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Rapamycin attenuates atherosclerosis induced by dietary
cholesterol in apolipoprotein-deficient mice through
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Abstract

Activation of immune cells and dysregulated growth and motility of vascular smooth muscle cells contribute to neointimal lesion development
during the pathogenesis of vascular obstructive disease. Inhibition of these processes by the immunosuppressant rapamycin is associated with
reduced neointimal thickening in the setting of balloon angioplasty and chronic graft vessel disease (CGVD). In this study, we show that
rapamycin elicits a marked reduction of aortic atherosclerosis in apolipoprotein E (apoE)-null mice fed a high-fat diet despite sustained
hypercholesterolemia. This inhibitory effect of rapamycin coincided with diminished aortic expression of the positive cell cycle regulatory
proteins proliferating cell nuclear antigen and cyclin-dependent kinase 2. Moreover, rapamycin prevented the normal upregulation of the
proatherogenic monocyte chemoattractant protein-1 (MCP-1, CCL2) seen in the aorta of fat-fed mice. Previous studies have implicated the
growth suppressor p27Kip1 in the antiproliferative and antimigratory activities of rapamycin in vitro. However, our studies with fat-fed mice
doubly deficient for p27Kip1 and apoE disclosed an antiatherogenic effect of rapamycin comparable with that found in apoE-null mice with an
intact p27Kip1 gene. Taken together, these findings extend the therapeutic application of rapamycin from the restenosis and CGVD models to the
setting of diet-induced atherosclerosis. Our results suggest that rapamycin-dependent atheroprotection occurs through a p27Kip1-independent
pathway that involves reduced expression of positive cell cycle regulators and MCP-1 within the arterial wall.
© 2003 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Atherosclerosis and associated cardiovascular disease
(e.g. myocardial infarction and stroke) are the major
causes of mortality and morbidity in industrialized coun-
tries. Neointimal thickening is initiated by transendothelial
migration and activation of circulating monocytes and
lymphocytes at the sites of vessel injury[1,2]. Recruited
leukocytes release inflammatory chemokines and cy-
tokines that promote vascular smooth muscle cell (VSMC)
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proliferation and migration towards the atherosclerotic le-
sion, thus further contributing to neointimal hyperplasia
[1–4]. It has become increasingly evident that both adaptive
and innate immune mechanisms modulate the inflammatory
response induced in atherosclerosis, restenosis after angio-
plasty, and chronic graft vessel disease (CGVD)[1,5,6].

Rapamycin (Rapamune, Sirolimus), a macrolide an-
tibiotic produced byStreptomyces hygroscopicus[7], has
potent immunosuppressive, antiproliferative, and antimigra-
tory properties (reviewed in[8,9]). Rapamycin exerts these
effects by binding to the cytosolic immunophilin FKBP-12
(FK506 binding protein), thus inhibiting the kinase activity
of the mammalian target of rapamycin (mTOR). Proposed
mechanisms of rapamycin action include dephosphorylation
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and inactivation of p70 ribosomal protein S6 kinase (p70s6k)
and eukaryotic translation initiation factor 4E-binding
protein, accumulation of the growth suppressor p27Kip1,
inhibition of cyclin-dependent kinase (CDK) activity, ac-
cumulation of hypophosphorylated retinoblastoma protein,
and inhibition of minichromosome maintenance protein
expression[9–21].

By virtue of its potent immunosuppressive activities, ra-
pamycin has been introduced in clinic as a new effective
drug for the prevention of allograft rejection[22–24]. More-
over, several animal studies have shown the efficacy of ra-
pamycin in reducing neointimal hyperplasia, both in vessel
and cardiac allografts[25–29]and in response to mechanical
denudation of the vessel wall[18,26,27,30–33]. These ani-
mal studies have led to clinical trials with rapamycin-eluting
stents, which have shown a significant reduction in binary
restenosis, late lumen loss and repeat revascularization rates
as compared with standard coronary stents[34–37].

