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Abstract: Matrix metalloproteinases (MMPs) have a pivotal role in the natural history of atherosclerosis and its 

cardiovascular consequences. Non-selective MMP inhibition with doxycycline appears as a potential strategy to reduce 

the residual risk observed in patients already at intensive lipid lowering strategies. However, specific MMPs have 

different and even contradicting roles in the natural history of atherosclerosis, rendering broad spectrum MMP inhibition 

an important yet somewhat simplistic approach towards residual risk reduction in coronary atherosclerosis. Overall, the 

balance of non-selective MMP inhibition might shift to the favorable side in particular settings such as in acute coronary 

syndromes, where in addition to its potential plaque stabilization properties, doxycycline shows promise in preventing 

ischemia-reperfusion injury and left ventricular remodeling. Nevertheless, to date, most animal models used do not 

represent advanced coronary atherosclerosis seen in humans, and large and well-designed clinical studies are lacking. We 

discuss the available evidence and recent patents supporting the role of doxycycline in atherosclerosis.  
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INTRODUCTION 

 Cardiovascular disease is the main cause of morbidity 
and mortality in the Western Hemisphere, accounts for > 
500,000 deaths each year in the US alone, and doubles the 
mortality attributed to cancer [1]. Histopathological studies 
have established that atherosclerotic plaque composition as 
well as coronary artery remodeling patterns have a pivotal 
role in the etiology of acute coronary thrombosis, indepen-
dently of the underlying stenosis [2].  

 Several systemic strategies have demonstrated their 
effectiveness in primary and secondary prevention of coro-
nary artery disease (CAD). Among them, statins have shown 
a consistent decline in low density lipoprotein cholesterol 
(LDL-C) levels between 25% and 35%, with a significant 
reduction in the relative risk of myocardial infarction (MI) 
and death ranging between 29% and 35% [3-5]. Never-
theless, in spite of significant improvement in prevention, 
diagnosis and treatment of cardiovascular disease, sudden 
cardiac death or unheralded acute coronary syndromes 
(ACS) remain common initial manifestations of coronary 
atherosclerosis [6, 7]. These events are mainly attributed to a 
significant residual risk observed in approximately 70% of 
patients under optimal anti-atherosclerotic therapies with 
statins, angiotensin-converting enzyme inhibitors and 
aspirin, among others. Although, implementation of  
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aggressive lipid lowering therapies with target LDL-C levels 
< 70mg/dl in high risk patients have demonstrated an 
additional risk reduction of 16%, even in these cases a 22% 
residual risk is observed [8]. Furthermore, a recent pooled 
analysis of 7 serial intravascular ultrasound trials including 
3437 patients with CAD demonstrated that despite achieving 
a LDL-C < 70mg/dl level, more than 20% of patients 
continued to show plaque progression, high-lighting the 
multifactorial nature of atherosclerosis and the need for 
improvement in primary and secondary prevention 
strategies, with the incorporation of alternative drugs that 
contribute to reduce the significant residual risk [9].  

 Matrix metalloproteinases (MMPs) are a family of endo-
peptidases that act as regulators of the extracellular matrix 
(ECM), playing an essential role in the evolution of inflam-
matory processes and hence, in the natural history of athero-
sclerosis [10]. We therefore review the available evidence 
about the effect of a broad-spectrum MMP inhibitor 
(MMPI), doxycycline, on atherosclerosis.  

MMPs AS VALID BUT COMPLEX CLINICAL 
TARGETS 

 Human MMPs are a family of at least 23 endopeptidases 
(although previously considered to be more, 23 human 
MMPs are currently identified by the Universal Protein 
Resource, www.uniprot.org) involved in the remodeling of 
several components of the ECM [11-14]. They participate in 
almost every biological process involving ECM remodeling, 
such as angiogenesis, embryogenesis, tissue remodeling and 
wound healing [15]. Although it was originally believed that 
the role of MMPs was essentially to degrade the ECM, it is 
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now well-known that the function of MMPs is far more 
complex [13]. In fact, it has been shown that MMPs can act 
on as many non-ECM substrates as ECM substrates [16]. 
MMP substrates include ECM molecules and regulators, 
chemokines, cytokines, growth factors, angiogenic factors, 
receptors, proteases, metabolic enzymes, and proteins invol-
ved in cell adhesion and motility [13]. Therefore, MMPs 
should be considered as cell-signaling regulators rather than 
as solely destructive proteases [17]. 

