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LinAge2: providing actionable insights
and benchmarking with epigenetic clocks
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Biological aging is marked by a decline in resilience at the cellular and systemic levels, driving an exponential
increase in mortality risk. Here, we evaluate several clinical and epigenetic clocks for their ability to predict
mortality, demonstrating that clocks trained on survival and functional aging outperform those trained on
chronological age. We present an enhanced clinical clock that predicts mortality more accurately and provides
actionable insights for guiding personalized interventions. These findings highlight the potential of mortality-

predicting clocks to inform clinical decision-making and promote strategies for healthy longevity.

Biological aging is characterized by the progressive decline in intrinsic
biological resilience that is associated with an exponential increase in
mortality, expressed in the demographic “Gompertz mortality law”". Not all
humans age at the same rate since genetics, lifestyle, and stochastic factors
significantly affect future mortality and morbidity trajectories. Conse-
quently, individual true biological age (BA) is not identical to calendar or
chronological age (CA). The true BA of an individual can be uniquely
defined as the age at which subjects of a reference cohort have the same risk
of age-dependent disease and all-cause mortality as the subject in question.
Tools to accurately track changes in true BA are essential for the develop-
ment and validation of novel life- and healthspan-optimizing diet, lifestyle,
supplement, and drug interventions.

Biological aging “clocks” are computational tools that estimate indi-
vidual true BA based on demographic, clinical, and/or molecular data. CA
itself is widely used for both clinical prognostication and decision-making,
and can be viewed as a first-order approximation of true BA. The ideal BA
clock should predict individual Gompertz mortality risk with higher accu-
racy than CA alone. Some aging clocks, including most clinical clocks,
explicitly include CA as a covariate, using biological features to estimate a
correction factor aimed at providing a better estimate of true BA. CA, in this
case, is used as a proxy for effects and mechanisms, such as entropic damage,
not captured by the clock itself. Of course, the ideal clock would include all
relevant processes, wherein the model would assign zero or negligible
weight to CA.

Aging clocks are generalizations of current clinical risk markers that
predict disease-specific morbidity and, in some cases, mortality. Aging
clocks should similarly enable early detection of hidden or subclinical dis-
eases, surpassing the capabilities of diagnostics by identifying disease pro-
cesses years or decades before overt disease is present. Secondly, to inform
risk-to-benefit estimates (clinical equipoise), aging clocks should capture all-

cause mortality holistically, providing value beyond organ or disease-
specific risks. Thirdly, aging clocks must be sensitive to individual variations
in biological resilience. Finally, aging clocks should provide tools for
mechanistic interpretation and provide actionable insights, facilitating tar-
geted interventions. To date, none of the existing clocks meet all these
criteria.

To evaluate the performance of aging clocks, we can compare them toa
hypothetical “ideal” clock, which we term “CrystalAge”. This optimal clock
would predict disease-specific and all-cause mortality at the individual level
with near-perfect accuracy, essentially forecasting an individual’s date of
death (Fig. 1a and d). While practically impossible, in retrospective studies,
we can determine the theoretically optimal performance of CrystalAge and
use it as a benchmark to evaluate the performance of existing aging clocks.

Taking inspiration from Levine’s PhenoAge clinical clock’, we recently
developed and validated clinical aging clocks (PCAge, LinAge) based on
linear dimensionality reduction by matrix factorization (singular value
decomposition) and demonstrated them to be highly predictive in terms of
future disease-specific and all-cause mortality’. These clocks have since been
applied in a range of clinical settings and, taking advantage of user feedback,
we have implemented several improvements, creating an updated version of
these clocks (LinAge2). Like LinAge, we trained LinAge2 in the National
Health and Nutrition Examination Survey (NHANES) IV 1999-2000 wave
before testing it in the 2001-2002 wave. LinAge2 further reduces the
number of parameters (eliminating the need for serum fibrinogen, gamma
glutamyl transferase, total cholesterol, high-density lipoprotein, and tri-
glycerides) and emphasizes interpretability.

As expected, LinAge2 was highly correlated with CA (Supplementary
Fig. 1a). Clinical clocks can be very sensitive to disruptions of homeostasis
caused by disease, leading to excessively high estimates of BA in ill subjects,
as was for instance shown by Neytchev et al.* However, in our study, even
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participants with serious health conditions, such as heart failure, recent
cancer diagnosis, or those undergoing long-term dialysis, while showing
significantly accelerated aging as measured by LinAge2, had BA deltas of at
most 35 years with estimated BAs that never exceeded 105 years (Supple-
mentary Fig. 1). For a detailed description of LinAge2’s features and con-
struction, refer to Methods.

