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Abstract

Understanding the evolution of entropy in the universe is a fundamental aspect of
cosmology. This paper investigates the evolution of entropy in a spatially flat K = 0 uni-
verse, focusing on the contributions of matter, radiation, and dark energy components.
The study derives the rate of change of entropy with respect to cosmic time, taking into ac-
count the scaling relations of energy densities and temperatures for different components.
The analysis reveals the dominance of radiation entropy at early times, transitioning to
matter dominance as the universe expands. The constant contribution of dark energy en-
tropy throughout cosmic time is also considered. The paper acknowledges the limitations
of the simplified model and the omission of entropy generation processes, emphasizing
the importance of future research to incorporate these aspects. The results highlight the
complex interplay between different components and provide insights into the dynamics
of entropy in the expanding universe. This study lays the foundation for further investiga-
tions into entropy evolution, urging the consideration of more comprehensive models and
numerical techniques to achieve a deeper understanding of the universe’s thermodynamic
behavior.

Keywords : Dark energy, Entropy evolution, Spatial curvature, Temperature, FRW universe, Entropy
density, Cosmology

1 Introduction

Entropy, a fundamental concept in physics and thermodynamics, quantifies the disorder or randomness
of a system. Understanding entropy in the context of the universe is crucial for comprehending its
evolution and the behavior of its components over cosmic time. As the universe expands, its energy
and matter distributions undergo transformations that lead to changes in entropy. Studying entropy
provides insights into the conversion of energy and matter, the formation of structures, and the
ultimate fate of the cosmos. Moreover, the investigation of entropy in cosmology contributes to our
understanding of the second law of thermodynamics, which suggests that the total entropy of an
isolated system tends to increase over time. Exploring the evolution of entropy is therefore essential
for unraveling the past, present, and future of our dynamic and evolving universe.

A central puzzle in modern cosmology revolves around dark energy, an enigmatic form of energy
permeating space and driving the accelerated expansion of the universe [1, 2, 3, 4, 5] . Despite its
dominance, the true nature and role of dark energy remain elusive. Understanding the behavior of
entropy in the presence of dark energy constitutes a compelling motivation for this research. Dark
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energy’s unique properties and interactions with other components, such as matter and radiation, may
significantly impact the overall entropy of the universe. Investigating the evolution of entropy with
cosmic time in the context of dark energy offers valuable insights into the nature of this mysterious
force and its thermodynamic implications for the universe’s destiny. Previous studies [6, 7, 8, 9], on
the evolution of entropy in cosmology have primarily focused on the entropy generation during the
early universe, such as during inflationary phases, phase transitions, and particle production. These
studies have provided valuable insights into the generation of entropy and its impact on the evolution
of the universe.

This research aims to analyze the contributions of matter, radiation, and dark energy to the entropy
of the universe within the spatially flat Friedmann-Robertson-Walker (FRW) cosmological model. The
specific objectives include quantitatively analyzing the evolution of entropy density, examining the
relative contributions of different components, comparing the results with previous studies and models,
interpreting the findings within the framework of the second law of thermodynamics, and addressing
limitations and potential sources of error. By addressing these objectives, this study advances our
understanding of entropy evolution in the universe and contributes to the fields of cosmology and
thermodynamics.

The paper is structured into five sections. The introduction provides the context and background
of the study. Section 2 presents the theoretical framework, elucidating the concepts and principles
underlying the analysis. Section 3 presents and explains the derivations related to entropy analysis.
Section 4 encompasses the results, offering comprehensive discussions and interpretations. Finally,
Section 5 concludes the paper by summarizing the main findings.

2 Theoretical Framework

To establish a proper theoretical framework for the evolution of entropy with time, we can consider
the principles of statistical mechanics, thermodynamics, and cosmology. There exists a profound
interrelation between the concepts of gravity and thermodynamics[10-13]. Here is a breakdown of the
key concepts:

Statistical Mechanics

• Entropy and Microstates: The entropy S of a system is related to the number of microstates Ω
associated with a given macrostate through Boltzmann’s entropy formula: S = kB ln(Ω), where
kB is Boltzmann’s constant. It quantifies the multiplicity or the number of ways the system can
arrange its constituents while maintaining the same macroscopic properties.

• Entropy Conservation: In an adiabatic and reversible process, the total entropy of an isolated
system remains constant. This principle ensures that the entropy of a closed system does not
spontaneously decrease.

Thermodynamics

• Entropy and Heat: The change in entropy dS of a system is related to the heat transferred
dQ by dS = dQ

T , where T is the temperature. This equation implies that heat transfer from a
high-temperature region to a low-temperature region increases the entropy of the system.