 Under normal physiological conditions, MMP activity is 
tightly regulated at the transcriptional and post-translational 
levels, by zymogen activation and by endogenous inhibitors 
[15]. Tissue inhibitors of MMPs (TIMPs) are specific, potent 
and natural MMPIs that bind to these enzymes and block 
their activity. Disruption of this balance, which results in an 
overexpression of MMPs, has been associated with severe 
human pathologies including cardiovascular diseases, cancer, 
rheumatoid arthritis, neurological disorders and periodon-
titis. Thus, considerable efforts have been made to develop 
potent and selective MMPIs to treat these diseases [18-21]. 
However, after 30 years of extensive research, only 
doxycycline (Periostat

®
, CollaGenex Pharmaceuticals) has 

been clinically approved as a broad-spectrum MMPI for the 
treatment of periodontal disease [22, 23]. Previous clinical 
trials with synthetic MMPIs were disappointing because of 
severe side effects and poor survival rates [12, 24-27]. This 
failure has been mainly due to the complex biology of the 
MMPs, the use of broad-spectrum MMPIs, and limitations in 
the design of the clinical trials [26, 27].  

 The structural redundancy but functional diversification 
among the different subclasses of MMPs is the main 
challenge when developing selective MMPIs. Although 
significant overlap in the substrates that MMPs can cleave  
in vitro [11], the efficiency, as also the expression patterns 
and turnover in a given tissue, can vary [28, 29]. Therefore, 
for a given pathology, some MMPs might act as drug targets 
and others as anti-targets [12], underscoring the importance 
of MMPI specificity.  

THE STRUCTURAL AND FUNCTIONAL 
COMPLEXITY OF MMPs 

 MMPs are zinc (Zn)-dependant enzymes comprised of 
shared structural modules [30]. The interaction between 
these domains is crucial for specific substrate binding and 
processing [30]. Based on domain organization and substrate 
specificity, MMPs can be clustered into several groups Fig. 
(1). [31]. The archetypical domain arrangement consists of a 
N-terminal propeptide, a catalytic MMP domain, a linker 
region (hinge) and a hemopexin-like C-terminal domain. The 
catalytic domain contains the characteristic Zn-binding 
sequence with three conserved histidine (His) residues, 
which serve as the Zn-ligands, and one glutamic acid (Glu), 
which facilitates catalysis, and is stabilized by a structural Zn 
and up to three calcium (Ca) ions. The catalytic domains of 
all MMPs are essentially superimposable containing a 
shallow active-site cleft that binds a peptide-substrate [32]. 
Substrate binding is dictated by the structure of this active 
site, including a pocket called the S1’ pocket, a main 
determining factor for substrate specificity [31].  

 All MMPs are either secreted or anchored to the plasma 
membrane. A hallmark of the MMP family is its regulation 
by zymogen (pro-MMP) activation. Most MMPs exist in an 
inactive or latent form inside the cells, in which the 
prodomain interacts with the catalytic domain, blocking the 
active site. The enzymes are activated when this interaction 
is relieved, upon removal of the propeptide or a confor-
mational change [33], once they are secreted. Exceptions are 
MMP-11 (stromelysin-3), -21, -23, -28 (epilysin) and the six 
membrane-type (MT)-MMPs, which are activated by furin in 
the endosomal pathway [15]. The extracellular activation of 
most MMPs can be initiated by other already active MMPs 
or by several serine proteinases [11]. 

 MMPs also share a common reaction mechanism in 
which the peptidic substrate is cleaved. During the proposed 
proteolytic mechanism Fig. (2). the carbonyl group of the 
scissile peptide bond of the substrate is directed towards the 
catalytic Zn and becomes polarized [18]. The Zn-bound 
water molecule is activated by the catalytic Glu properly 
oriented to attack the electrophilic carbonyl carbon. The 
resulting tetrahedral intermediate is presumably stabilized by 
the Zn ion. Additionally, one water proton is shuttled via the 
Glu carboxylate to the amino group of the scissile bond. 
After the simultaneous break of the peptide bond and the 
transfer of another proton to the amino group, the two 
product fragments leave the active site. 

NATURAL HISTORY OF ATHEROSCLEROSIS 

 Since atherosclerosis is primarily an inflammatory 
disease, MMPs play a pivotal role in the development and 
natural history of atherosclerotic plaques [34].  

 In human atherosclerotic plaques, the intima comprises a 
hyaluronan-rich matrix with sparse vascular smooth muscle 
cells (VSMC) [35]. Basement membranes contain type IV 
collagen, laminin, and heparan sulfate proteoglycans such as 
perlecan [36] and syndecans [37]. The media comprises 
contractile VSMC surrounded by a basement membrane 
[38], few macrophages and fibroblasts [39]. The medial 
interstitial matrix contains types I and III collagen, elastin, 
and a number of glycoproteins, namely fibronectin, vitro-
nectin, tenascin, and thrombospondin, along with chondroi-
tin/dermatan sulfate proteoglycans, such as versican [40]. 
Finally, the adventitia comprises fibroblasts and vasa 
vasorum within a loose interstitial matrix [41].  