Cell cycle progression in mammals requires the se-
quential assembly and activation of different CDK/cyclin
holoenzymes at specific phases of the cell cycle[38].
VSMC proliferation in balloon-injured arteries is associ-
ated with a temporally and spatially coordinated expression
of CDKs and cyclins[20,39]. Importantly, augmented ex-
pression of these factors coincides with increased CDK
activity [39,40], demonstrating the assembly of functional
CDK/cyclin holoenzymes within the injured arterial wall.
Moreover, CDK2 and cyclin E expression has been detected
in human VSMCs within atherosclerotic and restenotic tis-
sue [39,41,42], suggesting that increased expression (and
possibly activation) of positive regulators of cell cycle pro-
gression is a characteristic of vascular proliferative disease
in humans. CDK activity is negatively regulated by the
interaction with specific CDK inhibitory proteins (CKIs)
[43]. It has been suggested that the CKI p27Kip1 functions
as a negative regulator of neointimal thickening during
atherosclerosis and at late phases of arterial healing after
balloon angioplasty[42,44–48], at least in part via the co-
ordinated suppression of cell proliferation and migration
[49]. Exposure of cultured VSMCs and T lymphocytes to
rapamycin potently impairs their growth and migratory ca-
pacities, and these inhibitory effects correlate with p27Kip1

accumulation in vitro and in vivo[10,12,14,15,17,18,46,50].
However, both p27Kip1-dependent[51,52] and p27Kip1-
independent[20,33] mechanisms of rapamycin action have
been suggested (seeSection 4).

In the present study, we assessed the effect of ra-
pamycin on atherogenesis induced by dietary cholesterol
in apolipoprotein E (apoE)-null mice, which develop
atherosclerotic lesions that resemble those seen in humans
[53,54]. We demonstrate the efficacy of rapamycin in in-
hibiting atherosclerosis in fat-fed apoE-null mice through
a p27Kip1-independent pathway associated with reduced
expression of positive cell cycle regulatory proteins and
attenuated monocyte chemoattractant protein-1 (MCP-1)
expression within the injured arterial wall.

2. Materials and methods

2.1. Animals

Mice deficient in apoE (C57BL/6J, Taconic M&B) and
doubly deficient for p27Kip1 and apoE[47] (backcrossed
for more than five generations to a C57BL/6J background)
were maintained on a low-fat standard diet (2.8% fat,
Panlab, Barcelona, Spain) after weaning. At 2 months of
age, mice received an atherogenic diet containing 12% fat,
1.25% cholesterol and 0.5% sodium cholate (S8492-S010,
Ssniff) (4 and 6 weeks for apoE-p27Kip1 doubly deficient
and apoE-deficient mice, respectively). Rapamycin (1 and
4 mg/kg of body weight, s.c., q.o.d.) was suspended in a ve-
hicle solution containing 0.2% sodium carboxymethylcellu-
lose/0.25% polysorbate 80. Control mice received vehicle.

2.2. Lipoprotein isolation and quantification
of cholesterol

Blood samples were collected from the orbital sinus un-
der anesthesia. Serum very low-density lipoprotein (VLDL)
fraction was obtained by sequential-density ultracentrifuga-
tion using a fixed-angle rotor. Serum intermediate (IDL)-,
low (LDL)-, and high (HDL)-density lipoprotein fractions
were obtained by step-gradient ultracentrifugation using
a swing-bucket rotor. The concentration of cholesterol in
serum and in lipoprotein fractions was determined using an
autoanalyzer Cobas Mira (Roche).

