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AIMS
The regulatory prohibition of ketoconazole as a CYP3A index inhibitor in drug–drug interaction (DDI) studies has compelled consid-
eration of alternative inhibitors.
METHODS
The biomedical literature was searched to identify DDI studies in which oral midazolam (MDZ) was the victim, and the inhibitory
perpetrator was either ketoconazole, itraconazole, clarithromycin, or ritonavir. The ratios (RAUC) of total area under the curve (AUC) for
MDZ with inhibitor divided by MDZ AUC in the control condition were aggregated across individual studies for each inhibitor.
RESULTS
Mean (± SE) RAUC values were: ketoconazole (15 studies, 131 subjects), 11.5 (±1.2); itraconazole (five studies, 48 subjects), 7.3 (±1.0);
clarithromycin (five studies, 73 subjects), 6.5 (±10.9); and ritonavir (13 studies, 159 subjects), 14.5 (±2.0). Differences among inhibitors
were significant (F = 5.31, P < 0.005). RAUC values were not significantly related to inhibitor dosage or to duration of inhibitor pre-
exposure prior to administration of MDZ.
CONCLUSIONS
Ritonavir produces CYP3A inhibition equivalent to or greater than ketoconazole, and is the best index CYP3A inhibitor alternative to
ketoconazole. Cobicistat closely resembles ritonavir in structure and function, and can also be considered. Itraconazole and
clarithromycin are not suitable alternatives since they do not produce inhibition comparable with ketoconazole or ritonavir, and have
other significant disadvantages as well.
Introduction

The Drug Safety Communication issued by the United
States Food and Drug Administration (FDA) in July 2013,
warned against and limited the use of oral ketoconazole
for systemic antifungal treatment, based on what was
stated to be a risk of severe liver injury which could poten-
tially lead to liver transplantation or death [1]. The
European Medicines Agency Committee on Medicinal
Products for Human Use issued a similar statement at the
same time [2]. In October 2013, the FDA followed with a
statement recommending against the use of ketoconazole
as an index inhibitor of human cytochrome P450-3A
(CYP3A) isoforms in clinical drug–drug interaction (DDI)
studies [3].

The FDA has not provided the outcome of what they
term a comprehensive benefit–risk assessment of the
safety and efficacy of oral ketoconazole. Also unavailable
015 The British Pharmacological Society
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are the results of an independent evaluation of data
from the FDA Adverse Event Reporting System (FAERS)
by a hepatology expert at the FDA. A review of pub-
lished literature on ketoconazole-associated liver injury
[4], and an external analysis of FAERS reports [5], led to
the following conclusions: 1) liver injury associated
with ketoconazole is uncommon, 2) when it happens,
liver injury is nearly always evident as asymptomatic
and reversible alterations in liver function tests, 3) serious
liver injury is rare, 4) there is no substantive or consistent
evidence that ketoconazole carries a risk of liver injury
different from other azole antifungals, and 5) There is
negligible evidence of a liver injury risk from ketocona-
zole used as an index CYP3A inhibitor in DDI studies of
healthy volunteers.

Notwithstanding a lack of scientific support, the
regulatory decisions still impose a liability burden on clini-
cians who prescribe ketoconazole for systemic antifungal
treatment, and on investigators who use ketoconazole in
DDI studies of CYP3A-mediated drug clearance [6]. Reason-
able antifungal treatment options are available as alterna-
tives to ketoconazole, but CYP3A inhibitor alternatives
for DDI studies in the course of drug development are
not so clear.

For a drug candidate suspected of being a CYP3A
inhibitor (‘perpetrator’), a DDI study using a sensitive
CYP3A substrate drug as ‘victim’ can be performed to
determine the candidate’s quantitative inhibition po-
tency [7]. Such studies often include a trial arm using a
strong CYP3A inhibitor – usually ketoconazole – as a
positive control, to compare the inhibitory effect of the
candidate drug with the ‘worst case scenario’. If the can-
didate drug itself is a CYP3A substrate, a DDI study using
ketoconazole as the inhibitor would map the worst case
for the substrate under conditions of maximal CYP3A
inhibition.