 In response to a vascular insult or biochemical stimuli, 
intimal thickening occurs mediated by a variety of cells 
along with accumulation of new ECM [42]. Provided that the 
stimuli remains, uptake of LDL which will subsequently 
transform into oxidized LDL is followed by infiltration by 
circulating monocytes, which convert to macrophages and 
incorporate oxidized LDL to become foam cells [43]. Later, 
apoptosis of macrophages and dumping of their lipid 
contents results in the formation of a fibrous cap overlying a 
large lipid core [44]. The fibrous cap is originated by mig-
ration of contractile VSMC from the media, which explains 
the medial thinning commonly observed in atherosclerotic 
plaques [45].  

 It has been established that coronary plaque rupture, 
resulting in ACS, is the cause of death in a large proportion 
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of sudden death patients [46]. Despite its pre-conceived dire 
prognosis, retrospective studies have determined that plaque 
rupture is a common finding in both coronary and non-
coronary sudden death patients [46, 47]. In addition, 
clinically silent plaque rupture has been identified as a cause 
of plaque progression [48, 49]. The fate of a given 
atherosclerotic plaque is linked not only to its severity but 

also to its histological composition, and the presence of a 
lipid-rich necrotic core has been consistently related to 
plaque fissuring [50, 51]. Plaque rupture typically occurs in 
regions of high mechanical stress and where collagen is 
depleted by matrix destruction, weakening the fibrous cap to 
the point where it can no longer resist the cyclical strain 
caused by the cardiac cycle [52, 53]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic representation of the structure of the 23 human MMPs. They are classified into four different groups on the basis of 
domain organization. Archetypal secreted MMPs contain a signal peptide (Pre), a propeptide (Pro), a catalytic domain that binds Zn, a linker 
(H), and a hemopexin C-terminal domain. Matrilysins contain the minimal domain organization that is required for function. Gelatinases 
incorporate three fibronectin (Fi) type II modules that improve collagen and gelatin degradation efficiency. Convertase-activatable MMPs 
contain a basic insert in the propeptide domain that is cleaved by furin-like proteases (Fu). This group includes the three secreted MMPs 
(MMP-11, MMP-21, MMP-28), the six membrane-type (MT)-MMPs and an unusual type-II transmembrane (TM) MMP (MMP-23). 
MMP21 contains a vitronectin-like (Vn) insert in the propeptide. MT-MMPs are inserted in the membrane by a type-I TM or GPI 
(glycosylphosphatidylinositol) anchor. Another linker (TML) connects these segments with the soluble archetypal core. MT-MMPs can also 
have a cytoplasmatic (Cy) tail. MMP-23 contains a unique cysteine array (CA) and immunoglobulin (Ig)-like domains in its C-terminal 
region. 
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ROLE OF MMPs IN INFLAMMATION, CORONARY 
REMODELING, AND PLAQUE INSTABILITY  

 MMPs activity is important for all the phases of an 
inflammatory response, including initiation, execution and 
resolution [25]. ECM remodeling by MMPs aids in the initial 
stages of the inflammatory response by allowing migration 
of leukocytes into the injured site [54-57]. At the same time, 
MMPs are also cell-signaling regulators [17] that modify 
cytokines, chemokines and receptors [58-64] and are able to 
release antiapoptotic or antiangiogenic factors from the 
ECM, which may help in the resolution of an inflammatory 
response [13].  

 The ECM provides the structural and functional platform 
of the arterial wall, so it is not surprising that alterations in 
its turnover, mediated by the activity of MMPs, play a key 
role throughout the natural history of coronary athero-
sclerosis, from plaque development and progression to 
fibrous cap disruption [65, 66]. In particular, MMP-1 (colla-
genase-1) [65-72], MMP-2 (gelatinase-A) [73, 74], MMP-3 
(stromelysin-1) [67, 71, 75, 76], MMP-7 (matrilysin-1) [29], 
MMP-8 (collagenase-2) [77, 78], MMP-9 (gelatinase-B) [67, 
71, 78, 79], MMP-10 (stromelysin-2) [80], MMP-11 [81], 
MMP-12 (metalloelastase) [29, 72, 82], MMP-13 (colla-
genase-3) [70, 72], MMP-14 (MT1-MMP) [83, 84], and 
MMP-16 (MT3-MMP) [85] levels are increased in human 
atherosclerotic plaques, especially at the macrophage-rich 
shoulder regions. Interestingly, plaque shoulders and regions 
of foam cell accumulation contain the highest levels of 
MMP-9 [67, 86]. 

