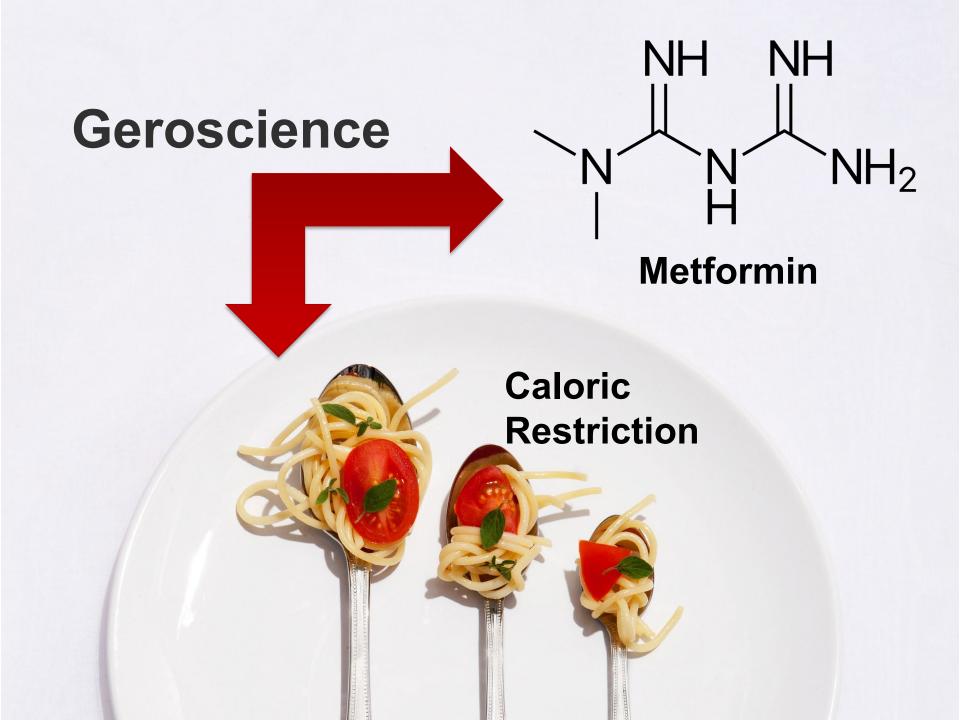


Designing the Aging Outcomes Trial Targeting Aging with MEtformin (TAME)

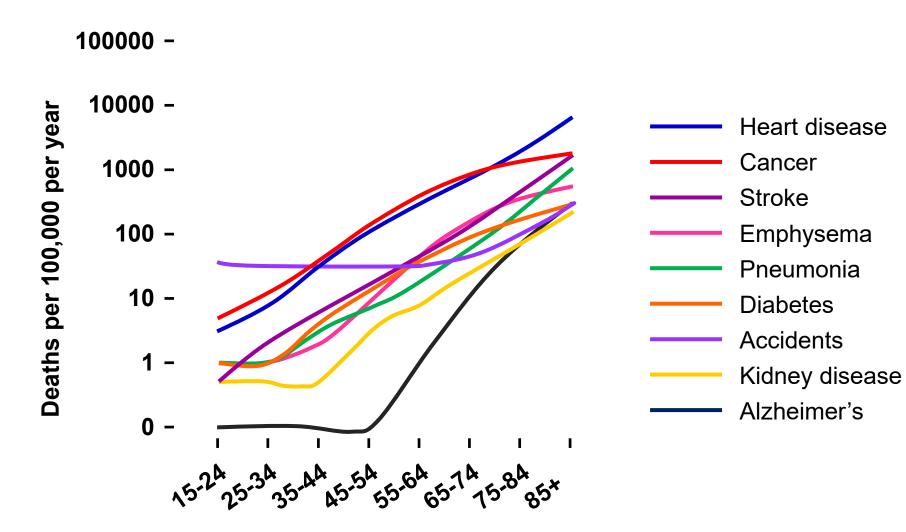
Jamie N. Justice, Ph.D.