An appropriate alternative to ketoconazole as a strong
index CYP3A inhibitor for DDI studies should produce
maximal inhibition of CYP3A activity. Itraconazole,
clarithromycin, and ritonavir have been proposed as alter-
natives [3, 4, 6, 8], but their quantitative inhibitory potency
in vivo relative to that of ketoconazole has not been
established. The present review evaluates published
Table 1
Summary of oral midazolam drug–drug interaction studies of each inhibitor

Inhibitor Number of studies Number of subjects References

Ketoconazole 15 131 [9–19]

Itraconazole 5 48 [9], [20–23]

Clarithromycin 5 73 [24–28]

Ritonavir 13 159 [31–40]
clinical DDI studies in which ketoconazole, itraconazole,
clarithromycin, or ritonavir have been used as an index
CYP3A inhibitor in clinical DDI studies with oral midazo-
lam as the index substrate.
Methods

A total of 38 studies, involving 411 subjects, were identi-
fied through standard procedures for search of published
biomedical literature (Table 1). We elected to consider
studies of orally administered midazolam, since clear-
ance will reflect activity of both hepatic and enteric
CYP3A [10]. The majority of studies evaluated were single
dose crossover trials, in which oral midazolam was given
in the control state, and again with co-administration of
the index inhibitor. The principal outcome variable for
this review was the ratio (RAUC) of total area under the
plasma concentration curve (AUC) for oral midazolam
during co-administration of inhibitor (AUCI) divided by
the AUC in the control condition with no inhibitor
(AUC0), as follows [7]:

RAUC ¼ AUCIð Þ= AUC0ð Þ

For each study, we recorded the overall mean of indi-
vidual RAUC values, as provided by the authors in 66 % of
the studies. This was not available in 34 % of the studies,
in which case we used the mean value of AUCi divided by
mean AUC0. Also recorded were the daily doses of the in-
hibitor, the dosage schedule (single or divided daily
doses), and the duration of pre-exposure to the inhibitor
prior to administration of midazolam.

RAUC values were aggregated as the arithmetic mean
across all studies of each inhibitor. Analysis of variance
(ANOVA) for independent groups using rank-transformed
data was performed to determine the overall significance
of differences in RAUC among the four inhibitor catego-
ries. For each inhibitor, the relation of RAUC to daily dose
of inhibitor and to the duration of inhibitor pre-exposure
was evaluated by multiple regression analysis.
Median (with range)

Daily dose (mg)
Pre-exposure
duration (days)

Dose schedule: single
(S) or divided (D) daily doses

400 (200–400) 3 (0–14) 12S, 3D

200 (100–400) 3 (0.17–5) 5S, 0D

1000 (500–1000) 4 (3–7) 0S, 5D

200 (100–600) 13 (0–>30) 5S, 12D
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Results

The median duration of pre-exposure to inhibitors ranged
from 3 to 13 days (Table 1), with variation of individual
values from 0 (the inhibitor given as a single dose concur-
rently with midazolam) to more than 30 days. Median
daily doses were 200 mg for itraconazole and ritonavir,
400 mg for ketoconazole and 1000 mg for clarithromycin.
Multiple regression analysis indicated no apparent rela-
tionship of RAUC to daily dosage or duration of pre-
exposure for any of the inhibitors.

Figure 1 shows overall mean RAUC values for the
four inhibitor groups, without weighting of individual
mean values for the number of subjects in each study.
If means are weighted for sample size, the outcome is
essentially identical.

The overall difference among inhibitors was signifi-
cant (F = 5.31, P < 0.005). RAUC values for ketoconazole
and ritonavir (11.5 and 14.5, respectively) were not signif-
icantly different from each other (Student–Newman–
Keuls test). Both were significantly larger than values for
itraconazole and clarithromycin (7.3 and 6.5), which in
turn were not different from each other.

In none of the 15 studies involving ketoconazole as
inhibitor were liver function abnormalities reported.
Figure 1
Ratios of total area under the curve (AUC) for oral midazolam during co-
administration of each of four inhibitors divided by AUC in the control
condition with no inhibitor. Each bar is the mean (±SE) value across
studies for the indicated inhibitor, as described in Table 1. KETO ketoco-
nazole, ITRA itraconazole, CLAR clarithromycin, RIT ritonavir. Numbers
in parentheses are the total number of subjects participating in studies
of the indicated inhibitor
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Discussion

The findings indicate that ritonavir produces in vivo
inhibition of CYP3A metabolic activity that is comparable
with or greater than that of ketoconazole. Inhibition by
itraconazole and clarithromycin were similar to each
other, and both were less than the extent of inhibition
produced by ketoconazole or ritonavir. Regulatory
guidance classifies inhibitors as ‘strong’ if they produce
RAUC values exceeding 5.0. This qualifies itraconazole
and clarithromycin as ‘strong’ inhibitors, but they do
not produce maximal in vivo CYP3A inhibition compara-
ble to ketoconazole or ritonavir. As such, itraconazole
and clarithromycin are not reasonable alternatives to
ketoconazole.