2.3. Histomorphometric studies

Fat-fed mice were euthanized and their aortas were
perfusion-fixed in situ with 4% paraformaldehyde to quan-
tify the extent of atherosclerosis using computerized mor-
phometry essentially as previously described[47]. Briefly,
one set of animals was used to quantify the area of Oil Red
O-stained tissue in the aortic arch region (from the aortic
root up to approximately 1–2 mm beyond the left subcla-
vian artery). In another group of animals, the heart and
the proximal aorta were fixed with 4% paraformaldehyde,
specimens were paraffin-embedded and mounted in a Mi-
cron microtome. Once the three valve cusps were reached,
sections throughout the first∼2 mm of the ascending aorta
were discarded. Then,∼25 consecutive sections (5�m
thickness) were taken from 2 to 3 regions of the aortic arch
separated by∼60�m. Three cross-sections from each re-
gion were stained with hematoxylin/eosin. Specimens were
examined with a Zeiss Axiolab stereomicroscope to quan-
tify by computerized morphometry the intima-to-media ra-
tio (I/M). For each animal, I/M was calculated by averaging
all independent values.

2.4. Western blot analysis

Snap-frozen aortic tissue from fat-fed mice was pooled
(n = 4 each group) for the preparation of whole cell
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extracts in ice-cold lysis buffer (50 mmol/l Hepes [pH 7.5],
1% Triton X-100, 150 mmol/l NaCl, 1 mmol/l DTT, 0.1 mM
orthovanadate, 10 mM�-glicerophosphate, 10 mM sodium
fluoride) supplemented with protease inhibitor Complete
Mini cocktail (Roche) using an Ultraturrax T25 basic ho-
mogenizer (IKA Labortechnik). Fifty micrograms of protein
was separated onto 12% SDS-PAGE and transferred to Im-
mobilon P (Millipore). Blots were incubated at room tem-
perature with blocking solution (4% nonfat dry milk in PBS
containing 0.1% Tween-20) for 30–40 min, followed by
1 h incubation with the following primary antibodies from
Santa Cruz Biotechnology: anti-tubulin (1/200, sc-3035),
anti-CDK2 (1/200, sc-163-G), and anti-proliferating cell
nuclear antigen (PCNA) (1/200, sc-7907). After extensive
washes with 0.1% Tween-20/PBS, the blots were incubated
with species-specific secondary antibodies conjugated to
horseradish peroxidase. Blots were washed twice with each
0.1% Tween-20/PBS and PBS, and immunocomplexes were
detected using the ECL detection system according to the
recommendations of the manufacturer (Amersham). Densit-
ometric analysis of the blots was done using the Labimage
version 2.6 software.

2.5. Quantitative RT-PCR

Total RNA was obtained from snap-frozen aortic arch
tissue using the Ultraspec RNA isolation system (Biotecx).
Two micrograms of DNaseI-treated RNA were reverse
transcribed with MuLV reverse transcriptase (Roche). Ex-
pression of MCP-1 and GAPDH mRNA was quantified by
real-time PCR following the manufacturer’s instructions
(Lightcycler rapid thermal cycler, Roche) using the fol-
lowing primers specific for exon sequences: 5′-CACCA-
GCAAGATGATCC-3′ (MCP-1-forward); 5′-ATAAAGTT-
GTAGGTTCTGATCTC-3′ (MCP-1-reverse); 5′-TGGGTG-
TGAACCACGA-3′ (GAPDH-forward); and 5′-ACAGCT-
TTCCAGAGGG-3′ (GAPDH-reverse).

2.6. Statistical analysis

Results are reported as mean± S.E. In experiments with
two groups, differences were evaluated using a two-tailed,
unpairedt-test. Analyses involving more than two groups
were done by ANOVA and Fisher’s post-hoc test using the
Statview software (SAS institute). Differences were consid-
ered significant atP < 0.05.

