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Abstract. – Adipocytes express various en-
zymes, such as aldo-keto reductases (AKR1C), 
11β-hydroxysteroid dehydrogenase (11β-HSD), 
aromatase, 5α-reductases, 3β-HSD, and 
17β-HSDs involved in steroid hormone metab-
olism in adipose tissues. Increased activity of 
AKR1C enzymes and their expression in ma-
ture adipocytes might indicate the association 
of these enzymes with subcutaneous adipose 
tissue deposition. The inactivation of andro-
gens by AKR1C enzymes increases adipogen-
esis and fat mass, particularly subcutaneous 
fat. AKR1C also causes reduction of estrone, a 
weak estrogen, to produce 17β-estradiol, a po-
tent estrogen and, in addition, it plays a role in 
progesterone metabolism. Functional impair-
ments of adipose tissue and imbalance of ste-
roid biosynthesis could lead to metabolic dis-
turbances. In this review, we will focus on the 
enzymes involved in steroid metabolism and fat 
tissue deposition.
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Introduction

Adipose tissue constitutes an important site 
for steroid hormone synthesis, metabolism, and 
storage1-3.

Plasma dehydroepiandrosterone (DHEA), 
DHEA sulfate (DHEA-S), androstenedione and 
testosterone are taken up and transformed to 
active hormones in adipose tissue by various 
steroid-converting enzymes4. The steroid biosyn-
thetic pathway in adipose tissue depends on the 
relative expression or activity of steroidogenic 
enzymes4.
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Steroid metabolism involves the cytochrome 
P450 monooxygenases superfamily, aldo-keto re-
ductases (AKRs), short-chain dehydrogenase/re-
ductase oxidoreductases, polyprenol reductases, 
uridine diphosphate glucuronosyl transferases, 
catechol-O-methyl transferases, sulfotransfer-
ases5-7, hydroxysteroid dehydrogenases (HSD), 
like 11β-HSD type 1, 11β-HSD type 2, 3β-HSD, 
17β-HSDs, and aromatase (Figure 1). These en-
zymes are important for steroid biosynthesis and 
are expressed in preadipocytes and adipocytes8. 
In particular, the most important enzymes for the 
pathophysiology of adipose tissue are aldo-ke-
to reductases, hydroxysteroid dehydrogenases 
(HSD), and aromatase, since they regulate the ho-
meostasis of steroid hormones in the adipocytes9. 
In this review, we will focus on the enzymes 
involved in both steroid metabolism and fat tissue 
deposition.

11β-Hydroxysteroid Dehydrogenase
Hydroxysteroid dehydrogenase enzymes are 

known to catalyze hydroxysteroid dehydroge-
nation. In addition, these enzymes catalyze the 
reverse reaction as ketosteroid reductases10.

The 11β-HSD type 1 enzyme in vivo func-
tions as a reductase that generates active glu-
cocorticoids. In human visceral adipose tissue, 
11β-HSD1 converts inactive cortisone to active 
cortisol levels11 to higher levels than in subcuta-
neous fat12.

11β-HSD1 knockout mice show lower weight 
and fat and excellent glucose tolerance, whereas 
moderate overexpression of the 11β-HSD1 en-
coding gene in adipose tissue leads to abdominal 
obesity and metabolic syndrome13.

11β-HSD2 expression in subcutaneous adipose 
tissue (SAT) has a negative association with body 
mass index14 and is expressed to higher levels in 

Figure 1. Overview of steroidogenesis pathways. All steroid hormones are derived from a common precursor (cholesterol) 
through sequential steps involving several steroidogenic enzymes. Cholesterol is introduced into the cells via membrane 
receptor interactions and further internalized in vesicles and fused with lysosomes. Free cholesterol is released in cells by 
the action of lysosomal hydrolases which is then converted to pregnenolone in the mitochondria. Pregnolone is metabolized 
via two pathways: Δ5-hydroxy steroid pathway leads to the synthesis of 17 α-hydroxypregnenolone, dehydroepiandrosterone 
and androstenediol, and Δ4-ketosteroid pathway leads to the synthesis of 17α-hydroxyprogesterone and androstenedione. 
Androstenedione is further activated to testosterone via catalytic action of AKR1C3 and 5α-reductase. Androstane-3α,17β-
diol is a metabolite of dihydroxytestosterone. Alternatively, androstenedione and testosterone can be aromatized by CYP19A1 
to form the estrogenic steroid hormones estrone and estradiol, respectively. Cortisol and its precursor 11-deoxycortisol 
are conversion products of 17OH-progesterone and are dependent on CYP17A1 activity. Progesterone is also reduced to 
its less active form 20α-hydroxyprogesterone by AKR1C1 activity. 3βHSD = 3β-hydroxysteroid dehydrogenase; 21OH = 
21-hydroxylase; 11OH = 11-hydroxylase; 17αOH = 17α-hydroxylase.
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SAT of obese rats compared to lean controls15. 
11β-HSD2 overexpression leads to resistance to 
diet-induced obesity by decreasing food intake 
and increasing energy expenditure through inac-
tivation of glucocorticoids and/or by inhibiting 
access to their receptors16.