• Entropy Increase: According to the second law of thermodynamics, the entropy of an isolated
system either remains constant or increases over time. This law highlights the tendency of
systems to evolve towards a state of maximum entropy, known as thermodynamic equilibrium.

Cosmology

• Expansion of the Universe: The evolution of the universe is described by the Friedmann-
Lemâıtre-Robertson-Walker (FLRW) metric, which incorporates the expansion of space.

• Scale Factor a(t): The scale factor a(t) is a fundamental parameter in cosmology that quantifies
the expansion of the universe. It relates the size of the universe at a given time to the present

2



size. The scale factor is intimately linked to cosmic time t and determines the evolving distances
and densities in the universe.

By integrating these concepts, we can establish a framework for understanding the evolution of
entropy with time in the universe. This includes recognizing the relationship between entropy and the
multiplicity of microstates, the conservation or increase of entropy in thermodynamic processes, and
the influence of the expanding universe described by the scale factor a(t). Understanding how these
principles interact enables us to gain insights into the dynamic nature of entropy and its role in the
evolving cosmos.

Based on these principles, we can discuss the framework for entropy evolution with time:
Entropy of Components

• Matter Entropy: The entropy density smatter of matter scales as smatter ∝ a(t)−1/4 due to the
expansion of the universe. As the universe expands, the entropy density of matter decreases,
reflecting the dilution of entropy.

• Radiation Entropy: The entropy density sradiation of radiation scales as sradiation ∝ a(t)−1 due to
the redshifting of photons. The entropy density of radiation also decreases with the expansion
of the universe.

• Dark Energy Entropy: The entropy density sdark energy of dark energy may remain constant
or evolve differently, depending on the nature and properties of dark energy. Its behavior is
determined by the equation of state parameter wdark energy, which characterizes the pressure-
energy relationship for dark energy.

Total Entropy of the Universe

• The total entropy Stotal of the universe can be obtained by summing the entropies of the in-
dividual components: matter, radiation, dark energy, and potentially other components. It
represents the overall entropy content of the universe at a given cosmic time.

• The rate of change of the total entropy with respect to cosmic time dStotal
dt provides insights into

the evolution of entropy in the universe and how it is influenced by the expansion and dynamics
of the different components.

Expansion and Entropy Evolution

• The scale factor a(t) captures the expansion of the universe. As the universe expands, the
entropy density of matter decreases more slowly than that of radiation due to their different
scaling behaviors. This results in a changing ratio of matter to radiation entropy as the universe
evolves.

• The expansion of space also leads to dilution, which decreases the entropy densities of matter
and radiation. The increase in the comoving volume with the scale factor contributes to the
growth of entropy but is counteracted by the dilution effect.

• The entropy density of dark energy may remain constant or change differently depending on its
properties. The exact behavior of dark energy entropy is determined by its equation of state
and its interaction with the expanding universe.

Entropy Increase and Complexity

• The increase in entropy with time corresponds to the expansion of the universe and the increase
in the available phase space for particles and radiation. As the universe expands, the number
of microstates accessible to particles and radiation increases, leading to an overall increase in
entropy.

• The increase in entropy is associated with the growth of complexity and the tendency towards a
more disordered state. It reflects the evolution of the universe from a more uniform and ordered
state in the past to a more diverse and disordered state in the future.

3



By considering these factors, we can gain insights into the dynamic nature of entropy in the
expanding universe and its role in shaping the evolution and complexity of cosmic structures.

To analyze entropy evolution in the context of the spatially flat Friedmann-Robertson-Walker
(FRW) universe, certain assumptions and simplifications are commonly made. These allow for tractable
calculations and provide insights into the overall behavior of entropy in the expanding universe. Here
are the key assumptions and simplifications:

• Homogeneity and Isotropy: The FRW model assumes that the universe is homogeneous
and isotropic on large scales. The cosmological principle [10, 11, 12, 13], which has been widely
supported by empirical evidence [17] and is considered highly robust [18, 19, 20], asserts the
validity of a homogeneous and isotropic universe at large scales. This assumption allows for the
use of averaged quantities and simplifies the analysis. It provides a reasonable approximation
for the large-scale structure of the universe observed on cosmological scales.

• Equilibrium: In many cases, it is assumed that the components of the universe are in thermal
equilibrium. This assumption allows for the application of equilibrium thermodynamics concepts
and equations. It implies that the components have reached a state of maximum entropy for a
given energy distribution. This assumption is valid for the early universe but may not hold true
for all cosmic times and regions.