 As aforementioned, intimal thickening implies the 
generation of new tissue at least in part by means of 
hyperplasia and migration of VSMC derived from the media. 
Removal of the basement membrane and subsequent 
exposure of the interstitial matrix to the VSMC is promoted 
by MMPs. This seems to enable a shift from quiescent, 
contractile VSMC to cells able to migrate and proliferate and 
eventually mediate repair. The generation of new ECM that 
favors VSMC migration and proliferation is also promoted 
by specific MMPs.  

 Outward (positive) remodeling of coronary vessels has 
been initially regarded as beneficial by preventing lumen 
encroachment owing to plaque growth, and hence improving 
coronary flow [87]. Notwithstanding, several studies have 
subsequently shown increased levels of inflammatory 
markers, larger lipid cores and pronounced medial thinning 
in positive remodeled vessels; being all factors related to the 
tendency of plaques to undergo rupture [88-91]. Vascular 
remodeling implies the degradation and reorganization of 
ECM lead by MMPs [92]. Such phenomenon is already 
evident at very early stages of atherosclerosis [93] and has a 
key role in the pathogenesis of plaque disruption [7].  

 Several clinical studies have established that genetic 
polymorphism in a variety of MMPs might be useful in 
determining individual susceptibility to ACS and the extent 
of coronary atherosclerosis, and are associated with MMPs 
plasma levels [94-96]. Indeed, Liu et al. demonstrated that 
MMP-3 5A/6A polymorphism was independently associated 
with the risk of ACS, MMP-3 activity and angiographical 
severity of coronary atherosclerosis [97, 98].  

 In parallel, MMP-8 gene variation has also been asso-
ciated with the extent of coronary atherosclerosis and 
VCAM-1 levels [99]. Furthermore, Cheng et al. recently 
established that intra-plaque hemorrhage and collagen 
breakdown in vulnerable atherosclerotic lesions is mediated 
by activation of MMP-8 and MM-P13 [100]. 

MMP INHIBITION AS A POTENTIALLY 
EFFECTIVE ANTIATHEROSCLEROTIC STRATEGY  

 Specific MMPs have different roles in the development 
and phenotype of atherosclerosis, and sometimes also 
contradicting roles, being both beneficial and detrimental 
[25]. For example, MMP-9 appears as harmful and protec-
tive depending on the site and the experimental setup [101]. 
This paradox complicates the use of broad-spectrum MMPIs 
[102, 103]. MMPs may contribute to the formation and 
growth of atherosclerotic lesions by facilitating migration of 
VSMC through the internal elastic lamina into the intima 
space [104], by favoring monocyte infiltration of the 

 

 

 

 

 

 

 

Fig. (2). Proposed reaction mechanism of peptide hydrolysis for MMPs. Within the MMP's catalytic domain, the catalytic Zn that is 
coordinated by three histidine (His) residues binds the carbonyl group of the scissile peptide bond of the substrate (A). The Zn-bound water 
molecule is activated by the catalytic glutamic acid (Glu), which is properly oriented to attack the electrophilic carbonyl carbon of the 
substrate, leading to a tetrahedral intermediate (B). Next, one water proton is shuttled via the Glu carboxylate to the amino group of the 
scissile bond. After the simultaneous break of the peptide bond and the transfer of another proton to the amino group (C), the two product 
fragments leave the active site. 
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vascular wall [66], and by triggering fibrous cap rupture. 
Conversely, MMPs may also aid in the resolution of a plaque 
by degrading ECM in the intima [104-107].  

 The expression of MMPs can be induced by a number of 
inflammatory cytokines, hormones, growth factors and 
thrombin [76, 85, 108-114]. In particular, C-reactive protein 
(CRP), an inflammatory marker of atherosclerotic risk, indu-
ces the expression of MMP-1 and MMP-10 in macrophages 
[115] and endothelial cells, contributing to plaque vulnera-
bility [80]. MMP-10 also appears as a useful marker of 
subclinical atherosclerosis in asymptomatic patients, because 
its levels are associated with inflammatory markers, increa-
sed thickness of the intima media of the carotid artery and 
presence of atherosclerotic plaques [116]. Furthermore, 
overexpression of MMP-1 and MMP-9 by macrophages and 
VSMC has been associated with the pathology and pro-
gression of vulnerable lesions [67, 70]. 