Ketoconazole is well recognized as a CYP3A inhibitor
having high inhibitory potency [4, 6, 7, 41–47]. Ketocona-
zole produces reversible inhibition, with a mechanism
that is mixed competitive and non-competitive [46].
Variable in vitro inhibition constant (Ki) values for ketoco-
nazole have been reported among a large number of
studies, but Ki typically is in the range of 0.05–0.1 μM
[42, 47]. This is considerably below the usual range of
plasma ketoconazole concentrations during therapeutic
use (1–5 μM) [9, 48, 49], and is consistent with the high de-
gree of inhibition observed in vivo. Because ketoconazole
has a short elimination half-life, steady-state is reached
rapidly after initiation of exposure, and no more than
24 h of pre-treatment is needed to produce maximal
CYP3A inhibition [17, 50]. The time course of reversibility
of ketoconazole inhibition after discontinuation is likely
to be rapid as well [51].

Itraconazole also is a reversible CYP3A inhibitor.
Usual in vitro Ki values are in the range of 0.1–0.5 μM,
compared to in vivo plasma concentrations of 0.05–1.0 μM
[4, 9, 23, 41, 42, 49, 52–55]. Itraconazole has metabolic
products with CYP3A inhibitory activity that are likely to
contribute to in vivo inhibition [23, 53, 54, 56, 57]. Because
of the long elimination half-life of itraconazole and its
metabolites, there is accumulation with repeated dosage
[49, 57–61]. As such, the onset and offset of in vivo CYP3A
inhibition is slower than what is established for ketocona-
zole [20, 22].

Clarithromycin is a macrolide derivative that pro-
duces time-dependent (mechanism-based) inhibition of
CYP3A [62–66]. The inhibitory potency of clarithromycin
is considerably less than ketoconazole or ritonavir.
Values of the half-maximal inactivation constant or 50%
inhibitory concentration (IC50) for clarithromycin in vitro
are in the range of 2–30 μM [64, 67], compared to plasma
concentrations in the range of 2–6 μM [27, 68–70]. As such,
the extent of in vivo CYP3A inhibition with clarithromycin
does not approach what could be considered maximal
[4, 8, 67]. As a time-dependent inhibitor [62–66, 71–74],
the onset and offset of CYP3A inhibition is likely to
be delayed [75]. In a study of erythromycin – also a
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macrolide derivative producing time-dependent CYP3A
inhibition – the apparent half-life of onset of inhibition
following initiation of treatment was calculated to be
22.5 h [76].

Ritonavir is a highly potent CYP3A inhibitor in vitro,
with a combination of reversible and time-dependent
mechanisms [54, 77–80]. Values of Ki or IC50 generally
are less that 0.2 μM, compared to plasma concentrations
in the range of 1.0–10 μM [31, 32, 35, 36, 38, 81]. In clinical
studies, the inhibitory potency of ritonavir is at least as
great as that of ketoconazole (Fig. 1). CYP3A inhibition
by ritonavir is dose- and exposure-dependent [35, 38],
but in the majority of studies, daily doses in the typical
‘boosting’ range of 100 to 200 mg produce maximal or
near-maximal inhibition [35, 38, 81–83]. The onset of
CYP3A inhibition is rapid following initiation of ritonavir
treatment, with maximal inhibition after 2 to 3 days of
exposure [31, 35, 82, 83]. In one study of the reversal of
inhibition, CYP3A activity reverted to baseline by 4 days
after discontinuation of ritonavir dosage at 400 mg day�1

[82]. In another study, recovery from CYP3A inhibition was
incomplete at 3 days after termination of ritonavir exposure
at doses of 300–600 mg daily [35].

