Combilytics Corp

NAD+ infusions are ineffective, increasing endogenous NAD+ is possible with precursors.

NAD⁺ infusions have gained popularity in wellness and longevity circles, but they are largely ineffective at raising **cellular (intracellular)** NAD⁺ — the form that actually powers mitochondria and sirtuin activity — for biochemical and pharmacokinetic reasons.

Why NAD+ Infusions Don't Work

1. Poor Cellular Uptake

NAD⁺ cannot easily cross the plasma membrane because it is a large, charged molecule. When infused intravenously, it remains mostly in the **extracellular compartment** (blood plasma) rather than entering cells where it is needed for metabolic processes and DNA repair.

2. Rapid Degradation in Blood

Once in circulation, NAD⁺ is rapidly degraded by extracellular enzymes (ecto-nucleotidases like CD38, CD157, and ENPP1) into **nicotinamide (NAM)**, **adenosine**, and other metabolites within hours. These degradation products are mostly excreted rather than reincorporated into the intracellular NAD⁺ pool.

3. Transient Extracellular Effects

Any NAD⁺ that remains extracellularly acts as a **distress signal**, potentially triggering immune and inflammatory responses (manifesting clinically as nausea, flushing, and body aches during infusion). This is because high plasma NAD⁺ concentrations are interpreted by the body as a sign of cell damage.

4. Lack of Evidence for Cellular or Longevity Benefits

To date, there is **only one published kinetic study** on IV NAD⁺ in humans, which demonstrated a temporary plasma NAD⁺ rise during a 6-hour infusion but **no meaningful increase** in intracellular or whole-blood NAD⁺ 24 hours later.

What Works Better to Raise NAD+

1. Use of NAD⁺ Precursors

Compounds such as **nicotinamide riboside (NR)** and **nicotinamide mononucleotide (NMN)** can cross cell membranes through dedicated transporters and feed into the **NAD**⁺ **salvage pathway**, effectively increasing intracellular NAD⁺ over time.

- o In clinical trials, oral NMN (250–300 mg/day) and NR (\sim 300–1000 mg/day) elevated blood NAD⁺ levels by 30–100% within 8–12 weeks.
- NR and NMN show strong safety profiles and favorable absorption in tissue studies, including muscle and liver.

2. Nutrient Cofactor Optimization

NAD⁺ synthesis depends on **adequate magnesium and zinc** for activation of NMNAT and other enzymes in the salvage pathway. These are often deficient in adults and can limit NAD⁺ increases even when precursors are supplied.

3. Emerging Alternatives

- Nicotinamide riboside hydride (NRH) is a reduced, next-generation NAD⁺ precursor that appears to raise NAD⁺ levels more potently and rapidly in preclinical studies.
- Combination strategies pairing NAD⁺ precursors with CD38 inhibitors (e.g., apigenin, quercetin) can reduce extracellular NAD⁺ catabolism and sustain NAD⁺ stores.

Summary Table: NAD+ Infusion vs. Precursors

Parameter	IV NAD+ Infusion	Oral NR / NMN
Cellular uptake	Very poor; remains extracellular	High; uses specific transporters
Blood NAD ⁺ duration	Short (hours)	Sustained increase (weeks)
Mechanism	Direct plasma increase; no cellular penetration	NAD ⁺ built intracellularly via salvage pathway
Evidence for benefit	Minimal, mostly anecdotal	Demonstrated cellular NAD+ rise and metabolic benefit
Side effects	Nausea, cramps, flushing	Mild GI upset (rare)

In summary, IV NAD⁺ infusions are pharmacologically inefficient due to cell impermeability and rapid degradation. The most effective and scientifically supported ways to raise endogenous NAD⁺ are **oral or sublingual NMN/NR supplementation**, cofactors like **magnesium and zinc**, and lifestyle modifiers such as **fasting**, **exercise**, **and circadian alignment** that upregulate **NAMPT** activity.

- 1. https://www.jinfiniti.com/what-is-nad-iv-therapy/
- 2. https://rachelepojednic.substack.com/p/heres-what-you-need-to-know-about
- 3. https://www.nature.com/articles/s42255-025-01387-7
- 4. https://pmc.ncbi.nlm.nih.gov/articles/PMC10240123/
- 5. https://iadns.onlinelibrary.wiley.com/doi/10.1002/fft2.511
- 6. https://www.sciencedirect.com/science/article/pii/S0006291X24001256
- 7. https://www.science.org/doi/10.1126/sciadv.adr1538
- 8. https://doctormurphy.substack.com/p/the-great-nad-debate-infusions-under
- 9. https://www.mdlinx.com/article/is-nad-therapy-all-its-cracked-up-to-be-heres-the-evidence/4nto35HwTjVcM6Y9]3anaF
- 10. https://www.newsweek.com/anti-aging-nad-drips-iv-wellness-doctors-2007625
- 11. https://www.nad.com/news/are-there-hidden-dangers-to-taking-nad-supplements
- 12. https://www.cnbc.com/2025/03/11/nad-is-the-latest-trendy-anti-aging-supplement-what-do-doctors-sav.html
- 13. https://pmc.ncbi.nlm.nih.gov/articles/PMC12177089/
- 14. https://pmc.ncbi.nlm.nih.gov/articles/PMC8444956/
- 15. https://www.awhealthinstitute.org/post/ultimate-guide-to-nad-therapy-most-commonly-asked-questions-about-nad-and-nad
- 16. https://pmc.ncbi.nlm.nih.gov/articles/PMC7558103/
- $17. \ \underline{\text{https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.121.056589}}$
- 18. https://www.ivyrx.com/blog/nad-injections-vs-iv
- 19. https://www.sciencedirect.com/science/article/pii/S0003999321011096
- 20. https://www.verywellhealth.com/nad-iv-therapy-8783961