Aromatase
The ovaries and adipose tissue convert an-

drostenedione and testosterone into estrogens 
through P450 aromatase activity. Aromatase ac-
tivity is associated with body weight in both pre- 
and post-menopausal females, and when knocked 
out17, both female and male mice show obesity 
with increased visceral fat17.

In adipose tissue, cytokines, including IL-6 
and TNF-α, increase aromatase activity and tran-
scription of the aromatase gene18. In opposition, a 
pulse of peroxisome proliferator activated recep-
tor gamma agonist (PPARgA) to preadipocyte 
cultures of human breast cells decreases both 
transcription and activity of aromatase19. In the 
absence of PPARgA, subcutaneous abdominal 
preadipocyte expression of the P450 aromatase 
gene increases several days after induction of 
differentiation9,20.

17β-Hydroxysteroid Dehydrogenases
17β-HSD enzymes specifically catalyze es-

trone to estradiol conversion in human adipose 
tissue and in preadipocyte cultures21. In vitro, 
preadipocyte differentiation to lipid-storage cells 
increases the activity of 17β-HSD enzyme21.

In humans, of fourteen isoenzymes, 17β-HSD 
isoenzyme type 12 plays a significant role in the 
formation of estrogen by catalyzing conversion 
of estrone to estradiol, with relatively higher 
expression levels in organs related to lipid me-
tabolism including liver, heart, skeletal muscle, 
and kidney. Additionally, the 17β-HSD type 12 
isoenzyme has a significant higher expression 
in endocrine-related organs, like the pituitary 
gland, pancreas, testis, adrenal gland, placenta, 
and the gastrointestinal tract, thus suggesting its 
regulatory role in fatty acid synthesis and steroid 
metabolism9,22.

Glucocorticoid-Mediated Steroid 
Converting Enzymes

Glucocorticoid hormones are a class of corti-
costeroids secreted by the adrenal cortex. They 
are required for the regulation of different ho-
meostatic and metabolic functions in the body. 
The physiological functions of glucocorticoid 

hormones are regulated by 11β-HSDs that cat-
alyze the interconversion of active cortisol and 
corticosterone with the inactive counterparts, 
cortisone and 11-dehydrocorticosterone. The ac-
tive glucocorticoids bind the glucocorticoid re-
ceptor, a ligand-dependent transcription factor23.

During fasting, glucocorticoids stimulate lip-
olysis in adipocytes, resulting in the production 
of glycerol for gluconeogenesis, and free fatty ac-
ids for energy production through oxidation24-26.

Estrogen-Mediated Steroid 
Converting Enzymes

Estrogens, estradiol, estriol and estrone, have 
a direct impact on adipose tissue metabolism 
and function27. Enzymes involved in estradiol 
synthesis also modulate local and whole-body es-
trogen availability28. Knockout mice for estrogen 
receptor α (ERα) have increased adiposity8. In 
agreement, variants in ER-α and ERβ encoding 
genes are associated with increased body fat 
mass and visceral fat accumulation in females. 
Moreover, low levels of estrogens might also 
stimulate preadipocyte proliferation, especially 
in females29,30. In white adipose tissue, lipid me-
tabolism is regulated by estrogens through ERα, 
ERβ and G protein coupled-estrogen receptors. 

Progesterone-Mediated Steroid 
Converting Enzymes

Progesterone might stimulate fat deposition 
by enhancing lipid synthesis, lipoprotein lipase 
activity, and steroid-mediated preadipocytes dif-
ferentiation. Some researchers9 have suggested a 
role for progesterone in the gynoid fat distribution 
pattern of females due to its anti-glucocorticoid 
activity in abdominal adipose tissue. In support 
of this hypothesis, progesterone inhibits gluco-
corticoid-mediated fat cell differentiation, body 
fat accumulation or lipogenesis in the omental 
adipose tissue32.