Assistant Professor, Internal Medicine - Gerontology & Geriatrics Wake Forest School of Medicine, Winston-Salem, NC 2019 State of the Science Symposium, Bethesda, MD, Oct 25, 2019

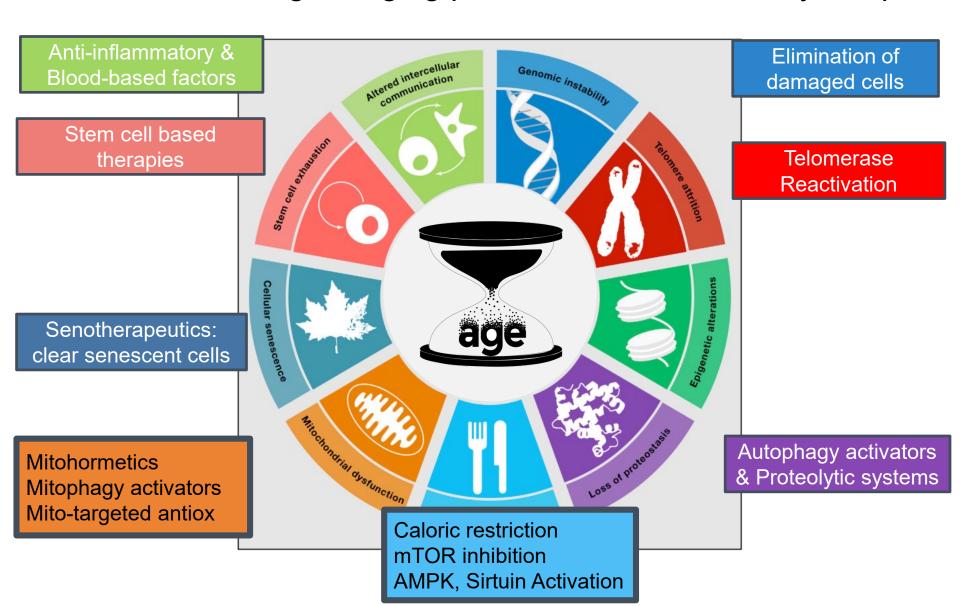


Conflicts to Disclose

None

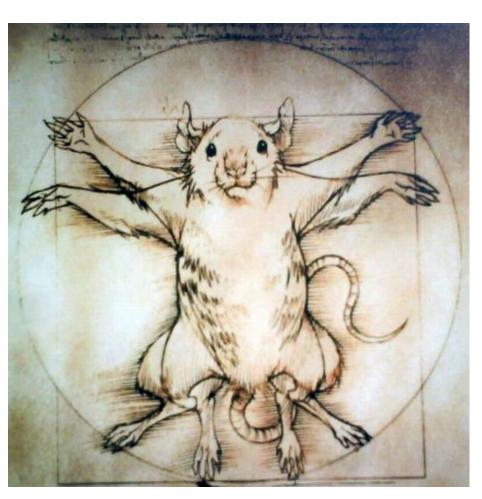

TAME: Aging Outcomes Trial

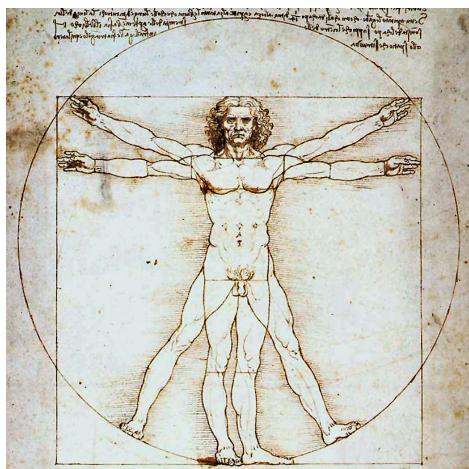
- Targeting Aging with MEtformin (TAME)
 - 6-yr Double Blind Randomized Placebo Controlled Trial
 - N=3000 nondiabetic adults aged 65-80 yrs
 - 14 US clinical study sites
 - Metformin dose: 1500 mg slow release 1x per day
- First Aging Outcomes Trial
 - Create a regulatory path for clinical trials to target agerelated multimorbidity
- Funding: American Federation for Aging Research
 - Pending: NIA's Division of Aging Biology support for TAME's Biorepository & Biomarkers Core


Geroscience Premise:

Age is the strongest risk factor for chronic diseases.

Geroscience Premise


Intervene on biological aging process to extend healthy lifespan



Geroscience Premise

- Age is the strongest risk factor for our most burdensome diseases.
- Aging has a distinct biology that increasingly is being understood.
- Diet interventions and small molecules targeting that biology extends healthy lifespan in animal models.