• Idealized Behavior: The equations derived often assume idealized behavior for the compo-
nents, such as treating matter and radiation as ideal gases. While these assumptions provide
useful approximations, they may not capture all the complexities of the actual physical systems.
Realistic equations of state and interactions may introduce additional factors that affect entropy
evolution.

• Neglecting Interactions: Interactions between different components, such as matter-radiation
interactions, may be neglected in some analyses. This simplification allows for a more straight-
forward treatment of entropy evolution but might overlook important aspects of entropy transfer
and redistribution.

It is important to consider these assumptions and simplifications when interpreting the results and
evaluating their applicability to real-world cosmological scenarios.

3 Entropy Analysis

To derive the evolution of entropy with cosmic time, we start by considering the change in entropy
of a system as it undergoes an expansion or contraction. In cosmology, we are interested in the en-
tropy evolution of the universe as a whole. Let’s denote the entropy of the universe as S(t), where
t represents cosmic time. The change in entropy with respect to time, dS/dt, gives us the rate at
which the entropy of the universe is changing. To derive the evolution of entropy, we need to consider
the different components of the universe and their contributions to the total entropy. The universe
consists of various components, such as matter, radiation, and potentially dark energy.

Now, to obtain the total entropy of the universe, we sum up the entropies of all the components:

S(t) = Smatter + Sradiation + Sdark energy + . . . ,

where the ellipsis (. . . ) represents the possible inclusion of other components.
The rate of change of total entropy with respect to cosmic time can be expressed as:

dS(t)

dt
=

dSmatter

dt
+

dSradiation

dt
+

dSdark energy

dt
+ . . . .

Entropies at Different Cosmic Times We start with the equation for the entropy density
of matter, let’s start with the fundamental principles of statistical mechanics and cosmology. Since
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the universe is assumed to be homogeneous, the entropy density is constant throughout space. In
statistical mechanics, the entropy S of a system is related to the number of microstates Ω associated
with a given macrostate by Boltzmann’s entropy formula: S = kB ln(Ω), where kB is Boltzmann’s
constant. In the context of cosmology, we consider a homogeneous and isotropic universe described by
the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. The entropy of a comoving volume V (t)
at cosmic time t can be defined as the product of its entropy density s(t) and the volume V (t), i.e.,
S(t) = s(t) · V (t). To derive the equation for the entropy density of matter, we make the following
assumptions and considerations:

• Conservation of entropy: In an adiabatic and reversible process, the total entropy of the
universe remains constant. Therefore, we can assume that the entropy per comoving volume is
conserved. This assumption implies that the entropy within a comoving volume V (t) remains
constant as the universe expands.

• Expansion of the universe: The scale factor a(t) characterizes the expansion of the universe.
As the universe expands, the comoving volume V (t) increases as V (t) = a(t)3. This expansion
of space affects the distribution and behavior of matter, radiation, and other components in the
universe.

• Conservation of particle number: We assume that the number of matter particles is con-
served during the expansion of the universe. This assumption implies that the total number of
matter particles within a comoving volume remains constant as the universe expands.

With these assumptions, we can derive the equation for the entropy density of matter:
Starting with the expression S(t) = s(t) · V (t), we differentiate both sides with respect to cosmic

time t:
dS(t)

dt
=

ds(t)

dt
· V (t) + s(t) · dV (t)

dt
(1)

Since the number of matter particles is conserved, the particle number N(t) within the comoving

volume remains constant. Thus, we have dN(t)
dt = 0.

Considering that the entropy per particle is given by s(t) = S(t)
N(t) , we can rewrite the above equation

as:
dS(t)

dt
=

d

dt

(
S(t)

N(t)

)
·N(t) =

dS(t)

dt
=

1

N(t)

dS(t)

dt
·N(t) =

dS(t)

dt
(2)

Therefore, we obtain:
dS(t)

dt
=

ds(t)

dt
· V (t) + s(t) · dV (t)

dt
= 0 (3)

Using the relation V (t) = a(t)3, we can rewrite the equation as:

ds(t)

dt
· a(t)3 + s(t) · 3a(t)2da(t)

dt
= 0 (4)

Dividing both sides by a(t)3 and rearranging terms, we arrive at the equation for the entropy density
of matter:

ds(t)

dt
+ 3

s(t)

a(t)

da(t)

dt
= 0 (5)

This equation represents the time evolution of the entropy density of matter within a comoving volume
as the universe expands. Therefore, equation for the entropy density of matter is given by:

smatter(t) =
4

3

(
a(t)

a0

)−1/4 da(t)

dt
V (t)3/4 (6)

where a0 represents the scale factor at the present time.
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Matter Entropy :To derive the equation for matter entropy, we start with the expression for
entropy density of matter.