Ketoconazole, itraconazole, and ritonavir have inhibi-
tory actions against other human CYP isoforms in addition
to CYP3A [41, 42, 77, 78, 84–88]. However the values of Ki or
IC50 vs. isoforms other than CYP3A are at least one order of
magnitude higher (lower inhibitory potency) than for
CYP3A [42, 77, 78, 88]. In clinical DDI studies, ketoconazole
co-administration had minimal effects on the pharmacoki-
netics of antipyrine, caffeine, theophylline, and chlordiaz-
epoxide [6]. Co-administration of itraconazole with the
CYP2D6 substrate drugs aripiprazole [89] and tramadol
[90] increased AUC values by factors of 1.48 and 1.11, re-
spectively. In DDI studies involving ritonavir as a CYP inhib-
itor, short term exposure to boosting doses of ritonavir
produced only small or negligible inhibition of clearance
of dextromethorphan (CYP2D6) [30], desipramine (CYP2D6)
[91], bupropion (CYP2B6) [92], omeprazole (CYP2C19) [37],
S-warfarin (CYP2C9) [39] and flurbiprofen (CYP2C9) [37]. In
cell culture models, ritonavir produces transcriptional acti-
vation and increased expression of a number of CYP iso-
forms and transport proteins [34, 93–95]. In clinical studies,
induction of clearance of substrate drugs such as caffeine
(CYP1A2) [95], olanzapine (CYP1A2) [96] and tolbutamide
(CYP2C9) [95] has been demonstrated with extended expo-
sure to relatively high doses of ritonavir. However the lower
‘boosting’ doses produce only small or modest degrees of
induction [29]. Taken together, the data suggest that keto-
conazole, itraconazole, and ritonavir all have high relative
specificity as CYP3A inhibitors. The low dosage range for
ritonavir, along with the short exposure durations typical
of DDI studies, minimizes concerns about induction effects.

The candidate CYP3A inhibitors all produce some degree
of inhibition of transport mediated by P-glycoprotein
(ABCB1). This is evident from in vitro and experimental
studies, as well as clinical DDI studies evaluating enteric up-
take, partitioning across the blood–brain barrier, or renal
clearance of P-glycoprotein substrates [30, 36, 97–110].
For victim drugs that are potential substrates both for me-
tabolism by CYP3A and transport by P-glycoprotein, the
outcome of DDI studies using these candidate inhibitors
is likely to reflect concurrent inhibition of both CYP3A and
P-glycoprotein.

Cobicistat is closely related to ritonavir in structure
and pharmacologic properties [111–113]. Cobicistat has
been approved as a single entity agent for pharmacoki-
netic boosting in antiretroviral therapy. In a DDI study
directly comparing the inhibitory effect of 200 mg
cobicistat and 100 mg ritonavir on clearance of oral
midazolam, the mean RAUC values for midazolam were
19.0 for cobicistat and 23.9 for ritonavir [40]. Like ritona-
vir, cobicistat is an inhibitor of P-glycoprotein activity
[114], and is a relatively, but not completely, specific
inhibitor of CYP3A. Both ritonavir and cobistat inhibit
CYP2D6 activity in vitro, with IC50 or Ki values in the range
of 3–14 μM [78, 84, 112]. In a clinical DDI study of
cobicistat with the CYP2D6 substrate desipramine (as re-
ported in the product label, but not published),
cobocistat increased desipramine AUC by a factor of
1.65. Ritonavir increased desipramine AUC by a factor of
1.26 in a similarly-designed DDI trial [91]. The available
data on cobicistat suggest that it could serve as an in-
dex CYP3A inhibitor for DDI studies. The product label
for cobistat indicates that the drug can decrease creati-
nine clearance due to inhibition of tubular secretion of
creatinine without affecting glomerular function. The
ritonavir label describes elevations in serum transami-
nases in patients receiving ritonavir alone, or in combi-
nation with other antiretroviral drugs. However there
is no evidence that either of these issues is of concern
for DDI studies in healthy volunteers with no renal or
hepatic disease.
Conclusions

There is no established risk of liver injury when keto-
conazole is used as an index CYP3A inhibitor for DDI
studies in healthy volunteers. Still, the regulatory action
against ketoconazole forces consideration of alternatives.
Itraconazole and clarithromycin have been proposed, but
neither produces in vivo CYP3A inhibition approaching
that of ketoconazole. Itraconazole has a long half-life and
active metabolites, such that the onset and offset of
CYP3A inhibitory activity are delayed. Clarithromycin is a
time-dependent (mechanism-based) inhibitor, and its
onset and offset of activity also are likely to be delayed.
Ritonavir produces rapid onset CYP3A inhibition of magni-
tude at least as great as ketoconazole, and is the most rea-
sonable alternative. Cobicistat closely resembles ritonavir,
and also warrants consideration.
Br J Clin Pharmacol / 80:3 / 345
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