We are ready to test the gersocience hypothesis in humans

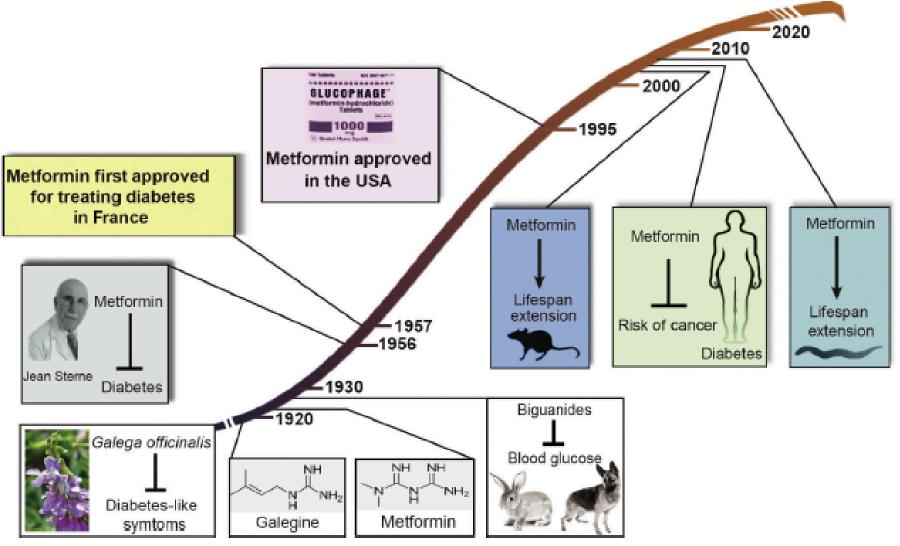
Key Trial Design Elements

- What experimental population?
- Which interventional tool to use?
- What outcome(s) to evaluate?

Populations for Geroscience Trials: What experimental population?

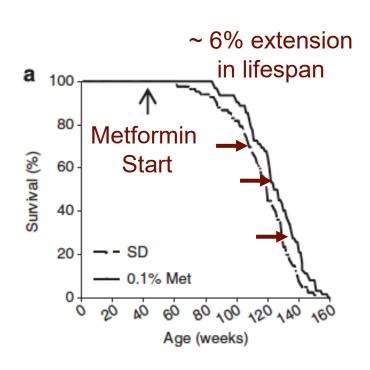
- There is an aspect of health which is more than the lack of pathology in individual organs.
- Functional measures tap into how a patient is doing as an integrated system.

Slow Gait Speed (0.4-1 m/s)


- ✓ Integrated Measure of Biological Age and Health Expectancy
- ✓ Indicator of Reserve & Stress Resistance
- ✓ Prediction Therapeutic Response

Key Trial Design Elements

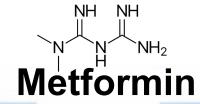
- Who is an appropriate population?
- What interventional tool to use?
- What outcome(s) to evaluate?


Geroscience-Guided Interventions

What makes metformin attractive?

What makes metformin attractive?

Metformin (at non-toxic doses) started at midlife increases lifespan and healthspan in mice


~25% Healthspan Benefit:

- Preserved body weight & body composition
- Shift in energy homeostasis and increased use of lipid
- Reduction in cataract development
- Improved general fitness and physical performance
- Lower HbA1c, insulin, HOMA-IR, LDL, total cholesterol
- Shift in gene expression
- Activation of AMPK
- Reduction of oxidative stress and enhance antioxidant defense
- Inhibition of chronic inflammation