Many aging clocks have been developed, with epigenetic or DNA
methylation (DNAm) clocks most widely recognized and well-established.
Several epigenetic clocks have been commercially licensed for applications,
including estimating CA (HorvathAge’, HannumAge®), optimizing life
insurance policies (PhenoAge DNAm’, GrimAge®), and monitoring the rate
of aging (DunedinPoAm’)"’. Recently, a dataset of pre-calculated epigenetic
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Fig. 1 | LinAge2 predicts 20-year all-cause mortality and tracks with healthspan
markers. a-c Kaplan-Meier survival curves showing 20-year survival in the 65-74
CAbin (n = 631). For each clock, subjects were stratified by selecting the lowest (best,
solid line) and highest (worst, dotted line) 25% quartiles for BA. Clocks within the
same quartile were compared using log-rank tests with Benjamini-Hochberg cor-
rection. Areas shaded indicate 95% error bands for lines of the same color.

b Compared to ChronAge, use of LinAge2 BA results in a significant survival dif-
ference for the lowest 25% BA quartile (P = 6.16E-04), but not for the highest 25%
quartile (P = 0.07). PhenoAge Clinical did not significantly outperform ChronAge in
predicting survival in this age bin. ¢ LinAge2 significantly outperformed Dune-
dinPoAm (P = 1.09E-02) and PhenoAge DNAm (P = 1.37E-03) in the lowest 25%
BA quartile, but not GrimAge2 (P = 0.22). In the highest 25% quartile, while
LinAge?2 significantly outperformed PhenoAge DNAm (P = 0.03), the differences
between LinAge2 and DunedinPoAm (P =0.11) and GrimAge2 (P = 0.58) did not
reach statistical significance. e ROC analysis revealed that LinAge2 (area under the
curve (AUC) = 0.8684) was significantly more informative than PhenoAge Clinical
(AUC =0.8479, P = 6.35E-05) and ChronAge (AUC = 0.8288, P = 3.16E-10) in
predicting future mortality (n = 2036). LinAge2 performed similarly to LinAge
(AUC =0.8647). f LinAge2 (AUC = 0.8440) also outperformed PhenoAge DNAm
(AUC = 0.7859, P = 4.44E-07) and GrimAge2 (AUC =0.8233, P=0.016) in

predicting 20-year mortality (n = 1,065). Although GrimAge2 outperformed
ChronAge (AUC =0.7933, P = 2.74E-03) in predicting 20-year mortality, PhenoAge
DNAm did not (P =0.47). a, d HorvathAge, HannumAge, and ChronAge did not
significantly differ in predicting mortality risk (AUCs=0.7776, 0.7978, and 0.7933,
respectively, n = 1065). ROC curves were compared using DeLong’s test.

a, b, d—f CrystalAge, a theoretical perfect clock shown for reference, accurately
identifies individuals at risk of dying (AUC = 1), whereas RandomAge adds random
Gaussian noise of 10 years to CA. g, h Violin plots for each clock categorized into
low (biologically younger/best 25% quartile) and high (biologically older/worst 25%
quartile) groups plotted against cognitive score (digit symbol substitution test) and
gait speed. i-k Violin plots for each clock categorized by ability to perform (“yes”
group) versus inability to perform (“no” group) employment work, all instrumental
or all basic activities of daily living IADLs and bADLS). Delta clock age refers to the
age difference between an individual’s BA and CA. Groups were compared using
two-sided t-tests. Median value, lower (25th) and upper (75th) percentiles are
indicated. Lines extend to +1.5 times interquartile range, with points outside this
range drawn individually. The violin shape indicates the probability density func-
tion. yo years old, HA HorvathAge, LA2 LinAge2, GA2 GrimAge2, DPA
DunedinPoAm.

clock age estimates has been published for the NHANES 1999-2002 waves,
permitting direct comparison of the predictive power of CA, the original
LinAge, LinAge2, and PhenoAge clinical clocks, and the HorvathAge,
HannumAge, PhenoAge DNAm, GrimAge2'', and DunedinPoAm epige-
netic clocks.