In cultured preadipocytes of rodents, proges-
terone enhances the expression of the sterol reg-
ulatory element binding transcription factor 1 
(Srebf1) gene that subsequently controls fatty 
acid synthase transcription33. After progesterone 
treatment, the levels of resistin and leptin mRNAs 
increase, whereas the expression of adiponectin 
decreases in inguinal white adipose tissue of 
female rats34. Male rats treated with progesterone 
do not show any effect upon the expression of 
adiponectin, leptin and resistin in inguinal white 
adipose tissue because they possess low levels of 
progesterone receptors34.
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Androgen-Regulated Steroid 
Converting Enzymes

Androgens regulate the pattern of body fat 
distribution in males. Low plasma testosterone 
levels are often observed with increased visceral 
fat accumulation and abdominal obesity. Further-
more, androgen-based treatment of hypogonadal 
men results in the decrease of abdominal fat ac-
cumulation35. Similarly, research studies in males 
have revealed substantial negative association of 
DHEA levels with abdominal fat accumulation, 
indicating that lower levels of DHEA are asso-
ciated with increased abdominal fat accumula-
tion36.

AKR1 Enzymes
Hydroxysteroid dehydrogenases regulate the 

synthesis and inactivation of steroid hormones. 
These enzymes either belong to the short-chain 
dehydrogenase/reductase superfamily or aldo-ke-
to reductase (AKR) superfamily37.

In humans, 13 AKR proteins have been iden-
tified to date: the aldehyde reductase AKR1A1; 
the aldose reductases AKR1B1 and AKR1B10; 
the hydroxysteroid dehydrogenases AKR1C1, 
AKR1C2, AKR1C3, and AKR1C4; the Δ4-3-ke-
tosteroid-5-β-reductase AKR1D1; the Kvβ pro-
teins AKR6A3, AKR6A5, and AKR6A9; and the 
aflatoxin reductases AKR7A2 and AKR7A338. 
The three-dimensional structures of the above 
enzymes, except for AKR6A3 and AKR6A9, 

have been experimentally resolved, showing a 
conserved motif of eight α-helices and eight 
parallel β-strands that alternate along the peptide 
backbone, the typical fold of the TIM barrel39, 
with the central cavity hosting the nicotinamide 
moiety of NADP(H); other than the cofactor, the 
structures also present the binding modes of sev-
eral different steroid ligands40.

Role of AKR1C Enzymes
AKR1Cs enzymes are expressed in different 

tissues. AKR1C1 is mainly expressed in testis, 
kidneys and liver; AKR1C2 is mainly expressed 
in prostate, mammary gland and liver; AKR1C3 
shows higher expression in brain, testis, liver, pla-
centa, and kidneys; and AKR1C4 is particularly 
expressed in the liver41. Furthermore, AKR1C1 
is highly expressed in the adipose tissue and its 
activity is induced by adipocyte differentiation41. 
In both males and females, AKR1C1 expres-
sion levels are relatively higher in SAT than in 
omental adipose tissue41. The AKR1C enzymes 
play significant roles in the metabolism of prosta-
glandins (AKR1C3), steroid hormones (AKR1C1-
AKR1C3), and bile acids and xenobiotics/drug 
detoxification (AKR1C4)42 (Table I)8,32,43-47.

The aldo-ketoreductase 1C family member, 
AKR1C1, exhibits 17-oxoreductase activity that 
is involved in testosterone synthesis from 4-di-
one, 20-oxoreductase activity that inactivates 
progesterone, and 3-oxoreductase activity that 

Table I. Publications reporting the activity of AKR1C enzymes in subcutaneous adipose tissue (SAT). 

 AKR1C
 enzyme Activity Sampling Tissue expression Reference

C1 2α-HSD Women undergoing abdominal Subcutaneous expression higher 43
  hysterectomies than omental 
C1-C2-C3 11α-HSD-1;  Women with metabolic disorders Significantly higher in SAT,  8
 3α-HSD;  and obesity mostly for AKR1C3 
 17β-HSD   
C2 3α-HSD,  Morbidly obese men undergoing Activity significantly higher in 
 5α-HSD biliopancreatic derivation surgery obese men 
  and lean to obese men undergoing   
  general abdominal surgery  44
C3 5α-HSD Women with PCOS Higher expression in serum of  45
   PCOS women than in control 
C3 17β-HSD Women with simple obesity AKR1C3 activity higher in SAT 46
C2-C3 11α-HSD-1;  Men and women with High expression in human SAT 47
 3α-HSD;  idiopathic obesity 
 17β-HSD   
C1 20-HSD Ex vivo adipocytes isolated Significantly higher expression 32
  from women in mature adipocytes than 
    in preadipocytes 

PCOS = polycystic ovary syndrome.
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inactivates dihydrotestosterone48. It has been re-
ported that women with increased accumulation 
of visceral fat have higher expression of AKR1C1 
mRNA and an increased 20-oxoreductase activi-
ty within omental adipose tissue43,49.