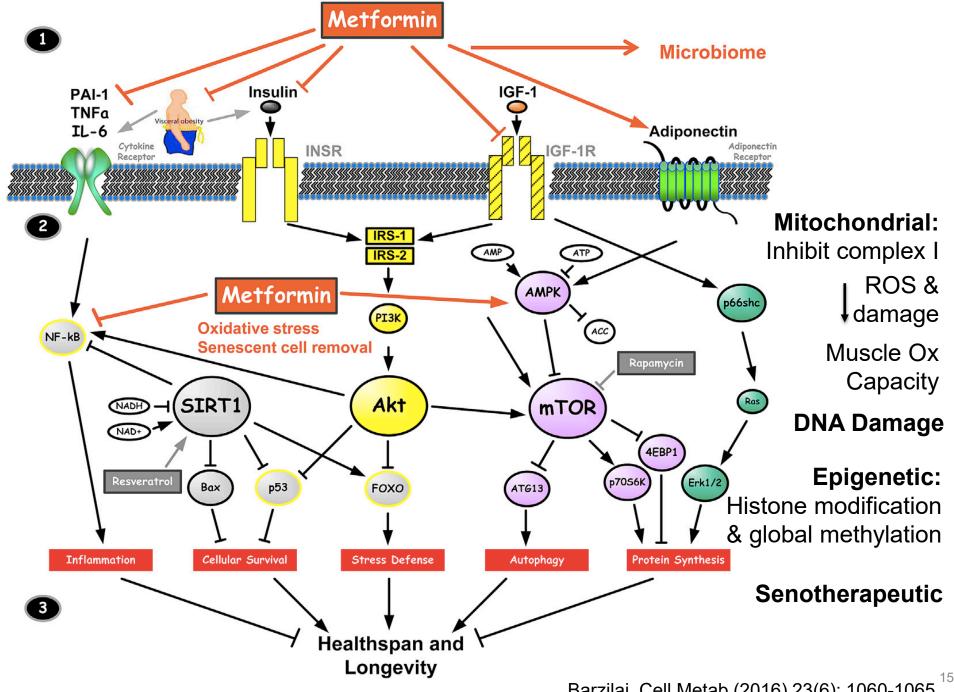
Geroscience-Guided Interventions

What makes metformin attractive?

Invertebrate Models

Vertebrate Models

- Increases mean life span
- Induces youthful physiology
- Shows caloric restriction characteristics
- Presents better long-term survival after anoxia exposure
- Induces mitohormosis



- Does not increase longevity
- Is toxic in a dosedependent manner
- Causes intestinal perturbations
- Inhibits age- and oxidative-stressinduced DNA damage

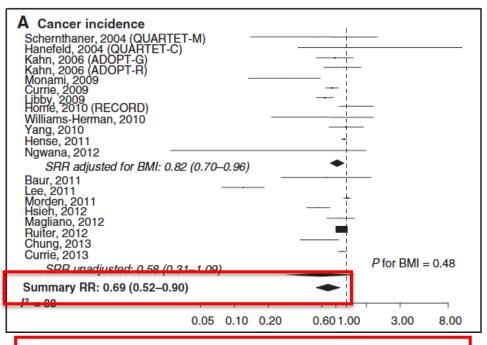
- Increases mean and maximum life span
- · Has antitumorigenic properties
- · Acts as caloric restriction mimetic
- Shows negative results in neurodegenerative disorder models
- Effects are gender dependent in some strains, different mechanisms of aging in female/males
- Effects depends on the age starting the treatment
- · There is only one study published in rats

Barzilai, Cell Metab (2016) 23(6): 1060-1065.

Geroscience-Guided Interventions

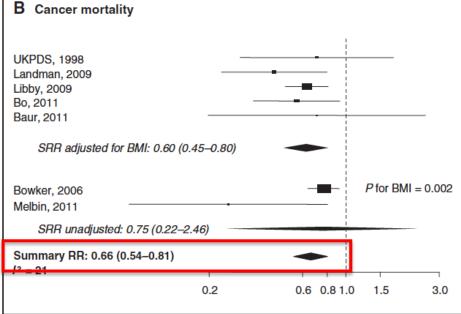
What makes metformin attractive?

- Metformin modulates critical pathways in the biology of aging.
- Metformin has been used safely for over 60 years.
- Metformin is available as a generic drug and is inexpensive.
- Metformin reduces the onset of disparate diseases (epidemiologic evidence).


Metformin & CVD Outcomes (observational)

What makes metformin attractive?

Observational studies	Population	Comparator	Outcome	Effect size
Roumie (2012)	VA /Medicare database	Sulphonylurea	MACE	21 % (HR 1.21)
Johnson (2005)	Canadian Rx drug database	Sulphonylurea	CVD hospital or death	19% (HR 0.81)
Schramm(2011)	Danish population	Sulphonylurea	MACE	19-32% (HR 1.19-1.32)
Roussel (2010)	T2D w/CVD or risk factors	Non-use	mortality	24% RRR (HR 0.76)
Masoudi (2005)	Medicare: T2D hospital CHF	T2D meds (not sensitizers)	Mortality Readmission for CHF	13% RR (HR .87) 8% (HR 0.92)
Aguilar (2011)	VA patients with CHF	Non-use	Mortality	24% RR (HR 0.76)


Metformin & Cancer Outcomes (observational)

What makes metformin attractive?