 There is abundant evidence that suggests MMP-12 is a 
harmful protease that favors atherosclerotic plaque 
development and destabilization. Overexpression of MMP-
12 in transgenic rabbits promotes macrophage infiltration 
and disruption of the internal elastic lamina, accelerating the 
atherosclerotic process [117]. Animal models have also 
shown a role of MMP-12 in macrophage recruitment to sites 
of preinduced inflammation, suggesting MMP-12 as a key 
player of inflammation [118-121]. Moreover, studies on 
apolipoprotein E-deficient (apoE(-/-)) and MMP-12 double-
knockout mice suggest that MMP-12 may act as a 
destructive protease that promotes plaque instability by 
increasing the atherosclerotic lesion size and macrophage 
content, and decreasing the number of VSMC [122].  

 On the other hand, there is overwhelming evidence of 
gelatinase induction and activation in animal models of 
neointima formation after vascular injury that correlates with 
the activation and migration of VSMC [10]. These studies 
have shown upregulation of both MMP-2 and MMP-9 after 
balloon injury in rat [123, 124], pig [125], baboon [126], 
rabbit [127], and mouse [128, 129] arteries. Migration and 
proliferation of VSMC can favor fibrous cap formation and 
plaque stability [101, 130]. By using apoE/MMP-2 knockout 
mice it has been demonstrated that MMP-2 contributes to the 
formation and growth of the fibrous cap in the aortic root 
[131]. In agreement, increased MMP-2 activity levels were 
associated with VSMC content and a fibrous phenotype in 
carotid arteries, suggesting that MMP-2 expression is 
associated with a stable lesion phenotype [78]. 

 Less clear is the role of MMP-9 in plaque stability based 
on apoE/MMP double-knockout mice models, suggesting a 
dual effect [101]. MMP-9 increases lesion size, macrophage 
content and medial destruction at the base of plaques in the 
descending aorta, suggesting that MMP-9 promotes 
instability at this site [132]. However, MMP-9 appears as a 
protective protease in mouse brachiocephalic arteries, 
because its presence results in smaller lesions with more 
smooth muscle content and less macrophage infiltration, 
promoting plaque stability [122].  

 Immunopositive MMP-2 and MMP-9 are increased in 
positive remodeled sections compared to negative remodeled 
sections [133]. Similarly, increased MMP-2 and MMP-9 

levels were found in abdominal aortic aneurysms, an 
extreme kind of positive remodeling [134, 135]. In parallel, 
matrix degradation of the fibrous cap shoulder was conco-
mitantly associated with overexpression of MMPs, thereby 
promoting the vulnerability of atherosclerotic plaques [67]. 

 Ex vivo and in vivo studies have shown that both rupture-
prone plaques and plaque rupture are highly prevalent even 
in stable patients [46, 47, 136, 137]. During the past 10 
years, the role of MMPs in plaque rupture has become focus 
of attention since the proteolytic disruption of the fibrous cap 
overlying a lipid-rich plaque has been established as the 
most common physiopathological substrate of sudden 
cardiac death [7, 70, 138]. 

 It has been suggested that one of the main circulating 
markers of ECM breakdown is MMP-9 [66]. MMP-9 plasma 
levels are significantly higher in patients with ACS, and 
correlate with a narrowing of the arterial lumen and 
restenosis after stent deployment [139, 140]. The serum 
levels of MMP-9 are significantly higher in patients with 
CAD with respect to control patients, and correlate directly 
with those of CRP, interleukin-6 and fibrinogen [141]. To 
note, MMP-9 expression is increased in plaques of patients 
with unstable angina with respect to those with stable angina 
[142, 143]. Furthermore, MMP-9 has been demonstrated to 
be a predictor of cardiovascular death in patients with 
coronary heart disease [144], and of ischemic heart disease 
and high pressure in patients with no history of cardio-
vascular disease [145]. Altogether, these results place MMP-
9 as a possible marker of inflammation in patients with 
known CAD [141], and suggest a positive relationship bet-
ween MMP-9 expression and plaque instability and rupture 
[10]. However, a clinical trial with 389 patients showed that 
TIMP-1 and not MMP-9 was able to independently predict 
death and MI [146]. Interestingly, others have suggested that 
the increase in plasma MMP-9 concentration after an acute 
coronary event might represent a healing response that 
involves the recruitment of VSMC rather than the initial of 
plaque rupture [122]. 