In addition, AKR1C1, AKR1C2 and AKR1C3 
catalyze the reduction of progesterone to pro-
duce 20α-hydroxyprogesterone, a less potent 
progestogen50. Primarily, AKR1C1 catalyzes the 
inactivation of progesterone by converting it into 
20-progesterone through its 20-α-hydroxysteroid 
dehydrogenase activity. AKR1C1 is expressed 
in SAT and in the omental adipose tissue in fe-
males, whereas it is not a prominent contributor 
of adipose androgen in males46. Thus, AKR1C1 
lowers progesterone and 5α-tetrahydroprogester-
one levels in peripheral tissue46. Progesterone is 
important for the inhibition of cell proliferation, 
stimulation of endometrial cell differentiation 
and pregnancy maintenance51-53.

AKR1C enzymes also function as a 17-keto-
steroid reductase in peripheral tissues, reducing 
estrone, a weak estrogen, to produce 17β-estra-
diol, a potent estrogen. AKR1C3 enzyme is the 
most efficient enzyme for this reduction reac-
tion46.

Role of AKR1C in Subcutaneous Adipose 
Tissue (SAT) Accumulation

Increased activity and expression of AKR1C 
enzymes in mature adipocytes might be associat-
ed with adipose tissue accumulation54.

AKR1C2 and AKR1C3 exhibit fine regulatory 
effects on the availability of androgens within 
adipose tissue55 while glucocorticoids reverse the 
effects of androgens on adipocyte differentia-
tion. In fact, glucocorticoids eliminate androgen 
inhibitory action on adipogenesis, probably by 
increasing androgen inactivation mediated by 
AKR1C. This mechanism might contribute to 
individual differences in body fat distribution and 
composition; thus, reduced androgen availability 
at a local level allows for glucocorticoid-induced 
adipocytes differentiation54.

AKR1C2 is the enzyme that plays a significant 
role in this crosstalk between androgens and 
glucocorticoids which involves regulation of lipid 
accumulation and adipogenesis56,57.

Increased AKR1C2 expression or activity in-
duces adipocyte differentiation by dihydrotestos-
terone inactivation, whereas AKR1C2-mediated 
androgen inactivation induced by glucocorticoids 
promotes adipogenesis in human subcutaneous 
preadipocytes. Previous studies revealed that ex-

pression of the AKR1C2 protein is increased 
after the maintenance or loss of weight and this 
increase is linked with changes in BMI, weight, 
plasma low density lipoprotein and waist circum-
ference56-59.

Stimulation of AKR1C2 expression and gluco-
corticoid-mediated dihydrotestosterone inactiva-
tion in preadipocytes might eliminate androgen 
inhibitory effects on adipogenesis favoring pro-
gression of adipogenesis60. Many scholars60 have 
described further interactions between androgens 
and the glucocorticoid signaling pathways within 
adipose tissue. Such hormonal signal interactions 
at local levels might be an important modulators 
of body fat distribution patterns9,61. In Supple-
mentary Table I, steroid converting enzymes 
involved in human adipose tissue homeostasis 
are listed with functional polymorphisms that 
modulate their activity.

AKR1C Enzymes in 
Androgen Metabolism

The expression of AKR1C and dihydrotestos-
terone inactivation take place in visceral and sub-
cutaneous adipose tissue, and inactivation rates of 
androgen are much higher in obese individuals44. 
Furthermore, the expression of AKR1C increases 
with the increase in mass of adipose tissue, par-
ticularly, in subcutaneous fat, leading to higher 
inactivation rates of androgens44. Additionally, 
in adipose tissue, AKR1C enzymes converts di-
hydrotestosterone, a stronger androgen into an 
inactive metabolite44.

The expression of all isoforms of AKR1C 
increases with an increase of visceral adiposity. 
It has been proposed that androgens within the 
adipose tissue mediate central fat accumulation, 
preferentially causing android fat distribution62.

Role of AKR1Cs in Androgen 
Activation/Inactivation

AKR1C2 is primarily involved in the inactiva-
tion of androgen by the conversion of the potent 
androgen dihydrotestosterone into the weaker 
3-diol by its 3-reductase activity63. Androgens 
cause negative effects on lipid synthesis and 
adipogenesis by upregulating androgen recep-
tors for catecholamine, consequently increasing 
lipolysis63. Androgens can also modulate abdom-
inal adipocyte accumulation by decreasing the 
activity of lipoprotein lipase, required for adipo-
cyte intracellular fatty acid esterification. Hence, 
androgen and adipose tissue have a bidirectional 
and reciprocal impact on each other63.

