations, with the dotted line representing the mean.  698 
 699 
c, A Lasso regression model was used to predict conventional age based on organ ages and organismal 700 
age. Organismal, brain, and artery ages were sufficient to predict conventional age with r2=0.97. Relative 701 
weights are shown as a pie chart. 702 
 703 
d, Extreme agers were defined by a 1.5 standard deviation increase or decrease in at least one age gap. 704 
The mean organ age gaps of extremely youthful brain agers and accelerated multi-organ agers are 705 
shown. 706 
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 707 
 708 
Figure 2. Organ age estimates predicts future age-related disease. 709 
 710 
a, Cox proportional hazards regression was used to test the association between age gaps and future 711 
disease risk, adjusted for age-at-blood-draw and sex. Heatmap colored by age gap log(hazard ratio) is 712 
shown. Heatmap columns are ordered by the Gini-coefficient of age gaps per disease. The most 713 
significant associations per disease are highlighted with black borders. The conventional age gap was 714 
never the most significant. The log fold change in hazard ratios between the organ with the most 715 
significant age gap versus the conventional age gap is shown below the heatmap. 716 
 717 
b, Body plots showing log hazard ratios from the heatmap in a, are shown for diseases of systemic aging. 718 
 719 
c, Body plots showing log hazard ratios from the heatmap in a, are shown for diseases of single-couple 720 
organ aging. 721 
 722 
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d, Forest plot visualizing the results from the heatmap in a, for Alzheimer’s disease risk. Age gap hazard 723 
ratios and 95% confidence interval shown. 724 
 725 
e, Cumulative incidence plot showing increased risk of Alzheimer’s disease in extreme accelerated brain 726 
agers and decreased risk in youthful brain agers. 727 
 728 
f, Bar plot displaying the top 10 protein coefficients in the brain aging model. 729 
 730 
g, Pie chart displaying proportion of brain aging proteins assigned to each brain cell-type based on single-731 
cell RNA-sequencing. Cell type was assigned based on cell type with the maximum expression of a given 732 
gene. 733 
  734 
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 735 
 736 
Figure 3. Organ age estimates are sensitive to modifiable lifestyle choices 737 
 738 
a, Linear regression was used to determine the association between age gaps and modifiable lifestyle 739 
choices while accounting for age and sex. Heatmap colored by signed log10(q-value) is shown. Only 740 
significant (q<0.05) values are colored. 741 
 742 
b, Linear regression was used to determine the association between age gaps and drugs/supplement 743 
intake while accounting for age and sex. Only drugs with significant (q<0.05) youthful associations in at 744 
least two organs are shown. Heatmap is colored by signed log10(q-value). Only significant (q<0.05) 745 
values are colored. 746 
 747 
c, Linear regression was used to determine the association between age gaps versus early menopause 748 
and estrogen treatment together. Bar plot showing signed log10(p-value) for menopause and estrogen 749 
covariates is shown. 750 
 751 
d, Boxplot visualization of immune age gaps in individuals stratified by menopause status and estrogen 752 
treatment. Standard boxplot structure was used. 753 
  754 
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 755 
 756 
Figure 4. Accrual of aged organs progressively increases mortality risk while brain and 757 
immune system youth is associated with longevity 758 
 759 
a, Bar plot showing results from Cox proportional hazards regression analyses, testing the associations 760 
between age gaps and future all-cause mortality risk, controlling for age, sex, (and blood cystatin C; and 761 
PhenoAge). Hazard ratios and 95% confidence intervals are shown. PhenoAge age gap hazard ratio 762 
(1.38) is shown as a dotted line for reference. 763 
 764 
b, Concordance indices from various Lasso-regularized Cox proportional hazard models trained to predict 765 
mortality risk. Performance across train and test centers is shown. Covariates for each model, in addition 766 
to age-at-blood-draw and sex, are labeled on the x-axis. 767 
 768 
c, Model coefficients shown for the combined model (OrganAge+PhenoAge+CysC) from b. 769 
 770 
d, Forest plot showing results from Cox proportional hazards regression, testing the associations between 771 
extreme ager status and future all-cause mortality risk, controlling for age-at-blood-draw and sex. Only 772 
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significant (q<0.05) associations are shown. Age gap hazard ratios, 95% confidence intervals, number of 773 
events out of the total sample size are shown. 774 
 775 
e, Kaplan-Meier curves showing survival over 17-year follow-up of normal agers, progressive levels of 776 
multi-organ agers (2-4, 5-7, 8+ aged organs), and individuals with youthful brains or immune systems. 777 
 778 
f-g, Gene ontology pathway enrichment results (with all genes as background) from top ten brain (f) and 779 
immune (g) aging proteins by mortality risk FIBA score. 780 
  781 
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 782 
 783 
Extended Data Figure 1. Organ aging models in the UK Biobank. 784 
 785 
a, Age-at-blood-draw distribution by biological sex. 786 
 787 
b, Correlation between predicted and actual age across all aging models and train/test splits. 788 
 789 
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c, Difference in correlation between predicted and actual age by biological sex. 790 
 791 
d, Mean difference in organ age gaps between males and females. 792 
 793 
e, Extreme ager ageotype sample sizes and proportions. 794 
 795 