3. Results

3.1. Rapamycin attenuates diet-induced atherosclerosis in
apoE-null mice

The apoE-deficient mouse[53,54] has become a valu-
able tool in elucidating molecular pathways implicated
in atherosclerosis and in assessing therapeutic strategies
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Fig. 1. Rapamycin does not affect lipid profile in fat-fed apoE-null mice.
(A) Total serum cholesterol levels were measured in mice fed control
chow (pre-diet) or challenged with the atherogenic diet for 6 weeks
(post-diet). (B) Cholesterol levels were measured in different lipoprotein
fractions isolated from the serum of fat-fed animals. All fat-fed mice dis-
played similar total cholesterol levels(P > 0.05), which were markedly
increased compared with pre-diet levels(P < 0.0001). Cholesterol con-
tent in discrete lipoprotein fractions was also similar in all fat-fed mice
(P > 0.05 when comparing each lipoprotein fraction among the three
groups of mice). Gender distribution in each group of fat-fed mice was
six males and five females.

against this disease. As expected, apoE-null mice challenged
with a high-fat, cholesterol-rich diet for 4 weeks developed
severe hypercholesterolemia compared with pre-diet level
(P < 0.0001) (Fig. 1A). Importantly, total serum choles-
terol level in fat-fed mice was not affected by systemic
treatment with rapamycin at 1 and 4 mg/kg (RAPA1 and
RAPA4, respectively,P > 0.05 versus control fat-fed mice)
(Fig. 1A). Likewise, the amount of cholesterol associated
with discrete lipoprotein fractions of fat-fed mice was
unchanged in rapamycin-treated versus untreated animals
(Fig. 1B). Thus, rapamycin does not affect lipid profile in
fat-fed apoE-null mice.

We next examined the extent of diet-induced atheroscle-
rosis in aortic tissue stained with Oil Red O. Consistent with
numerous studies in apoE-null mice, atherosclerosis pre-
vailed within the aortic arch in all groups of mice included
in our studies (not shown). Thus, we quantified the area of
atheroma in the aortic arch region by computerized mor-
phometry using two independent approaches: (1) Oil Red O
staining of whole-mounted arteries and (2) quantification of
the I/M ratio in arterial cross-sections. As shown inFig. 2A,
both groups of rapamycin-treated mice displayed a signifi-
cant reduction in the area of Oil Red O-stained atheroscle-
rotic plaques as compared with untreated mice (inhibition
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Fig. 2. Rapamycin attenuates diet-induced atherosclerosis. Atheroma development in the aortic arch of apoE-null mice fed the atherogenic diet for 6
weeks was quantified by computerized morphometry. The photomicrographs show representative examples. (A) Arteries were stained with Oil Red O
(atherosclerotic lesions are shown in red). Results represent the area of lesion relative to untreated controls (1). Gender distribution was four males/four
females (untreated controls), four males/three females (RAPA 1), and three males/four females (RAPA 4). (B) Cross-sections from the aortic arch were
stained with hematoxylin and eosin to quantify the average I/M (two males/two females in each group). The edge of the atherosclerotic plaque (intimal
lesion) has been drawn with a discontinuous line.

of 56% in RAPA1 and 66% in RAPA4,P < 0.0002 and
<0.0001 versus control, respectively). Likewise, examina-
tion of arterial cross-sections revealed a significant reduc-
tion of the I/M in RAPA1 and RAPA4 mice (P < 0.005 and
<0.001 versus control, respectively) (Fig. 2B). Both studies
disclosed a trend towards more protection in RAPA4 ver-
sus RAPA1, although the differences between the groups of
rapamycin-treated mice did not reach statistical significance.
These findings demonstrate a protective effect of rapamycin
against atherosclerosis in apoE-null mice challenged with an
atherogenic diet in spite of sustained hypercholesterolemia.