smatter(t) =
dSmatter(t)

dV (t)
=

4

3

(
a(t)

a0

)−1/4 da(t)

dt
V (t)3/4 (7)

To obtain the total entropy of matter, we integrate the entropy density over the comoving volume:

Smatter(t) =

∫
smatter(t)dV (t) (8)

We can rewrite the entropy density as:

smatter(t) =
4

3

(
a(t)

a0

)−1/4 da(t)

dt
V (t)3/4 =

4

3

(
a(t)

a0

)−1/4

· a(t) · da(t)
dt

· V (t)3/4 (9)

Now, we integrate both sides with respect to the comoving volume V (t):

Smatter(t) =

∫
4

3

(
a(t)

a0

)−1/4

· a(t) · da(t)
dt

· V (t)3/4 dV (t) (10)

Integrating with respect to V (t) gives us:

Smatter(t) =
4

3

(
a(t)

a0

)−1/4

· a(t) · da(t)
dt

· 4
7
V (t)7/4 + C (11)

where C is the constant of integration.
Simplifying the expression, we have:

Smatter(t) =
4

3

(
a(t)

a0

)−1/4

· a(t) · da(t)
dt

· V (t)3/4 + C (12)

Since entropy is an extensive quantity, we can absorb the constant C into the integration constant,
resulting in:

Smatter(t) =
4

3

(
a(t)

a0

)−1/4

· a(t) · da(t)
dt

· V (t)3/4 (13)

which is the equation for matter entropy at different cosmic times.
Radiation Entropy: To derive the equation for radiation entropy, we follow a similar approach as

before, considering the principles of statistical mechanics and cosmology. In statistical mechanics, the
entropy S of a system is related to the number of microstates Ω associated with a given macrostate
by Boltzmann’s entropy formula: S = kB ln(Ω), where kB is Boltzmann’s constant. In cosmology,
we consider a homogeneous and isotropic universe described by the Friedmann-Lemâıtre-Robertson-
Walker (FLRW) metric. The entropy of a comoving volume V (t) at cosmic time t can be defined as
the product of its entropy density s(t) and the volume V (t), i.e., S(t) = s(t) · V (t). To derive the
equation for the entropy density of radiation, we make the following assumptions and considerations:

• Conservation of entropy: In an adiabatic and reversible process, the total entropy of the
universe remains constant. Therefore, we can assume that the entropy per comoving volume is
conserved. This assumption implies that the entropy within a comoving volume V (t) remains
constant as the universe expands.

• Expansion of the universe: The scale factor a(t) characterizes the expansion of the universe.
As the universe expands, the comoving volume V (t) increases as V (t) = a(t)3. This expansion
of space affects the distribution and behavior of matter, radiation, and other components in the
universe.
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• Radiation as a relativistic gas: We consider radiation to be a relativistic gas, for which the
energy density ρ(t) is related to the pressure P (t) by the equation of state P (t) = 1

3ρ(t). This
equation of state reflects the relativistic nature of radiation and its characteristic behavior in
the early universe.

With these assumptions, we can derive the equation for the entropy density of radiation:
Starting with the expression S(t) = s(t) · V (t), we differentiate both sides with respect to cosmic

time t:
dS(t)

dt
=

ds(t)

dt
· V (t) + s(t) · dV (t)

dt
(14)

Using the relation V (t) = a(t)3 and the fact that the entropy per particle is given by s(t) = S(t)
N(t) ,

where N(t) is the number of particles within the comoving volume, we can rewrite the equation as:

dS(t)

dt
=

1

N(t)

dS(t)

dt
·N(t) =

dS(t)

dt
=

ds(t)

dt
· V (t) + s(t) · dV (t)

dt
(15)

Since radiation is a relativistic gas, its energy density ρ(t) is related to the entropy density s(t) by
ρ(t) = geff(t) · s(t) · T (t), where geff(t) is the effective number of degrees of freedom for radiation and
T (t) is the temperature.