INHIBITION OF MMPs WITH SMALL MOLECULES 

 Most synthetic MMPIs present some cross-reactivity 
because they competitively target the structurally-conserved 
substrate binding pocket [18]. They generally contain a Zn 
chelating group (hydroxamate, carboxylate, thiolate, phos-
phinate) and a peptidomimetic moiety that mimics the 
peptide backbone of the substrate that interacts with the 
active site [18, 147]. Third generation MMPIs have been 
designed with new Zn-binding groups (pyrone, thiirane) and 
even without any Zn-coordinating element [148]. The later 
were designed to target allosteric sites of the MMPs 
structures by exploiting the recognized flexibility of the 
MMPs active site [149]. However, they still bind to the S1’ 
pocket and compete for substrate binding regions [148]. 

 An important and more recent group of MMPIs corres-
ponds to tetracyclines and chemically modified tetracyclines 
(CMTs), which can exhibit antimicrobial or non-antimicro-
bial activities [25]. Tetracyclines and CMTs can inhibit 
MMP activity and connective tissue breakdown both in vitro 
and in vivo [150]. They have been found to inhibit 
gelatinases, stromelysins, collagenases and MT-MMPs [150] 
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from numerous tissue and cellular sources [151]. Because of 
their chemical nature, these compounds may be able to cross 
anatomical barriers such as the blood brain barrier and blood 
retina barrier [25]. CMTs have been extensively studied in a 
number of animal models of periodontitis [152], metastasis 
[153], multiple sclerosis [154], and adjuvant arthritis [155].  

 Nearly 60 MMPIs have been developed and tested as 
clinical candidates over the past 30 years, but, except 
doxycycline, all of them have failed due to poor safety and a 
lack of efficacy [147, 156-158]. For example, batimastat 
(British Biotech), ilomastat (GlycoMed), solimastat (British 
Biotech) and marimastat (British Biotech) are all broad-
spectrum hydroxamate-based peptidomimetic MMPIs that 
were discontinued in Phase I, II or III studies due to severe 
side effects, including musculoskeletal syndrome [158]. On 
the other hand, Other MMPIs are currently being tested in 
clinical trials, such as incyclinide (Metastat

®
), S-3304 

(Shionogi) and CPA-926 (Kureha Chemical Industry) [147]. 
Incyclinide is a CMT MMPI that inhibits MMP-2 and MMP-
9, and is currently in Phase II trials for the treatment of acne, 
brain tumors, solid tumors, and HIV-related Kaposi's 
sarcoma, and presents mild to moderate side effects [147, 
159]. S-3304 is a novel D-tryptophan derivative MMPI that 
inhibits most potently the activities of MMP-2 and MMP-9 
without inhibiting MMP-1, -3 and -7, and has shown 
promising results in Phase I and II trials for the treatment of 
lung cancer and solid tumors [147, 160]. Finally, CPA-926 
(a pro-drug of Esculetin) is a non-peptidomimetic MMPI that 
is currently in Phase II trials for the treatment of osteo-
arthritis [161, 162]. 

Doxycyline: Pharmacokinetics, Pharmacodynamics and 
Adverse Effects 

 Doxycycline (Periostat
®

) (Fig. (3)), an antimicrobial 
CMT, is the only FDA-approved MMPI used for the 
treatment of periodontitis [23]. Doxycycline is a reversible, 
noncompetitive and broad-spectrum MMPI that binds to 
allosteric sites proximal to the structural Zn and/or Ca atoms 
[163, 164]. The proposed mechanism of action results from 
its ability to chelate these structural ions, which are required 
to maintain proper enzyme conformation and activity [150, 
164]. In the case of MMP-7, it has been reported that doxy-
cycline binds to the enzyme in vitro with a stoichiometry of 
2.3 ± 0.2 and a dissociation constant of 73 ± 8μ  [164] . Its 
binding in both pro and active MMPs results in the disrup-
tion of the normal conformation of the protein structure 
[164], leaving the enzymes inactive [150]. 

 Doxycycline inhibitory effect has been tested in both 
humans and animals in a number of conditions associated 
with elevated MMP activity, including arthritis [165-168], 
periodontitis [169, 170] and chronic wounds [171]. 

 Doxycycline is available in oral and intravenous formu-
lations [172], and it is believed to be almost completely 
absorbed in the duodenum [173], with a bioavailability 
between 73 and 95% [173, 174], significantly more than 
other tetracyclines. The half-life absorption ranges from 1 to 
2 hours when administrated while fasting [175], and the peak 
concentration varies with dose, being 15.3mg/L (~30 μM) 
after an oral dose of 500mg [176]. 

 

 

 

 

 

 

 

 

 

Fig. (3). Chemical structure of tetracycline and doxycycline. 