3.2. p27Kip1 is not required for rapamycin-dependent
inhibition of atherogenesis

Arterial cell proliferation is thought to contribute to
atheroma development[1–4]. Because of the well-established
antiproliferative action of rapamycin, we next performed
Western blot analysis to examine the effect of rapamycin on
the expression of positive cell cycle regulators in the aorta of
fat-fed apoE-null mice. Two independent sets of mice were
analyzed in these studies (experiments 1 and 2,Fig. 3). We

Fig. 3. Effect of rapamycin on aortic expression of cell cycle regulators.
Immunoblot analysis of cell lysates prepared from the aorta of control
and rapamycin-treated fat-fed apoE-null mice (pool of four arteries in
each group). Densitometric analysis was performed and each value was
divided by its tubulin loading control. Numbers below the blots indicate
the level of expression relative to untreated mice (set as 1). The results
of two independent experiments are shown.
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Fig. 4. Genetic disruption of p27Kip1 does not impair the atheroprotec-
tive effect of rapamycin. Mice doubly deficient for p27Kip1 and apoE
were fed the atherogenic diet for 4 weeks. Gender distribution in both
groups was four males/two females. Atherosclerosis was quantified in Oil
Red O-stained arteries (atherosclerotic lesions are shown in red). Results
represent the area of lesion relative to untreated controls (1).

found a 50–60% reduction in the expression of the S-phase
markers PCNA and CDK2 in rapamycin-treated mice.

The growth suppressor p27Kip1 has been implicated in the
control of atheroma development[42,45,47,48]. Remark-
ably, both p27Kip1-dependent[51,52] and p27Kip1-inde-
pendent[20,33]mechanisms of rapamycin action have been
suggested. Thus, we sought to assess the role of p27Kip1 on
rapamycin-dependent atheroprotection by examining fat-fed
mice doubly deficient for apoE and p27Kip1. As shown in
Fig. 4, the ability of rapamycin to inhibit atherogenesis in
these mice was comparable to that seen in apoE-null mice
with an intact p27Kip1 gene (63% inhibition,P < 0.01
versus control, compare withFig. 2). These results demon-
strate that rapamycin inhibits diet-induced atherosclerosis
via a p27-independent mechanism.

3.3. Rapamycin prevents diet-induced aortic MCP-1
upregulation

Chemokines promote the recruitment of immune cells
at the sites of vascular injury and the migration of medial
VSMC towards the atherosclerotic lesion[1,2]. Gain- and
loss-of-function experiments have implicated the chemotac-
tic cytokine MCP-1 and its receptor CCR2 in the devel-
opment of atherosclerosis[55–60]. Interestingly, rapamycin
reportedly inhibits MCP-1 mRNA and protein expression in
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Fig. 5. Rapamycin attenuates diet-induced aortic MCP-1 upregulation.
apoE-null mice were fed either control chow or the atherogenic diet
for 4 weeks (with or without rapamycin at 1 mg/kg). Total RNA was
isolated from the aortic arch for real-time quantitative RT-PCR analysis.
The number of animals in each group is indicated (n). Results are given
as the ratio of MCP-1/GAPDH. Comparisons vs. atherogenic diet (no
rapamycin):∗P < 0.005; ∗∗P < 0.006.

animal models of cardiac[61] and kidney[62] transplanta-
tion. Thus, we examined the effect of rapamycin on aortic
MCP-1 expression by quantitative RT-PCR analysis of RNA
isolated form the aortic arch of apoE-null mice fed control
chow or the atherogenic diet. As shown inFig. 5, rapamycin
blocked diet-induced upregulation of MCP-1 compared with
untreated fat-fed mice.

4. Discussion

Activation of immune cells and excessive cellular prolif-
eration and migration within the arterial wall are thought to
contribute to neointimal thickening in both experimental an-
imals and humans[1–6]. Rapamycin’s immunosuppressive,
antiproliferative and antimigratory actions are associated
with attenuated neointimal thickening in several animal
models of alloimmune and mechanical injury[18,25–33].
Moreover, rapamycin has shown promising results in re-
ducing human coronary in-stent restenosis[34–37]. In this
study, we examined the effect of rapamycin on the vessel
wall response to dietary cholesterol in the apoE-deficient
mouse model of atherosclerosis. We found a significant
rapamycin-dependent reduction in the severity of aortic
atherosclerosis in spite of sustained hypercholesterolemia
compared with untreated controls. This atheroprotective ef-
fect of rapamycin coincided with reduced aortic expression
of the positive cell cycle regulatory proteins CDK2 and
PCNA, consistent with previous studies in the rat carotid
artery model of balloon angioplasty[20].