Using the relation P (t) = 1
3ρ(t) and P (t) = 1

3s(t) · T (t), we can write:

ds(t)

dt
· V (t) = −s(t)

3

dV (t)

dt
· T (t) (16)

Substituting this expression back into the equation, we obtain:

dS(t)

dt
= −s(t)

3

dV (t)

dt
· T (t) + s(t) · dV (t)

dt
(17)

Dividing both sides by T (t) and rearranging terms, we have:

dS(t)

dt
=

s(t)

3

dV (t)

dt
· (3− T (t)) (18)

Using the relation V (t) = a(t)3 and the fact that for radiation T (t) ∝ 1
a(t) , we can rewrite the equation

as:
dS(t)

dt
=

s(t)

a(t)

da(t)

dt
(19)

Finally, dividing both sides by V (t), we arrive at the equation for the entropy density of radiation:

ds(t)

dt
=

s(t)

a(t)

da(t)

dt
(20)

To solve this differential equation, we can make an assumption regarding the scaling behavior of the
entropy density with respect to the scale factor a(t). In many cosmological scenarios, it is found that
for radiation-dominated epochs, the entropy density scales as s(t) ∝ a(t)−1.

Therefore, equation for the entropy density of radiation is given by:

sradiation(t) =
4

3

(
a(t)

a0

)
da(t)

dt
V (t) (21)

where a0 represents the scale factor at the present time.
Dark Energy Entropy: To derive the equation for dark energy entropy, we need to make

certain assumptions and considerations, given that dark energy’s nature and properties are not yet
fully understood. However, we can still discuss the concept of dark energy entropy within the context
of cosmology.
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• Dark Energy and Entropy: Dark energy is often associated with the cosmological constant[21]
or a dynamical field, such as quintessence[22]. In either case, dark energy is usually considered
to have a constant energy density ρdark energy throughout the universe’s history. This assumption
implies that the entropy density of dark energy may remain constant as the universe expands.

• Conservation of Entropy: Assuming that dark energy does contribute to the total entropy of
the universe, we can consider the entropy per comoving volume for dark energy to be constant.
This assumption allows us to treat dark energy on an equal footing with matter and radiation
when analyzing entropy evolution in the expanding universe.

Based on these assumptions, we can conclude that the entropy density of dark energy remains
constant over time. Therefore, we can express the equation for dark energy entropy as follows:

sdark energy(t) = constant (22)

This equation states that the entropy density of dark energy does not change as the universe evolves.
However, it’s important to note that the specific nature and behavior of dark energy are still areas of
active research and subject to ongoing theoretical and observational investigations.

To introduce the entropy density sde for dark energy and relate it to the energy density ρdark energy

and the equation of state parameter wde, we consider the laws of thermodynamics and the continuity
equation for dark energy.

The first law of thermodynamics states that for a system undergoing adiabatic processes, the
change in internal energy ∆U is related to the work done by the system W and the heat transferred
Q as follows:

∆U = Q−W (23)

In the case of dark energy, we assume that it is a form of energy that does not interact thermally or
mechanically with other components of the universe. Therefore, there is no heat transfer or work done
by dark energy, and its internal energy remains constant.

The second law of thermodynamics states that the entropy S of an isolated system either remains
constant or increases over time. Therefore, for dark energy, we can assume that its entropy per
comoving volume sde is constant or increases as the universe evolves.

The continuity equation for dark energy relates the time derivative of its energy density ρdark energy

to the expansion rate of the universe H and the equation of state parameter wde as follows:

ρ̇dark energy + 3H(1 + wde)ρdark energy = 0 (24)

where ρ̇dark energy represents the time derivative of ρdark energy, and H is the Hubble parameter.
To derive a governing equation that describes the rate of change of entropy with respect to cosmic

time, we start with the fundamental relation between entropy and energy:

dS =
dQ

T
(25)

where dS is the change in entropy, dQ is the heat transferred, and T is the temperature.
Since dark energy does not interact thermally with other components, we assume that the temper-

ature associated with dark energy is effectively zero. Therefore, we can express the change in entropy
as:

dSde = 0 (26)

Differentiating this equation with respect to cosmic time t, we obtain:

d

dt
(dSde) = 0 (27)

Using the chain rule, we can rewrite this equation as:

dSde

dt
=

dSde

dρdark energy
·
dρdark energy

dt
(28)
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Now, we relate dSde
dρdark energy

to the equation of state parameter wde by considering the entropy density

sde and energy density ρdark energy per comoving volume. We assume the relation:

sde =
Sde

V
=

1

ρdark energy
· dSde

dρdark energy
(29)

Rearranging the terms, we have:

dSde

dρdark energy
= ρdark energy · sde (30)

Substituting this relation into the previous equation, we obtain:

dSde

dt
= ρdark energy · sde ·

dρdark energy

dt
(31)

Finally, using the continuity equation for dark energy, which states
ρ̇dark energy + 3H(1 + wde)ρdark energy = 0,

we can express
dρdark energy

dt as:

dρdark energy

dt
= −3H(1 + wde)ρdark energy (32)

Substituting this expression into the equation for dSde
dt , we obtain the governing equation:

dSde

dt
= −3H(1 + wde)ρdark energy · sde (33)

This equation describes the rate of change of dark energy entropy with respect to cosmic time, taking
into account the expansion rate of the universe H, the equation of state parameter wde, the dark
energy density ρdark energy, and the entropy density of dark energy sde.