To compare efficacy in predicting mortality, we performed sur-
vival and receiver operating characteristic (ROC) analyses on 20- and
10-year mortality in the NHANES 2001-2002 test cohort. Compared
to CA, LinAge2 demonstrated significant survival differences across all
age bins, whereas PhenoAge Clinical did not in the 65-74 age bin (Fig.
1b, Supplementary Fig. 2b and e). LinAge2 performed similarly to
LinAge and demonstrated better predictive power for future mortality
compared to PhenoAge Clinical and CA itself (Fig. le and Supple-
mentary Fig. 3b). Surprisingly, LinAge2 also outperformed PhenoAge
DNAm and DunedinPoAm in predicting age-specific survival differ-
ences (Fig. 1c, Supplementary Fig. 2c and f) and future mortality (Fig.
1f and Supplementary Fig. 3c). In contrast, PhenoAge DNAm, Hor-
vathAge, and HannumAge did not significantly differ from CA in
predicting future mortality (Fig. 1a, d and f, Supplementary Fig. 2a and
d, and Supplementary Fig. 3a and c). Even though LinAge2 and
GrimAge2 performed similarly in predicting future mortality (Fig. 1f
and Supplementary Fig. 3¢) and survival across all age bins (Fig. 1c,
Supplementary Fig. 2¢ and f), GrimAge2 age deltas were correlated
only moderately with some, but not all, of the PCs used by the LinAge2
model (Supplementary Fig. 4 and 5).

While mortality prediction is an important function of aging clocks, it
is essential to evaluate if clock ages are similarly predictive of functional
status and healthspan. We tested this for the same clinical and epigenetic
clocks by comparing markers of functional and health status. Our analysis
revealed that lower LinAge2 BAs were associated with superior healthspan
markers, including higher cognitive scores, faster gait speed, and vice versa.
Subjects who reported that they were able to engage in employment work
and those able to perform all instrumental and basic activities of daily living
(iADLs and bADLs), on average, had significantly lower LinAge2 BA than
those reporting deficits in these domains (Fig. 1g-k). Similar trends were
observed for GrimAge2 and DunedinPoAm, with statistically significant
differences between the groups with low and high BAs across most
healthspan markers, except for the ability to perform all bADLs (Fig. 1g-k
and Supplementary Fig. 6). In contrast, no statistically significant differences
were found between low and high HorvathAge BAs across healthspan
markers (Fig. 1g-k). Our findings on healthspan markers and mortality, for
HorvathAge, HannumAge, PhenoAge DNAm, and GrimAge2, corroborate
similar findings for 10-year survival in 490 subjects of the Irish Longitudinal
Study on Aging'.

A significant drawback of many existing aging clocks is that they lack
interpretability and actionable insights. A key benefit of clinical clocks is that
they are built from parameters directly related to the underlying disease
mechanisms, enabling easier interpretation of clock residuals and allowing
development of tools that can provide more actionable pathophysiological
insights. Individual age-associated principal components (PCs) may iden-
tify clusters of features that change in a coordinated manner. Analyzing
individual PCs can provide insights into the underlying aging trajectories.
Using heatmaps, we visualized the association of individual PCs relative to
clinical outcomes, including sex-specific causes of death and chronic dis-
eases (Fig. 2).

To facilitate interpretation of individual PCs, we provide an R script
(see Code availability) that enables the calculation of LinAge2 BA and
visualization of the relevant PC values based on user-supplied data (Fig. 3).
Supplementary Table 5 offers more detailed information on each PC,
including associations with causes of death, chronic diseases, sociological
factors, and potential aging mechanisms, along with some potential inter-
vention strategies, based on current best medical practice, that may impact
individual PCs to lower LinAge2 BA. This integrated approach aims to
empower clinicians and patients to explore factors affecting LinAge2 and to
target interventions.

Accurately predicting patient outcomes and allocating healthcare
resources is a significant challenge in clinical practice". Currently, clinicians
rely heavily on CA to make these decisions. However, here we show that
mortality-predicting clocks, such as LinAge2 and GrimAge2, outperform
CA in predicting mortality risk across timeframes, ranging from 2 to 20
years (Fig. 1, Supplementary Fig. 7). Moreover, clinical clocks can also
predict specific causes of death within a 5-year window (Fig. 2c and d). This
illustrates that clock-based BAs are more accurate and informative estimates
of true BA than CA itself. By providing a more precise metric of biological
status than CA alone, BA can enable clinicians to better support patients and
their caregivers in navigating healthcare choices, including end-of-life care.