Rapamycin induces p27Kip1 accumulation in vitro and in
vivo [12,15,17,18,46], suggesting that p27Kip1 may mediate
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the inhibitory effects of this drug. Consistent with this
notion, p27Kip1 inactivation impairs rapamycin-mediated
growth arrest in fibroblasts and T lymphocytes[51], and
migration inhibitory responses in VSMCs[52]. However,
evidence of p27Kip1-independent mechanisms of rapamycin
action have also been provided. First, rapamycin efficiently
impaired the growth of p27Kip1-null VSMCs in vitro [33].
Second, rapamycin failed to prevent the in vivo down-
regulation of p27Kip1 seen 24 h after balloon injury of rat
carotid arteries[20]. Third, attenuation of neointimal thick-
ening after mechanical injury was similar in wild-type and
p27Kip1-null mice treated with rapamycin[33]. Although
we can not rule out that aortic p27Kip1 expression may
be induced by rapamycin in the present study, we found
that the atheroprotective action elicited by this drug was
not impaired in fat-fed mice doubly deficient for apoE and
p27Kip1 versus apoE-null mice with an intact p27Kip1 gene
(compareFigs. 2 and 4). Thus, p27Kip1 is not essential
for the therapeutic effect of rapamycin against neointimal
thickening induced by both dietary cholesterol and balloon
angioplasty.

Human and animal studies suggest that local production
of chemokines within the atheroscloerotic plaque plays a
critical role in atherogenesis[1,2]. Accumulating evidence
has implicated MCP-1 as a proatherogenic factor[58]. For
instance, several cell types involved in atheroma forma-
tion (i.e. endothelial cells, VSMCs, and macrophages) dis-
play abundant expression of MCP-1 and its receptor CCR2
[58], and high level of MCP-1 expression has been observed
within the atherosclerotic plaque in both experimental ani-
mals and humans[63–65]. Importantly, genetic inactivation
of MCP-1 or CCR2[55–57] and anti-MCP-1 gene therapy
[59] reduce murine atherosclerosis. In marked contrast, lo-
cal infusion of MCP-1 protein increases plaque formation in
apoE-null mice[60]. We found that rapamycin abrogates the
upregulation of MCP-1 mRNA expression normally seen in
the aortic arch of fat-fed apoE-null mice, consistent with re-
cent studies demonstrating rapamycin-dependent inhibition
of MCP-1 expression in animal models of cardiac[61] and
kidney [62] allografts.

In conclusion, the present study extends previous reports
documenting the therapeutic efficacy of rapamycin against
neointimal thickening in the setting of CGVD[25–29]
and balloon angioplasty[18,26,27,30–37]by demonstrat-
ing rapamycin-dependent reduction of atherosclerosis in
apoE-null mice challenged with a high-fat, cholesterol-rich
diet. Rapamycin’s atheroprotective effects occur through
a p27Kip1-independent pathway that coincides with re-
duced arterial expression of both positive cell cycle regu-
latory factors (i.e. CDK2 and PCNA) and proatherogenic
MCP-1. Because of this novel therapeutic application of
rapamycin, gene expression profiling and proteomic stud-
ies comparing untreated and rapamycin-treated fat-fed
animals are warranted to identify potential therapeutic
targets for the prevention and/or treatment of atheroscle-
rosis.

Note added in proofs

While this manuscript was under review, Elloso et al. re-
ported the protective effect of rapamycin against atheroma
development in apoE-null mice (Elloso MM, Azrolan N,
Sehgal SN, Hsu PL, Phiel KL, Kopec CA, Basso MD,
Adelman SJ. Protective effect of the immunosuppressant
sirolimus against aortic atherosclerosis in apo E-deficient
mice. Am J Transplant 2003;3:562–9).
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