31% \ Cancer Incidence

33% ↓ Cancer Mortality

Gandini, et al. Cancer Prev Res (2014);7:867-85
Wake Forest Baptist Medical Center

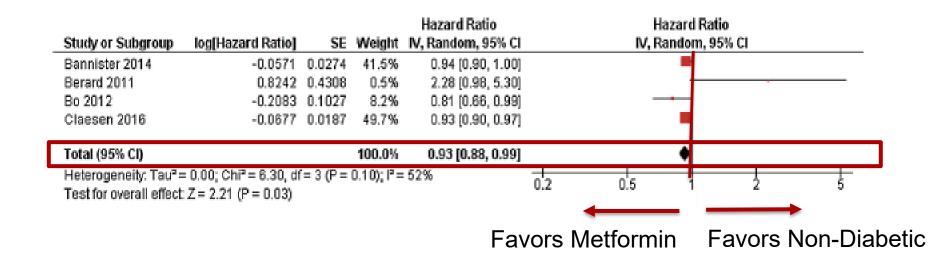
Metformin & Cognitive Impairment / Dementia

Odds Ratio

What makes metformin attractive?

SE Weight IV, Random, 95% CI IV, Random, 95% CI Study or Subgroup log[Odds Ratio] Liccini 2016 -0.6539 0.3336 29.5% 0.52 [0.27, 1.00] Ng 2014 -0.6931 0.3745 23.4% 0.50 [0.24, 1.04] Cognitive Yokoyama 2015 -0.5276 0.2641 47.1% 0.59 [0.35, 0.99] Impairment Total (95% CI) 0.55 [0.38, 0.78] 100.0% **45%** \ Heterogeneity, $Tau^{-} = 0.00$, $Crit^{-} = 0.16$, ui = 2 (F = 0.92), $I^{-} = 0.96$ 0.01 0.1 Test for overall effect: Z = 3.33 (P = 0.0009) Favours Metformin Favours Other Diabetic

Dementia or AD **24%**


				Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Weight	IV, Random, 95% CI		IV, Random, 95% CI
Cheng 2014	-0.1989	0.2282	15.4%	0.82 [0.52, 1.28]		
Heneka 2015	-0.0346	0.0312	33.7%	0.97 [0.91, 1.03]		•
Hsu 2011	-0.2744	0.1297	24.7%	0.76 [0.59, 0.98]		*
Huang 2014a	-0.3711	0.4602	5.7%	0.69 [0.28, 1.70]		
Ng 2014	-1.2965	0.6081	3.5%	0.27 [0.08, 0.90]		
Wang 2017	-0.54	0.2096	16.9%	0.58 [0.39, 0.88]		
Total (95% CI)			100.0%	0.76 [0.60, 0.97]		•
Heterogeneity: Tau* = 0.04; Chi* = 13.58, df = 5 (P = 0.02); I* = 63%			0.01	0.1 1 10 100		
Test for overall effect: Z = 2.22 (P = 0.03)					Favours Metformin Favours Other Diabetic	

Campbell et al, J Alzh Dis (2018);65: 1225-38,

Odds Ratio

Metformin & All-Cause Mortality

What makes metformin attractive?

7%↓ All Cause Mortality for type 2 diabetic patients taking metformin vs. <u>non-diabetics</u>

Overview of Epidemiologic Evidence

What makes metformin attractive?

Disease	Strength of association		
Prevention of type 2 diabetes	++++	Obsv. Meta-Analysis	
Prevention of CVD	+++	20% MACE or mortality	
Prevention of cancer	++	31% incidence, 33% mortality	
Prevention of dementia	++	45% MCI, 24% AD	
Reduction in mortality	+++	7% vs. nondiabetics	

