

nad+ what is the typical dose used in clinics providing iv therapy

Most IV NAD+ clinics use single-session doses in the 250–1,000 mg range, with 500 mg over several hours being a very common “standard” dose. [\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#)

Typical IV NAD+ doses

- Many wellness protocols describe IV NAD+ infusions of **500–1,000 mg per session**, usually run over 2–4 hours to reduce side effects like chest tightness or nausea. [\[2\]](#) [\[4\]](#)
- Some compounded-clinic charts list “routine” or starter IV doses of **250 mg in 500 mL NS over ~2 hours** or **500 mg in 1,000 mL NS over ~4 hours**, often given weekly. [\[1\]](#)
- A number of commercial IV services advertise **500 mg IV NAD+ as their base drip**, with the option to add an extra 500 mg (total 1,000 mg) in appropriate patients. [\[3\]](#) [\[5\]](#)

Higher-dose and addiction protocols

- Addiction-focused or “intensive” protocols may use **500–1,000 mg IV daily for several consecutive days (often 4–10 days)**, then taper to less frequent maintenance infusions, all under close medical supervision. [\[6\]](#) [\[4\]](#)
- A case series in addiction used **500–1,000 mg IV NAD+ in 300 mL NS daily for 4 days**, then twice weekly for a month, then twice monthly as maintenance. [\[6\]](#)

Safety and clinic variability

- Some corporate protocols set more conservative **maximums** such as **≤250 mg per infusion and ≤500 mg per week** (combining IV and IM) with monitoring during and after the drip. [\[7\]](#)
- Other integrative clinics report using **250–2,000 mg per session**, titrating up based on tolerance, indication, and infusion rate. [\[8\]](#)

Because protocols vary widely and high doses are off-label, dosing is typically individualized (age, comorbidities, meds, indication), with slow titration and clear informed consent about limited long-term outcome data. [\[9\]](#) [\[10\]](#) [\[2\]](#)

**

explain if NAD+ IV works as intended and if not why it does not work, use only clinical studies published in reputable journals, NO influencers, NO youtube, NO clinics

Current evidence shows that IV NAD+ can raise blood NAD+ levels, but whether it "works as intended" for most of the marketed indications (energy, anti-aging, brain performance, addiction, etc.) is not proven in high-quality clinical trials. The best data so far suggest that NAD+ precursors (like nicotinamide riboside and NMN), especially orally, are more consistently studied and can increase NAD+ and modify some disease-related biomarkers, but clear clinical outcome benefits are still limited and indication-specific. [\[21\]](#) [\[22\]](#) [\[23\]](#) [\[24\]](#) [\[25\]](#) [\[26\]](#) [\[27\]](#) [\[28\]](#)

What IV NAD+ has actually been shown to do

- A randomized, placebo-controlled pilot trial has directly compared a single IV dose of NAD+ (500 mg) with IV nicotinamide riboside (NR), oral NR, and saline in healthy adults. [\[23\]](#)
- In that study, IV NAD+ did increase blood NAD+ levels, but IV NR increased NAD+ more at 3 hours and was better tolerated, with fewer infusion-related adverse experiences and shorter acceptable infusion times. [\[23\]](#)
- IV NAD+ in this trial also produced a rise in white blood cells and neutrophils that was interpreted as an inflammatory response, whereas IV NR did not show such changes. [\[23\]](#)

These data support that IV NAD+ can acutely boost circulating NAD+, but they do not show clinical benefits on symptoms, function, or disease outcomes beyond transient biochemical changes. [\[23\]](#)

Addiction and withdrawal: what's known and what's missing

- A frequently cited clinical signal comes from a small study in patients with alcohol and opioid use disorders in which IV NAD+ (as part of a broader protocol including vitamins and medications) was associated with reduced withdrawal symptoms, oxidative stress, and inflammation markers. [\[29\]](#)
- This work, however, is observational or pilot-level, uses combination protocols rather than NAD+ alone, and lacks large randomized, blinded comparisons against standard detox protocols, making it impossible to attribute benefit specifically to NAD+ or to generalize results. [\[25\]](#) [\[29\]](#)

A recent systematic review of NAD+ in clinical conditions concluded that, despite biological plausibility, robust evidence for clear clinical efficacy in addiction or other conditions is still sparse and heterogeneous. [\[25\]](#)

Why IV NAD+ often does not “work as advertised”