 

 Regarding tissue penetration, doxycycline levels are poor 
in saliva, below those of serum in bone, skin, fat, tendons 
and muscle [172, 177], and highest in the liver, kidney and 
digestive tract [173]. Doxycycline is eliminated unchanged 
by both the renal and biliary routes [172]; bile concentrations 
may be 10-25 times greater than serum [178]. About 35-60 
% is excreted in urine and the remainder in faeces [179-182]. 
Doxycycline is slowly absorbed orally. It reaches peak 
concentration in 2-3 hours, and the elimination half-life 
ranges between 12 to 25 hours [172]. The area under the 
serum time curve for a 200mg/day oral dose varies from 41-
123mg.h/L and 61-112mg.h/L for intravenous doses [172].  

 Different studies have been performed to assess the 
pharmacodynamics of doxycycline as an antimicrobial drug 
using the minimum inhibitory concentration as a measure of 
drug potency [172]. With respect to its inhibitory effect on 
MMPs, it has been shown that doxycycline inhibits colla-
genase activity more effectively than tetracycline or other 
CMTs [151]. For example, the concentration of doxycycline 
required to inhibit 50 % of collagenase activity (IC50)  
in vitro was ~13 and ~23 times smaller than minocycline and 
tetracycline, respectively [183]. In vitro, the doxycycline 
IC50 against a colorimetric peptide substrate was reported to 
be 28 ± 5 μM for MMP-7 [164] and 90 ± 13μM for MMP-2 
[184]. 

 The inhibitory effect of doxycycline varies between 
different MMPs, as tested in vitro by Smith et al. In this 
study, 30μM doxycycline (value comparable to the concen-
trations achieved in serum after oral administration) was able 
to inhibit MMP-1, MMP-8 and MMP-13 activity against 
type II collagen by 5, 50 and 60% [163].  

 Mild but relatively common adverse effects of oral 
doxycycline include hives, shortness of breath, swelling of 
the face, lip, tongue or throat, headache, dizziness, fever, 
chills, rash, nausea, vomiting, diarrhea, thrush, vaginitis and 
photosensitivity [185]. 

EFFECT OF DOXYCYCLINE ON ATHERO-
SCLEROSIS AND DIVERSE INFLAMMATORY 

PROCESSES 

 A link between chronic infection, the associated 
inflammatory processes in the periodontal tissue and 
cardiovascular disease has been undoubtedly established. 
The presence of carotid artery plaque is associated with 
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periodontitis and tooth loss [186, 187]. Indeed, using serial 
carotid ultrasound, Schillinger et al. demonstrated that a 
variety of markers of periodontal disease predict carotid 
plaque progression, independently of traditional cardiovas-
cular risk factors and the baseline degree of stenosis [188]. 
Furthermore, a Danish investigation has shown a six-fold 
increase in the risk of coronary artery disease in individuals 
with more than 4mm of alveolar bone loss [189]. The bene-
ficial effects of doxycycline in periodontal disease, along 
with the reported association between periodontitis and 
atherosclerosis, warrant further research evaluating the effect 
of doxycycline on atherosclerosis.  

 There is robust evidence about the detrimental role of 
positive remodeling in the natural history of coronary 
atherosclerosis [190]. Several studies have demonstrated an 
association between coronary remodeling and plaque 
composition [88, 89, 91]. Indeed, positive remodeling has 
been established as a major criteria of plaque vulnerability. 
Since MMPs play a major role in vascular remodeling, MMP 
inhibition with doxycycline shows promise towards plaque 
stabilization.  

 Abdominal aortic aneurysm is an extreme form of 
vascular remodeling and, as such, nonspecific MMP inhibi-
tion has been shown to retard expansive aortic remodeling 
[102].  

 Doxycycline effect on vascular remodeling and athero-
sclerosis has been found to be independent of its antimicro-
bial properties, as suggested in clinical studies where sub-
antimicrobial doses of doxycycline (SDD) decreased the 
growth rate of abdominal aortic aneurysms [191]. Indeed, 
Manning et al. have shown a significant reduction in abdo-
minal aortic aneurysm formation and severity with 
doxycycline administration independently from lipid levels 
obtained or systolic blood pressure [192]. 

 A recent prospective, randomized study including 
patients requiring carotid endarterectomy, has demonstrated 
that doxycycline penetrates atherosclerotic plaques at 
acceptable tissue levels and achieves a significant in situ 
MMP inhibition [193].  