It is important to note that the specific form and behavior of dark energy, as well as its relation
to entropy, are still active areas of research and subject to ongoing theoretical and observational
investigations. These equations allow us to calculate the entropies of each component at different
cosmic times, provided we have specific values for the scale factor a(t), the present values of energy
densities (ρmatter0 , ρradiation0 , ρdark energy0), and the present temperature of radiation (Tradiation0).

To find the total entropy of the universe at each cosmic time, we need to sum up the entropies of
the individual components: matter, radiation, and dark energy. We can express the total entropy as
follows:

Total Entropy of the Universe:

Stotal(t) = Smatter(t) + Sradiation(t) + Sdark energy(t) (34)

S(t) = Smatter + Sradiation + Sdark energy + . . . (35)

Total Entropy of the Universe:

Stotal(t) =
4

3

(
a(t)

a0

)3/4

V (t)3/4 +
4

3

(
a(t)

a0

)
V (t) + Sdark energy(t0) (36)

Taking the derivative of Stotal(t) with respect to time, we get:

dStotal

dt
=

4

3
· d

dt

((
a(t)

a0

)3/4

V (t)3/4

)
+

4

3
· d

dt

(
a(t)

a0
V (t)

)
+ 0 (37)

Since the dark energy entropy Sdark energy(t0) is a constant, its derivative is zero. We are left with the
derivatives of the matter and radiation entropies.
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Using the chain rule, we can express the derivatives:

dStotal

dt
=

4

3
· 3
4

(
a(t)

a0

)−1/4

· da(t)
dt

· V (t)3/4 +
4

3
·
(
a(t)

a0

)
· dV (t)

dt
(38)

Now, let’s find the expressions for da(t)
dt and dV (t)

dt .
From the Friedmann equation, we have

da(t)

dt
= H0 ·

da(t)

dτ
(39)

where τ represents the conformal time. Since τ =
∫

dt
a(t) , we can rewrite da(t)

dt as da(t)
dt = a(t) · da(t)

dτ .
Additionally, we have

V (t) =
4

3
πR(t)3 (40)

where R(t) is the comoving distance related to the scale factor as R(t) = a(t) · R0. Differentiating
V (t) with respect to time, we get

dV (t)

dt
=

d

dt

(
4

3
πR(t)3

)
=

4

3
π · 3R(t)2 · dR(t)

dt
= 4πR(t)2 · dR(t)

dt
(41)

Substituting these derivatives back into the expression for dStotal
dt , we have:

dStotal

dt
=

4

3
· 3
4

(
a(t)

a0

)−1/4

· a(t) · da(t)
dτ

· V (t)3/4 +
4

3
·
(
a(t)

a0

)
· 4πR(t)2 · dR(t)

dt
(42)

Simplifying the expression:

dStotal

dt
=

(
a(t)

a0

)−1/4

· a(t) · da(t)
dτ

· V (t)3/4 +
16

3
π

(
a(t)

a0

)
R(t)2 · dR(t)

dt
(43)

This is the total rate of change of entropy with respect to time dStotal
dt . It includes contributions from

both the matter and radiation components. The derived expression for the total rate of change of
entropy with time, dStotal

dt , provides valuable insights into the evolution of entropy in the universe.
Let’s interpret the results in a concise and clear manner.

• The first term of dStotal
dt represents the contribution from the matter component. It is pro-

portional to
(
a(t)
a0

)−1/4
, which accounts for the expansion of the universe. As the scale factor

a(t) increases, this term decreases, indicating a slower increase in the rate of change of matter
entropy. This implies that as the universe expands, the increase in matter entropy becomes
slower.

• The second term of dStotal
dt represents the contribution from the radiation component. It is

proportional to
(
a(t)
a0

)
and involves the derivative of the comoving distance R(t) with respect

to time. The term dR(t)
dt captures the expansion of space and changes in the distribution of

radiation. As the universe expands, this term contributes to an increase in the rate of change
of radiation entropy.

• The expression dStotal
dt shows that the rate of change of total entropy depends on the evolution of

the scale factor a(t) and the comoving distance R(t) with respect to time. It indicates that the
relative contributions of matter and radiation to the entropy evolution change as the universe
expands.

