Potential NEU1 Inhibitors for Cystic Fibrosis Therapy

Candidate	Chemical Class	Mechanism of NEU1 Inhibition
2-Deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA)	Sialic-acid analog	Competitive binding to the active site of NEU1, preventing cleavage of terminal sialic acids on mucins
Oseltamivir (Tamiflu)	Prodrug of a neuraminidase inhibitor	After hepatic conversion to oseltamivir carboxylate, it binds NEU1 with micromolar affinity, reducing desialylation of airway mucins
Zanamivir	Sialic-acid analog (inhaled formulation)	Directly inhibits NEU1 activity in the epithelial lining fluid, preserving mucin

		sialylation
C9-Bromo-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (C9-BA)	Modified DANA derivative	Enhanced potency and selectivity for NEU1 through a C9 bromine substitution, achieving >80 % inhibition at low micromolar concentrations in vitro
Neu5Ac2en-O-alkyl derivatives	Alkyl-esterified sialic-acid analogs	Increase membrane permeability and residence time in the airway surface liquid, leading to sustained NEU1 blockade

Rationale for Inclusion

The above molecules have been identified in the broader neuraminidase inhibitor literature as capable of targeting human NEU1, the isoform implicated in cystic fibrosis (CF) airway mucus pathology. The technical report's modeling work demonstrates that achieving ≥80 % NEU1 inhibition in the epithelial lining fluid is sufficient to reduce mucus viscosity by ~25 % and improve FEV₁ by ~0.13 L (see the integrated PK/PD and biophysical model) [Yousra Hassan Alsaad Almeshale' 2025-08-13]. Consequently, any compound that can deliver the required exposure (≈7.5 µM peak concentration) via inhalation—such as the inhaled formulations of zanamivir or suitably engineered DANA analogs—represents a viable candidate for further pre-clinical and clinical evaluation.

Considerations for Selection

• Pharmacokinetics: Inhaled delivery must achieve the modeled deposition fraction (F_dep≈0.12) and absorption rate (k_abs≈0.21 h⁻¹) to maintain therapeutic concentrations for ~10 h per day [Yousra Hassan Alsaad Almeshale' 2025-08-13].

- Selectivity: Off-target inhibition of other neuraminidase isoforms (NEU2-4) may cause systemic effects; modified analogs like C9-BA improve NEU1 selectivity.
- Formulation Feasibility: Existing inhaled products (e.g., zanamivir) provide a development shortcut, whereas new pro-drugs may require novel aerosol formulations.

These candidates provide a starting portfolio for the next phase of in-vivo validation of inhaled NEU1 inhibition as a rheology-targeting strategy in CF.

Key Topic Groups

Pharmacokinetic parameters relevant to inhaled delivery (lung deposition, absorption rate, airway concentration): 1 papers found

Inhaled delivery of NEU1 inhibitors for cystic fibrosis hinges on quantifying lung deposition, absorption kinetics, and airway drug concentrations to ensure sustained target engagement; integrated PK/PD modeling anchored in empirical data predicts a deposition fraction of ~12 %, an absorption rate constant of $0.21\,h^{-1}$, and a mucosal clearance rate of $0.24\,h^{-1}$, which together generate peak epithelial lining fluid concentrations of approximately $7.5\,\mu\text{M}$ (95 % CI 6–10 μM) that exceed the IC₅₀ for about 10 hours daily and achieve >80 % NEU1 inhibition, supporting a projected 25–28 % reduction in mucus viscosity and a clinically meaningful +0.13 L improvement in FEV, [Yousra Hassan Alsaad Almeshale' 2025–08–13].

Notable papers:

Developing an Inhaled NEU1 Inhibitor for Cystic Fibrosis via Pharmacokinetic and Biophysical Modeling (Aug 31, 2025)