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-I-1.pdf
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In a very interesting study64, the Authors 
observed an increase in 5-dihydrotestosterone 
inactivation by AKR1C2 enzyme in omental 
adipose tissue from females with visceral obe-
sity and proposed that the local inactivation 
of androgen is the main reaction catalyzed by 
AKR1C2 in the abdominal tissue of females. 
Similarly, androgen mediated inactivation of 
AKR1C2 activity has been observed in iso-
lated adipocytes and in primary stromal cells. 
The AKR1C2 enzyme appears to have higher 
activity in SAT than in omental adipose tissue 
where inactivation of androgen is linked with 
obesity46,56. These findings were further support-
ed by a decrease in dihydrotestosterone levels 
in SAT as compared to omental adipose tissue. 
Subcutaneous fat is the main region of AKR1C 
mediated androgen metabolism both in females 
and males65,66.

AKR1C3 inactivates progesterone to 20-hy-
droxyprogesterone and activates androgen re-
ceptor activity by converting androstenedione to 
testosterone67. AKR1C3 expression is induced by 
the differentiation of adipocytes67. In addition, 
the expression of AKR1C3 is increased in obese 
individuals, particularly in the SAT as compared 
to omental adipose tissue67.

Adipocyte size could also affect the expression 
of AKR1C3. In fact, AKR1C3 has higher levels 
of expression in larger adipocytes than in smaller 
ones from the same subject45.

AKR1Cs Effects on Neurosteroids
Neuroactive steroids are considered natural en-

dogenous steroid hormone metabolites that exert 
non-genomic and rapid effects on neurotransmit-
ter receptors present on the membrane. Synthesis 
of neurosteroids mostly involves steroidal or cho-
lesterol precursors68.

AKR1C2 induces the synthesis of neuroste-
roids, whereas AKR1C1 reduces the concentra-
tions of neurosteroids in the human brain through 
3α,5α-tetrahydroprogesterone inactivation and 
elimination of the precursors of synthetic path-
ways69. AKR1C isozymes preferentially work as 
reductases and regulate the inactive and active 
androgen, progestin, and estrogen concentrations 
in target tissues69.

AKR1C1 also decreases the neurosteroid 
cellular concentrations by 5α-dihydroproges-
terone and progesterone elimination from neu-
rosteroids synthetic pathways along with the 
inactivation of 3α,5α-tetrahydroprogesterone45. 
Additionally, AKR1C1 is significantly involved 

in the production and inactivation of the neu-
roactive allopregnanolone 3α,5α-tetrahydro-
progesterone that allosterically modulates the 
activity of gamma aminobutyric acid type A 
(GABAA) receptors, thereby causing analge-
sic, anesthetic, anticonvulsant and anxiolytic 
effects70.

AKR1C Effects on Urinary Metabolites
Several urinary steroid metabolites, like 

DHEA, androstanediol, 20β-dihydroxycortisone, 
cortisol, estriol, other estrogens and glucocor-
ticoid metabolites are increased in disorders 
like polycystic ovary syndrome (PCOS)70. The 
highest increase was found for DHEA, the 
precursor for both adrenal and ovarian andro-
gens, indicating a pathological mechanism in 
PCOS that targets both organs and/or overall 
steroidogenesis71. One study72 reported an in-
crease in the activity of AKR1C1 in wom-
en with PCOS, while other studies revealed 
reduced activities of AKR1C1 and 20β-HSD 
along with an increase of 3α-HSD activity eval-
uated by tetrahydrocortisol and α-tetrahydro-
cortisol conversion to 20α-dihydrocortisol73. 
Table II lists the urinary metabolites associated 
with AKR1C1 activity.

Conclusions

Adipose tissue is known to have endocrine 
properties and synthesize steroid metabolizing 
enzymes, like AKR1 enzymes, 11β-HSD, aro-
matase, and 17β-HSD. Adipose tissue is recog-
nized as a substantial site for the action and trans-
formation of steroid hormones. AKR1C enzymes 
are involved in the inactivation of androgen and 
progesterone which induces adipogenesis, and 
accumulation, proliferation, and differentiation 
of adipocytes. Genetic analyses have identified 
genes crucial for steroid metabolism that are 
linked with subcutaneous fat accumulation and 
lipedema74. These steroid-converting enzymes 
mediate the transformation of specific hormones 
into other hormones that are significantly in-
volved in the metabolic pathways of adipose 
tissue. Further studies are required to elucidate 
the complexity of this enzymatic network and its 
multiple effects on adipose tissue functions.
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