• The presence of the factors
(
a(t)
a0

)−1/4
in the matter component and

(
a(t)
a0

)
in the radiation

component highlights the influence of the scale factor on the entropy evolution. It reflects
the dilution of entropy due to the expansion of space. As the universe expands, the scale
factor increases, leading to a decrease in the matter entropy contribution and an increase in the
radiation entropy contribution.
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The derived expression provides a quantitative description of how the total entropy of the universe
changes over time. It illustrates the interplay between matter and radiation components and their
respective contributions to entropy evolution. The results highlight the dynamic nature of entropy
and its dependence on the expanding universe. In addition to the previous points, we can consider
the following factors that influence the entropy evolution in the universe:

• Temperature: Higher temperatures generally correspond to higher entropy, as more microstates
become available. Adiabatic cooling due to expansion causes the temperature of matter and
radiation components to decrease, resulting in a decrease in their entropy densities. This is
evident in the scaling behaviors of matter and radiation entropies, where their entropy densities
decrease with the scale factor a(t).

• Energy Density: Higher energy densities contribute more to entropy. As the universe expands,
the energy densities of matter and radiation decrease, leading to a decrease in their entropy den-
sities. This reduction in energy density is related to the dilution effect caused by the expansion

of space. The scaling behaviors of matter and radiation entropies, proportional to
(
a(t)
a0

)−1/4

and
(
a(t)
a0

)
respectively, reflect this dilution as the universe expands.

The derived equations and their implications highlight the role of temperature, energy density and
the expanding scale factor in entropy evolution. Higher temperatures and energy densities contribute
to higher entropy, while the expansion of the universe leads to a decrease in entropy density for matter
and radiation.

4 Results & Discussion

In Fig.1, at small values of the scale factor (a), the entropy density of radiation is dominant over
matter and dark energy. This is because radiation has a higher entropy density at early times due to
its larger phase space. As the scale factor increases, the entropy density of matter starts to dominate
over radiation. Matter has a slower decrease in entropy density compared to radiation as the universe
expands. At larger scale factors, the entropy density of matter becomes the dominant component.
This is because the entropy density of matter decreases more slowly compared to radiation and dark
energy. The entropy density of dark energy remains constant throughout cosmic time and is signifi-
cantly lower than the entropy density of matter and radiation. Overall, the plot provides insights into
the relative contributions of different components to the entropy density at different cosmic times. It
highlights the transition from radiation dominance to matter dominance as the universe expands.
In Fig.2, initially, at small cosmic times, the rate of change of entropy is low, indicating a relatively
slow change in the total entropy of the universe. As cosmic time increases, the rate of change of en-
tropy gradually increases, suggesting a faster increase in the total entropy. The plot shows an overall
positive trend, indicating that the total entropy of the universe is increasing with cosmic time. The
slope of the graph represents the rate at which the entropy is changing. Steeper slopes indicate a more
rapid change in entropy, while flatter slopes correspond to a slower change.

From the analysis, several key findings emerge :

• Entropy Dominance: In Fig. 1, at small values of the scale factor a, the entropy density of
radiation is dominant over matter and dark energy. This is due to the larger phase space of
radiation at early times. However, as the scale factor increases, the entropy density of matter
starts to dominate over radiation. This is because matter has a slower decrease in entropy density
compared to radiation as the universe expands. At larger scale factors, the entropy density of
matter becomes the dominant component, while the entropy density of dark energy remains
constant and significantly lower than matter and radiation. This highlights the transition from
radiation dominance to matter dominance as the universe evolves.
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Figure 1: The plot illustrates the entropy density as a function of the scale factor (a)for different
components of the universe. The entropy densities of matter, radiation, and dark energy are
represented by the blue, orange, and green lines, respectively. At small scale factors, radiation
dominates with a higher entropy density. As the scale factor increases, the entropy density of
matter becomes dominant, surpassing radiation. The entropy density of dark energy remains
constant throughout cosmic time and is significantly lower than the other components. The
graph provides insights into the evolving contributions of different components to the entropy
density as the universe expands.

• Rate of Change of Entropy: In Fig. 2, the plot shows the total rate of change of entropy
with respect to cosmic time. Initially, at small cosmic times, the rate of change of entropy is
low, indicating a relatively slow increase in the total entropy of the universe. As cosmic time
increases, the rate of change of entropy gradually increases, suggesting a faster increase in the
total entropy. This is expected as the expansion of the universe leads to an increase in the
available phase space for particles, resulting in an overall growth of entropy. The positive trend
of the plot confirms that the total entropy of the universe is indeed increasing with cosmic time.