- **Lack of high-quality outcome trials:** Most claims (anti-aging, cognitive enhancement, performance, chronic fatigue) are extrapolated from preclinical or biomarker data, not from large, well-controlled human trials showing durable improvements in hard outcomes (e.g., physical function, cognition, relapse rates, mortality). [\[21\]](#) [\[25\]](#)
- **Non-specific mechanisms:** NAD+ participates in many cellular processes (mitochondrial function, DNA repair, sirtuin activation), but raising systemic NAD+ does not guarantee clinically meaningful change in complex syndromes like “fatigue” or “brain fog”, especially after a few infusions. [\[21\]](#)
- **Distribution and metabolism issues:** While IV NAD+ elevates blood levels acutely, it may be rapidly metabolized or excreted, and it is unclear how much reaches specific target tissues (brain, muscle) in a way that meaningfully changes local NAD+ biology over time. [\[21\]](#) [\[23\]](#)
- **Inflammatory or tolerability limitations:** The pilot IV trial suggests NAD+ infusions can provoke inflammatory-type lab changes and are less comfortable than IV NR; this limits how aggressively they can be dosed in practice. [\[23\]](#)

In short, IV NAD+ clearly changes lab numbers but has not yet been shown in rigorous trials to reliably produce the broad clinical benefits that are often advertised.

What does have better evidence: NAD+ precursors

Several placebo-controlled human trials of oral NAD+ precursors (NR, NMN) show more consistent evidence for safely boosting NAD+ and modifying disease-related biomarkers, although even here, strong clinical outcome data remain limited.

- In a randomized placebo-controlled trial in older adults, oral NR (1 g/day) increased NAD+ in blood cells and was well tolerated; exploratory analyses suggested some changes in brain-related metabolic markers but no large clinical effect on cognition in this small pilot. [\[22\]](#)
- Another randomized crossover trial in older adults found that NR (500 mg twice daily for 6 weeks) increased NAD+ in neuron-derived extracellular vesicles and reduced biomarkers such as A β 42 and phosphorylated kinases linked to neuroinflammatory and neurodegenerative pathways. [\[30\]](#) [\[27\]](#)
- Multiple trials show that NMN (e.g., 250 mg/day for 12 weeks) safely and significantly increases whole-blood NAD+ levels in healthy adults, again without major safety concerns but with mainly biomarker rather than hard clinical endpoints. [\[24\]](#) [\[26\]](#) [\[31\]](#)

These data suggest that, if the goal is simply to raise NAD+ and favorably shift some molecular markers, oral precursors have stronger and cleaner evidence than IV NAD+ itself. [\[26\]](#) [\[27\]](#) [\[22\]](#) [\[24\]](#)

Bottom line for clinical practice

- IV NAD+ “works” in the narrow sense that it can temporarily raise circulating NAD+, but current peer-reviewed clinical trials do not show strong, consistent evidence that it delivers the wide range of clinical benefits often claimed in commercial settings. [\[25\]](#) [\[21\]](#) [\[23\]](#)

- The absence of large, disease-specific randomized trials with clinically meaningful endpoints means that many patients will not experience the dramatic improvements marketed by IV clinics, and any benefits may be modest, transient, placebo-related, or due to accompanying supportive care. [\[25\]](#) [\[21\]](#)
- NAD⁺-boosting strategies appear most evidence-based when using oral precursors in well-defined research contexts, with outcome measures tied to specific diseases rather than broad wellness claims. [\[27\]](#) [\[22\]](#) [\[24\]](#) [\[26\]](#)

For a clinician, the evidence base at this point supports viewing IV NAD⁺ as experimental, with plausible biochemical rationale but unproven efficacy for most indications, and with viable alternative strategies (oral precursors) that are better studied and generally easier to tolerate. [\[21\]](#) [\[25\]](#) [\[23\]](#)

**

can cells use circulating blood plasma NAD⁺ if yes, how and if no, why not

Cells can make indirect use of circulating NAD⁺ in plasma, but they generally do not import intact NAD⁺ across the plasma membrane in a major way; instead, extracellular NAD⁺ is rapidly broken down to precursors (like nicotinamide, NMN, NR) that cells then take up and resynthesize into intracellular NAD⁺. [\[41\]](#) [\[42\]](#) [\[43\]](#) [\[44\]](#)

Why intact plasma NAD⁺ is not the main fuel

- Mammalian cell membranes are largely impermeable to NAD⁺, and no broadly expressed plasma-membrane NAD⁺ transporter has been clearly identified *in vivo*, in contrast to well-defined transporters for precursors such as NR and NMN. [\[42\]](#) [\[45\]](#) [\[41\]](#)
- In blood and on cell surfaces, ectoenzymes such as CD38, ENPP1 and related nucleotidases very quickly degrade extracellular NAD⁺ to products like ADP-ribose, AMP and nicotinamide, so intact NAD⁺ does not persist long enough to be a stable direct source for cellular NAD⁺. [\[43\]](#) [\[46\]](#) [\[47\]](#) [\[48\]](#)

Because of this combination of poor membrane permeability and rapid enzymatic breakdown, most tissues do not rely on direct uptake of circulating NAD⁺ to maintain their intracellular pools. [\[41\]](#) [\[43\]](#)