 The effect of doxycycline on atherosclerosis has been 
explored by Bendeck et al. who demonstrated a significant 
effect on cell proliferation, migration and MMP activity 
[194], although it should be noted that a restenosis model 
(balloon injury in left common carotid of male Sprague-
Dawley rats) was used in that study, while such models are 
not applicable to advanced natural history atherosclerosis, as 
commonly seen in human. More recently, Madan et al. 
demonstrated a significant decrease in pro-inflammatory 
cytokines resulting in reduction of atherosclerosis in apoE 
double knockout mice inoculated with Porphyromonas 
gingivalis, a pathogen related to periodontal disease and 
systemic inflammation [195].  

 The MIDAS trial was a prospective, randomized, double-
blinded, placebo-controlled pilot study that evaluated the 
effect SDD in a very small population of ACS patients. At 6 
months, although the study was unable to detect an effect on 
clinical outcome, high-sensitivity CRP was reduced by 46% 
and pro-MMP-9 activity was reduced by 50% with SDD, 

whereas no significant reductions were detected with placebo 
[196]. 

 In the setting of acute MI and heart failure, upregulation 
of diverse MMPs has been associated with left ventricular 
remodeling [197, 198]. Furthermore, it has been ascribed to 
MMPs a rapid effect on cellular transduction processes 
before changes in ECM occur, particularly noted on MMP-
mediated platelet aggregation [199, 200]. This has lead to the 
exploration and further confirmation that myocardium 
subjected to ischemia-reperfusion injury releases MMP-2 
and that its liberation, of pathological significance for the 
development of mechanical dysfunction, might be mitigated 
by doxycycline [201].  

CURRENT & FUTURE DEVELOPMENTS 

 Despite lasting debate about the role of infection in 
atherosclerosis [202], the largest antibiotic treatment trial to 
date has failed to show any benefit of azithromycin in post-
MI patients with elevated Chlamydia pneumoniae titers 
[203]. In accordance, subsequent randomized trials failed to 
show benefit of antibiotics in both patients with stable CAD 
and ACS [204, 205]. These findings are highlighted by the 
fact that the cardiovascular effects observed with doxy-
cycline were obtained using sub-antimicrobial doses. 

 Throughout this review, we have outlined the pivotal role 
of MMPs in the natural history of atherosclerosis and its 
cardiovascular consequences. Non-selective MMP inhibition 
with doxycycline appears as a potential strategy to reduce the 
residual risk observed in patients already at intensive lipid 
lowering strategies. However, as aforementioned, specific 
MMPs have different and even contradicting roles in the 
natural history of atherosclerosis, rendering broad spectrum 
MMP inhibition an important yet somewhat simplistic 
approach towards residual risk reduction in coronary 
atherosclerosis. The effect of a broad-spectrum MMP 
inhibition is probably expected to be dependent on its degree 
of inhibition of specific MMPs [103]. It should be stressed 
though that, overall, the balance of non-selective MMP 
inhibition might shift to the favorable side only in particular 
settings such as in ACS, where in addition to its potential 
plaque stabilization properties, doxycycline shows promise 
in preventing ischemia-reperfusion injury and left ventricular 
remodeling. In turn, it seems unlikely that long-term 
administration of doxycycline might be beneficial in stable 
angina patients. 

 Doxycycline appears to be tolerated well by both mice 
and human, with no significant changes in body weight, lipid 
metabolism, or blood pressure [192]. From January 1998 to 
August 2003, approximately 50 million new doxycycline 
prescriptions were dispensed in the United States, with an 
event rate of 13per million [206]. Indeed, long term 
administration of doxycycline appears to be safer than 
minocycline, which might be rarely associated with serious 
adverse events including hypersensitivity syndrome reaction 
and drug-induced lupus, whereas most common adverse 
events with doxycycline are mild and gastrointestinal [206, 
207].  

 Nevertheless, to date, most animal models used do not 
represent advanced coronary atherosclerosis seen in humans, 
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and clinical studies exploring the role of doxycycline on 
atherosclerosis progression, as well as powered clinical 
outcome studies are lacking.  

 Finally, it is noteworthy that the complexity of MMPs as 
targets for inhibition, with some MMPs being attributed a 
potential beneficial effect particularly during the healing 
response, warrants further research towards the design of 
selective inhibitors of individual MMPs [208-222]. 
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MMPs = Matrix metalloproteinases  

CAD = Coronary artery disease 

MI = Myocardial infarction 

ACS = Acute coronary syndromes  

ECM = Extracellular matrix  

TIMPs = Tissue inhibitors of MMPs  

VSCM = Vascular smooth muscle cells 

CRP = C-Reactive protein  

SDD = Sub-antimicrobial doses of doxycycline 
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