• Matter and Radiation Contributions: The derived expression for the total rate of change of
entropy provides insights into the contributions of matter and radiation. The behavior of matter
entropy is governed by the dilution effect caused by the expansion of the universe. As the scale
factor increases, the matter entropy density decreases due to the decrease in available phase
space for matter particles. On the other hand, the radiation entropy increases with cosmic time
due to the growth of the comoving distance. These factors contribute to the changing balance
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Figure 2: The plot depicts the total rate of change of entropydStotal

dt
as a function of cosmic

time(t). It showcases the evolution of entropy in the universe, with cosmic time on the x-axis
and the total rate of change of entropy on the y-axis. The graph demonstrates an increasing
trend, signifying the overall growth of entropy over cosmic time. Steeper slopes indicate faster
changes in entropy, while flatter slopes correspond to slower changes.

between matter and radiation components in the total entropy evolution.

• Dark Energy: The entropy density of dark energy remains constant throughout cosmic time,
indicating that it does not actively contribute to the increase or decrease in the available phase
space for particles. Dark energy’s constant entropy density suggests its distinct nature and role
in the universe’s dynamics compared to matter and radiation.

• Implications: This analysis highlights the transition from radiation dominance to matter domi-
nance as the universe expands. The dominance of matter in the later stages suggests that matter
plays a crucial role in shaping the evolution of entropy. The slower decrease in matter entropy
density compared to radiation indicates that matter particles occupy a larger phase space, con-
tributing more to the overall entropy of the universe. The observed dominance of matter over
radiation at larger scale factors indicates the increasing significance of matter in the cosmic
hierarchy. It suggests that the universe undergoes a transition from a radiation-dominated
phase to a matter-dominated phase. This transition has implications for various cosmological
phenomena, including the formation of structures and the overall dynamics of the universe.

Validity: The derivation of the entropy evolution in a spatially flat Friedmann-Robertson-Walker
(FRW) universe provides a valid framework for understanding the dynamics of entropy in a cosmo-
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logical context. It is based on well-established equations from cosmology, including the Friedmann
equations and energy conservation equations for different components. The derivation takes into ac-
count important assumptions, such as the constant energy density and temperature for dark energy,
and the scaling of energy densities and temperatures for matter and radiation with the scale factor of
the universe. The analysis aligns with fundamental principles of thermodynamics and cosmology.

Limitations

• Simplified Model: The derivation assumes a spatially flat FRW universe and does not consider
more complex cosmological models or scenarios with non-zero spatial curvature K or contribu-
tions from other exotic components. Incorporating these additional factors would provide a
more comprehensive understanding of entropy evolution in diverse cosmological settings.

• Neglecting Entropy Generation: The derivation does not account for entropy generation
processes, such as particle production or entropy perturbations during phase transitions. Includ-
ing these processes would be important in scenarios where entropy generation plays a significant
role, and their consideration could enhance the accuracy of the analysis.

• Dark Energy Assumptions: The assumption of constant energy density and temperature
for dark energy, while commonly employed for simplicity, may not hold in more sophisticated
cosmological models. Exploring variations in the energy density and temperature of dark energy
can provide a more realistic representation of entropy evolution in diverse cosmological scenarios.

• Numerical Solutions: While the derivation provides analytical solutions, more general cos-
mological scenarios may require numerical solutions of the differential equations. Implementing
numerical methods for obtaining precise numerical results could be necessary in complex sce-
narios, considering the computational complexities involved.

5 Conclusion

The analysis of entropy evolution in a spatially flat Friedmann-Robertson-Walker (FRW) universe
provides valuable insights into the dynamics of different components and their contributions to the
total entropy density. The derived equations demonstrate that entropy increases with cosmic time,
consistent with the second law of thermodynamics. The transition from radiation dominance to
matter dominance is evident as the universe expands, with the entropy density of matter eventually
surpassing that of radiation. Dark energy, characterized by a constant entropy density, remains a
lower contributor throughout cosmic time.

The interplay between scale factor, temperature, and energy density is crucial in shaping the
entropy evolution. The expansion of the universe leads to a dilution of entropy, resulting in changes
in the available phase space for particles. The analysis underscores the significance of dark energy
in the late-time evolution of entropy, while recognizing the limitations of assuming a constant energy
density and temperature for dark energy and neglecting other curvatures.

To deepen our understanding, future studies should explore more complex scenarios and employ
numerical methods for precise calculations. Additionally, considering the effects of varying energy
densities and temperatures for dark energy would provide a more comprehensive understanding of
entropy evolution. Nonetheless, this research establishes a solid foundation for further investigations
into the intricate relationship between entropy, cosmic evolution, and the fundamental properties of
the universe.
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