Up to 28% all non-metformin controls

Negative studies? Contrary associations? Of Course! State of Equipoise

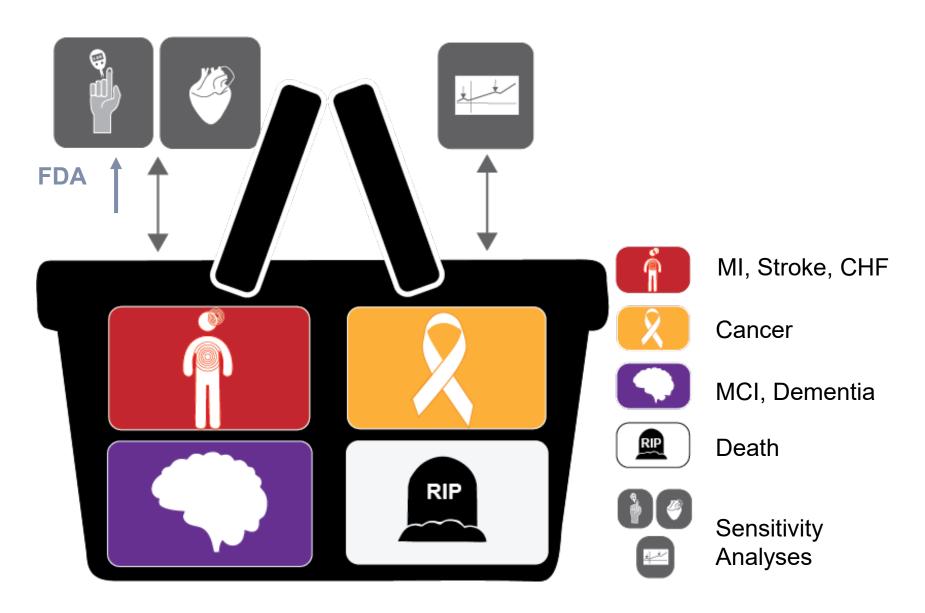
Key Trial Design Elements

- Who is an appropriate population?
- What interventional tool to use?
- What outcome(s) to evaluate?

Evaluation Continuum

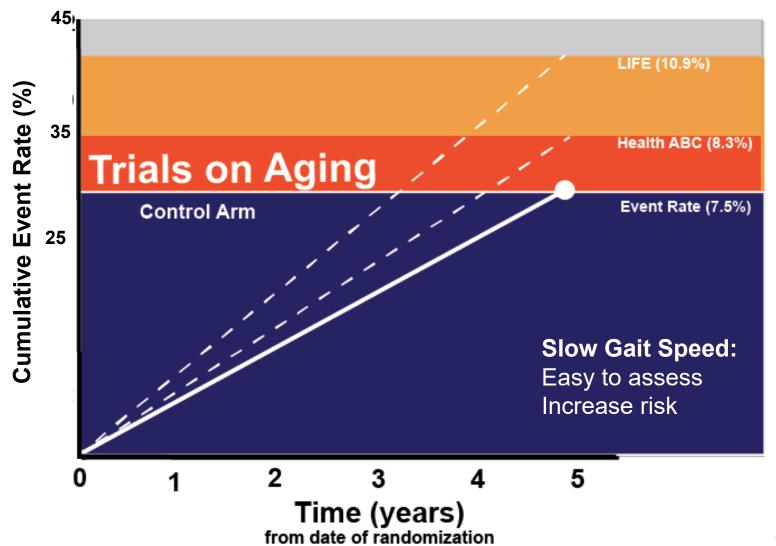
What outcomes & biomarkers to evaluate?

Retard Emergence Extend Molecular-Changes in Of Age-Related Mortality & Disease Life Span Level Disease Assoc. Biomarkers Changes Slow Age-Related **Lower Mortality** Change in Physiologic Cellular Rate Degeneration Physiology **FDA Interest** Time Expense Salience