f, Age distributions per extreme ager ageotype 796 
 797 
g, Age distributions per aggregated extreme ager ageotype. Individuals with many aged or youthful 798 
organs are significantly older than normal and single organ agers. 799 
 800 
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Extended Data Figure 2. Age gaps are stable across longitudinal visits. 802 
 803 
a, Longitudinal proteomics data from a subset of 937 individuals were analyzed. Longitudinal data were 804 
available only on the 1k-protein platform, so new aging models trained on the 1k-platform were 805 
developed. New aging models were trained on 44,406 samples without longitudinal data and tested on 806 
samples with longitudinal data (937 unique individuals). Only 1k-aging models with age estimates that 807 
were correlated r2>=0.8 with 3k-based age estimates were included for downstream analyses. Correlation 808 
between visit 1 (baseline, 2006-2010) and visit 2 (imaging visit 1, 2014+) age gaps are shown. 809 
 810 
b, Bar plot showing fractions of visit 1 extreme agers and non-visit 1 extreme agers that are extreme 811 
agers in the same organ in visit 2. Equivalent plot for youthful agers is shown on the right. 812 
 813 
c, Age gaps were grouped into bins of 0.5 standard deviation to determine changes in age gap bins 814 
across visits. Individual trajectories across visits for extreme immune agers are shown. Equivalent plot for 815 
youthful immune agers is shown at the bottom. 816 
 817 
d, Pie chart showing percent distribution of immune age gap bins in visit 2 (2014+) and visit 3 (2019+) for 818 
individuals who are extreme immune agers in visit 1. Equivalent plot for youthful immune agers is shown 819 
at the bottom. 820 
 821 
e, Stacked bar plot showing percent distribution of age gap bins in visit 2 and visit 3 for individuals who 822 
are extreme agers in visit 1. Equivalent plot for youthful agers is shown at the bottom. 823 
 824 
  825 
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Extended Data Figure 3. Ageotypes versus disease risk and age gaps versus brain volume. 827 
 828 
a, Cox proportional hazards regression was used to determine the association between extreme 829 
ageotypes and future disease risk, controlling for age and sex. Heatmap colored by age gap log(hazard 830 
ratio) is shown. *p<0.05, **q<0.05. Non-significant hazard ratios (p<0.05) were set to zero. 831 
 832 
b, Linear regression was used to determine the association between baseline organ age gaps and 833 
imaging visit 1 brain MRI volumes, controlling for age-at-blood-draw, age-at-imaging-visit-1, sex, and 834 
estimated total intracranial volume. Non-significant effect sizes (q<0.05) were set to zero. Red indicates 835 
positive associations, while blue indicates negative associations. 836 
 837 
c, Linear regression was used to determine the association between organ age gaps and years since 838 
disease diagnosis. Non-significant effects (q<0.05) were set to zero.  839 
 840 
d, Visualization of results from c. Organ age gap versus years since diagnosis shown. 841 
 842 
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Extended Data Figure 4. Aging model coefficients 844 
 845 
a, For all aging models, the top 20 aging model proteins and their weights are shown. 846 
 847 
 848 
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 849 
Extended Data Figure 5. Brain aging proteins. 850 
 851 
a, Scatterplot showing model weights from this study’s Olink-based aging model (y-axis) and Oh et. al 852 
2023’s SomaScan-based brain aging model (x-axis). Spearman correlation and p-value shown. 853 
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 854 
b, Scatterplot showing results from feature importance for biological aging (FIBA) algorithm to identify 855 
proteins in the brain aging model contributing to the brain age gap’s association with Alzheimer’s disease 856 
risk. FIBA score (y-axis) indicates Alzheimer’s disease risk effect size loss after permutation of protein 857 
values. X-axis indicates absolute protein weight in the brain aging model. Color indicates protein weight in 858 
the brain aging model. 859 
 860 
c, Mean gene expression of brain aging protein-encoding genes in GTEx tissue bulk RNA-seq data. 861 
 862 
d, Mean gene expression of brain aging protein-encoding genes in Haney et al. 2024 human brain 863 
scRNA-seq data. 864 
  865 
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Extended Data Figure 6. Aging-mortality risk proteins. 866 
 867 
a-d, Scatterplots showing results from feature importance for biological aging (FIBA) algorithm to identify 868 
proteins in the brain (a), conventional (b), artery (c), and immune (d) aging models that contribute to the 869 
model age gap’s association with future mortality risk. FIBA score (y-axis) indicates mortality risk effect 870 
size loss after permutation of protein values. X-axis indicates absolute protein weight in the aging model. 871 
Color indicates protein weight in the aging model. 872 
 873 
e, Forest plot showing results from Cox proportional hazards regression, testing the associations between 874 
extreme ager status and future all-cause mortality risk, controlling for age and sex. Age gap hazard ratios, 875 
95% confidence intervals, number of events out of the total sample size are shown. 876 
 877 
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f, Protein levels of youthful brain agers versus normal agers. The top ten (5 decrease with age, 5 increase 878 
with age) proteins based on mortality risk FIBA score are shown. Each protein was linearly adjusted for 879 
age, sex, and every other protein in the brain aging model before plotting. Proteins are ordered by the 880 
aging model coefficient. 881 
 882 
g, As in f, but for the immune aging model. 883 
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