Overall, our analysis reveals that aging clocks trained to predict mor-
tality or functional aging outcomes provide more predictive value in terms
of clinical decision-making. Surprisingly, clinical aging clocks still outper-
form several prominent mortality-predicting and functional epigenetic
clocks, including PhenoAge DNAm and DunedinPoAm, in predicting
future mortality. A key advantage of LinAge2 lies in its interpretability.
Because principal component analysis is a linear matrix factorization
technique, the resulting model is easier to interpret than nonlinear
alternatives'’. Latent variables based on linear dimensionality reduction
(PCs), especially those based on clinical parameters, are comparatively easy
to understand and interpret, making them potentially more actionable. This
may enable clinical aging clocks like LinAge2 to detect hidden or subclinical
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Fig. 2 | Heatmaps illustrating the associations between clinical outcomes and PCs
analyzed using multivariate logistic regression. Associations of PCs with specific
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diseases and inform primordial prevention strategies. By identifying indi-
viduals at high risk of developing specific diseases, healthcare providers can
implement targeted interventions early and proactively. By casting specific
risk in terms of BA acceleration, aging clocks can significantly increase

compliance and adherence with specific health recommendations".

All current aging clocks, regardless of feature space (e.g., clinical,
methylation, proteomics, etc.) and target (mortality, functional outcomes,
disease, or CA) share significant limitations. Most importantly, many cur-

rent clocks employ linear techniques

(e.g., principal component analysis/

singular value decomposition, regression-based predictions), which limit
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Fig. 3 | Interpretation of LinAge2 PCs for personalized interventions. We present
two case studies from the NHANES dataset, both featuring chronologically 72-year-
old males. a, b Individual PC values (covariates) of the Cox model are shown as bars
and attached values. Each bar is colored by the PC value multiplied by the weight of
the Cox model (see Supplementary Table 4). Blue bars indicate PCs that contribute
negative age deltas (younger), while red bars are positive age deltas (older). Tables
adjacent to bar graphs display selected clinical parameters, with loadings >0.1 in
PCIM (see Supplementary Table 3), for each subject. The bottom table, extracted
from Supplementary Table 5, facilitates interpretation of high PC1M values,
including associations with causes of death, chronic diseases, sociological factors,
potential aging mechanisms, and candidate interventions. a Subject 8881 is an obese

smoker, who at the time of survey in 2000, is biologically more than two mortality
rate doubling times (16 years) older than his CA. This age delta is largely driven by
PCIM (associated with cardiometabolic syndrome) and PC31M (associated with
smoking). This subject died from diabetes mellitus 5.4 years after the samples were
taken. Personalized targeted interventions, including both non-pharmacological
and pharmacological interventions, for example, treatment with a glucagon-like
peptide 1 agonist, for weight loss, as well as smoking cessation, would be expected to
lower LinAge2 contributions driven by PCIM and PC31M. b Subject 9106 is a non-
smoker with an ideal body mass index (BMI), unremarkable PC1M, and LinAge2
BA 7.6 years lower than his CA. This subject died 19 years later at an age of 91 years.
NT-proBNP N-terminal pro-brain natriuretic peptide.
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their ability to distinguish between aging signatures and those of age-
dependent diseases, and to learn U-shape response patterns. Current clocks,
therefore, inherently conflate intrinsic biological aging with disease-specific
signatures (hidden sickness, primordial disease signatures, and disease risk
factors). Nonlinear approaches, including generative artificial intelligence
and artificial neural networks, are being investigated and could offer
improved models, but their increased complexity pose a significant chal-
lenge for interpretation'®"’. Next-generation clocks will need to differentiate
between disease signatures and intrinsic aging and quantify intrinsic bio-
logical resilience. Further theoretical work will be required to deconvolute
these disease-centric signatures from determinants of intrinsic resilience
and entropic aging'®™’. Data availability remains a major bottleneck, with
some of the most promising methods requiring long mortality follow-up,
large sample numbers and, ideally, longitudinal data. Advancing next-
generation clocks is crucial to equip healthcare providers with the essential
tools needed to make informed decisions regarding targeted interventions
that support healthy longevity in populations where healthcare needs are
increasingly dominated by aging.

Methods

Motivation for enhancing LinAge2

The original PCAge and LinAge’ both utilized some parameters that are not
routinely collected. LinAge has been utilized by several clinics worldwide,
and we have received informal feedback regarding its use. Common sug-
gestions for enhancing the clock include: (i) improving handling of outliers
and threshold effects, (ii) further refining the clinical parameters, especially
removing serum fibrinogen due to the need for a specialized sodium citrate
tube, (iii) providing additional tools to improve the interpretability of PCs,
and (iv) providing specific strategies to optimize each PC to lower BA. PCs
can also be sensitive to batch effects. We developed LinAge2 in response to
these concerns.