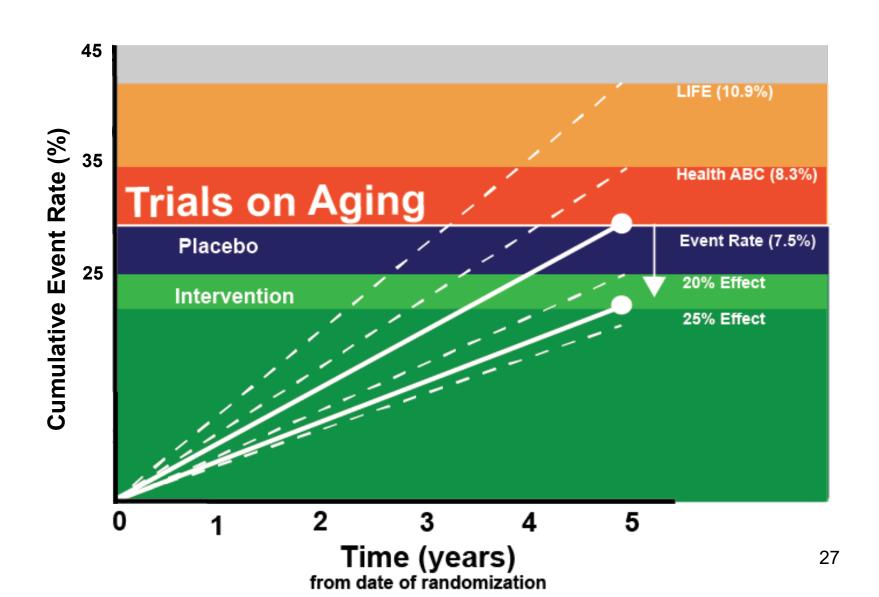

Outcome to Test Geroscience Hypothesis What outcomes & biomarkers to evaluate?

- If a drug's effect is on aging it should:
 - Reduce the incidence of <u>multiple diseases</u>
 - Diseases should <u>share few risk factors</u> other than age

 The outcome of interest is the time to occurrence of one of a <u>collection</u> of possible disease endpoints.


Outcome to Test Geroscience Hypothesis

What outcomes & biomarkers to evaluate?


Outcome to Test Geroscience Hypothesis

Age-related multimorbidity disease outcome

Outcome to Test Geroscience Hypothesis

Metformin effect on age-related multimorbidity



TAME Aging Outcomes Trial

Age 65-80 years AND Slow gait speed OR Age-related disease

Inclusion Criteria

Metformin (1500 mg 1×/day) vs. Placebo (0 mg 1×/day)

n = 3000, 6-year, 14 Clinical Sites; double-blind randomized placebo controlled trial

(Clinical) Time to incidence of any age-related disease: MI, stroke, CHF, cancer*, MCI/dementia, or death.

Primary Outcome

(Functional) Decline in mobility or cognitive function.

Secondary Outcome

AFAR Funded Aging Outcomes Trial

Pending: NIA, Div Aging Biology: U19 Biorepository & Biomarkers

(Biological) Change in biomarkers of aging.

Resource &
Biomarkers
Outcomes

^{*} Excluding non-melanoma skin cancer and prostate cancer

Collaboratively designed: Investigators, FDA regulatory officials, NIH & key stakeholders

get people in the same room; cross-discipline communication is key

2013	TA	R24 Geroscience Network			
2014		TAME Executive Committee Formed	Network Retreat, Santa Barbara, CA	Network Retreat, Oroposa, Spain	
2015	FDA Meetings, Silver Springs, MD	Network Retreat, Santa Barbara, CA	Application to NIA's Clin Trial Advsry Panel	Network Retreat, New Castle, UK	
2016	Revised App Advisory Par	to NIA's Clin Trial el (CTAP)	Assemble 14 Clinical Sites, Drug Distribution, Central Lab, Steering Committee		
2017	U19 Application to NIA	Refine Protocol, Regulatory Approvals	Develop & Refine Trial Bi & Biorepository Strategy	omarkers of Aging	
2018	Metformin pilot Studies published	Revised U19 Application. to NIA	Pre-IND submitted to FDA		
2019	Revise budget for AFAR	Start-up & FDA Compliant Database	U19 NIA for Biomarkers Strategy	Recruitment starts, 2020	

ConsiderationsGaps & Future Investment

Investments:

- Interdisciplinary research and clinical networks & shared resources
- Translational pipeline to advance promising interventions to trials
- Reverse translation: use clinical trials in aging to drive discovery, refine interventions & disease models
- Funding opportunities for clinical trials with age-related multimorbidity

Gaps:

- Validated biomarkers of biological aging for clinic / clinical trials?
- Combined therapies: metformin + caloric restriction, exercise, etc.?
- Metformin as a caloric restriction mimetic in humans?

american federation for aging research

Wake Forest Medicine

TAME Executive Committee

Nir Barzilai
Mark Espeland
Stephen Kritchevsky
Vanita Aroda
George Kuchel
Jamie Justice

AFAR; Glenn Foundation; NIH: K01 AG059837-01 (JNJ), P30 AG021332 (SKB, JNJ); R01 AG048023, R01AG052608, R35 GM124922 (GAK); P30 AG038072 (NB). Supported in part by NIA Intramural Research Program.