We followed the same workflow, as previously described’, to construct
LinAge2 but with several modifications. To enhance LinAge2, we refined the
clinical parameters by reducing the total number to 60 (Supplementary
Table 2). We also addressed outliers and thresholding by capping outliers at
six standard deviations and log-transforming additional parameters (Sup-
plementary Table 2). Batch effects were mitigated through z-score nor-
malization by median and median absolute deviation to a younger, generally
healthy cohort (age 40-50 years), separately for males and females (Sup-
plementary Table 2), generating sex-specific PCs. The loadings for male and
female PCs are provided in Supplementary Table 3, and sex-specific weights
of the Cox proportional hazards models are listed in Supplementary Table 4.
The null model fits a Cox proportional hazards model using only CA as a
covariate. The resulting mortality rate doubling time of approximately 7.8
years is in good agreement with the literature value of approximately 8
years”.

A parametrized version of LinAge2 is provided as previously described’
(Supplementary Table 2). The baseline characteristics of the study partici-
pants are listed in Supplementary Table 1.

PhenoAge Clinical and epigenetic clocks

PhenoAge Clinical was implemented using the equation from the original
publication. The dataset of pre-calculated epigenetic clock ages published
for the NHANES 1999-2002 waves was obtained from https://wwwn.cdc.
gov/nchs/nhanes/dnam/ and analyzed.

Construction of healthspan markers

The digit symbol substitution test score (NHANES variable ‘CFDRIGHT’)
was used as a cognitive measure. Gait speeds were obtained by taking the
total distance walked (20 feet or 6.096 meters) divided by the time taken
(NHANES variable MSXWTIME’). Differences in cognitive scores and gait
speeds were calculated as the percent difference from a control group
(middle 50% of all subjects), for younger (best 25% quartile) and older
(worst 25% quartile) groups. The ability to work was established using the
NHANES variable ‘PFQ048’. The ability to perform all instrumental

activities of daily living (iADLs) was a combination of the NHANES vari-
ables ‘PFQO60A’, ‘PFQO60F, ‘PFQU60G’, ‘PFQO60Q’, PFQO60R’ and
‘PFQO60S’, while the ability to perform all basic activities of daily living
(bADLs) was a combination of the NHANES variables ‘PFQ060B’,
‘PEQO60C’, ‘PEQO60ET, ‘PFQO60T, ‘PFQO60J, ‘PFQO60K’ and ‘PFQO60L..
Participants had to have either no difficulty or some difficulty in all the
variables to be deemed able to perform all iADLs or all bADLs.

Heatmap analysis

Using the ‘nnet™ (version 7.3-19) R package, heatmaps were generated to
evaluate the predictive values for PCs included in LinAge2. For each para-
meter, we attempted to predict status (diseased/compromised or not) using
multivariate logistic regression with the clock PCs as covariates. PCs that
received a statistically insignificant (P = 0.05) weight in the logistic regres-
sion model were assigned zero weights (white). The remaining PCs
(P < 0.05) were assigned color values according to their weight in the model
(see Fig. 2f legend for color mapping).

Statistics and reproducibility

For the NHANES IV 1999-2002 waves, we excluded participants top-coded
at age 85 years, as we could not ascertain the exact CAs of these adults, and
participants who died from accidental deaths, as these were deemed to be
not age-related.

Survival analyses were performed using log-rank tests with Benjamini-
Hochberg correction. Receiver operating characteristic curves were com-
pared using DeLong’s test. For healthspan markers, two-sided t-tests were
used to compare between the low and high clock groups. For the analysis of
diseased subjects, Wilcoxon signed-ranked tests were used to compare
between groups. Correlation analyses were performed using linear regres-
sion, and the strength of correlation was determined using Pearson corre-
lation coefficient. All statistical analyses were performed using R version
4.2.0 (https://www.R-project.org/).

Data availability

All datasets used are publicly available online at https://wwwn.cdc.gov/
nchs/nhanes/Default.aspx. There were no restrictions on data availability.
This study was reported according to STROBE guidelines for cohort studies.

Code availability

Code to generate individual LinAge2 BA and visualize the corresponding
PCs is available as a zipped R archive. The archive should be uncom-
pressed and the R script (linAge2.R) executed in the same folder using R
version 4.2.0. User input is provided by editing the input file (userDa-
ta.csv), replacing the two NHANES example subjects (8881 and 9106, see
Fig. 3) with the appropriate user data in NHANES units (see Supple-
mentary Table 2). Sequence numbers (SEQN) can be chosen freely but
should be numeric. The linAge2.R script provides log output to the R
console and returns LinAge2 BA and individual PC values for each subject
provided in the userData.csv file. Results are appended to the original
input data and saved as userData_out.csv.
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