How cells actually use circulating NAD⁺-derived molecules

- Extracellular NAD⁺ is converted stepwise by CD38, ENPP1 and CD73 into NMN, NR, AMP, adenosine and **nicotinamide**, which can be taken up by cells through specific transport systems. [\[44\]](#) [\[48\]](#) [\[42\]](#) [\[43\]](#)
- Once inside, these precursors feed the **NAD⁺ salvage pathways**: for example, nicotinamide is reconverted to NMN by NAMPT and then to NAD⁺ by NMNATs; NR is phosphorylated by NRK1/2 to NMN, and NMN can itself be transported or generated intracellularly, all rebuilding the intracellular NAD⁺ pool. [\[49\]](#) [\[42\]](#) [\[43\]](#) [\[41\]](#)

Reviews of NAD⁺ metabolism therefore emphasize that mammals "largely rely on NAD⁺ salvage from intracellular nicotinamide," with circulating precursors providing additional support but intact plasma NAD⁺ playing only a minor direct role.^[43]

Exceptions and signaling roles of extracellular NAD⁺

- Extracellular NAD⁺ can act as a **signaling molecule**, binding to specific receptors or being converted to second messengers (such as cADPR) that change intracellular calcium and immune cell activation, without needing bulk transport of NAD⁺ into the cell.^{[50] [44]}
- Some specialized systems and organelles (notably mitochondria) have been reported to take up NAD⁺ directly under experimental conditions, but these findings relate to intracellular compartment transport and do not imply that intact plasma NAD⁺ is a major routine source of NAD⁺ for whole cells *in vivo*.^{[51] [41]}

Overall, cells benefit from circulating NAD⁺ mainly after it is enzymatically processed into smaller precursors and signaling molecules, rather than by directly importing the intact NAD⁺ molecule from plasma.^{[42] [44] [41] [43]}

**

Rates of plasma NAD⁺ plus clearance and half life in humans

Human data suggest that exogenous plasma NAD⁺ is cleared very rapidly, but a precise classical half-life (like "X minutes") has not yet been firmly defined in large pharmacokinetic studies.^{[59] [60] [61]}

Data from IV NAD⁺ infusion in humans

- In a pilot study, healthy adults received a continuous IV NAD⁺ infusion at 3 $\mu\text{mol}/\text{min}$ for 6 hours.^{[60] [59]}
- For at least the first 2 hours, NAD⁺ infused into the vein was "rapidly and completely removed from the plasma," with no measurable rise in plasma NAD⁺ or its primary metabolites, implying very fast uptake and/or metabolism relative to the infusion rate.^{[59] [60]}
- By the end of the 6-hour infusion, plasma levels of NAD⁺ metabolites (nicotinamide, ADP-ribose, methyl-nicotinamide, NMN) had increased by roughly 3.5–4-fold compared with baseline, and urinary NAD⁺ excretion rose by ~538%, indicating substantial systemic metabolism and renal handling over several hours.^{[60] [59]}

These findings show rapid plasma clearance and conversion of infused NAD⁺, but the study did not model a terminal half-life because the infusion was ongoing and NAD⁺ was largely undetectable in plasma during the early phase.^{[59] [60]}

Intracellular vs plasma half-life

- Reviews of NAD⁺ metabolism note that intracellular NAD⁺ has a relatively short half-life of about 1 hour in mammalian cells, due to high turnover by NAD-consuming enzymes (PARPs, sirtuins, CD38, etc.).^[62] ^[63]
- This intracellular half-life reflects compartmental turnover, not plasma pharmacokinetics; however, it is consistent with the broader observation that NAD⁺ and its precursors are “metabolized very quickly in mammalian blood and tissues.”^[64] ^[62]

Baseline plasma levels and age-related decline

- In cross-sectional LC-MS analyses, fasting human plasma NAD⁺ concentrations are on the order of tens of nanomolar, around ~50 nM in young adults (20–40 years), falling to ~10 nM in older adults (60–87 years).^[65] ^[61]
- These very low steady-state plasma levels, together with the rapid disappearance of infused NAD⁺ from plasma, support the view that circulating NAD⁺ is tightly regulated and swiftly degraded or taken up.^[61] ^[60] ^[59]

Overall interpretation

- Available human data show **rapid removal** of infused NAD⁺ from plasma (within minutes to hours) with conversion to downstream metabolites and urinary excretion, but do **not** yet provide a robust, widely cited numerical plasma half-life for NAD⁺ itself.^[60] ^[59]
- Conceptually, NAD⁺ behaves as a high-turnover molecule with short intracellular half-life (~1 hour) and very low steady-state plasma concentrations, consistent with fast clearance and extensive enzymatic metabolism rather than long persistence in circulation.^[63] ^[62] ^[61] ^[64]

**

1. <https://www.olympiapharmacy.com/blog/nad-dosage-chart-nad-dosage-per-day/>
2. <https://www.jinfiniti.com/nad-dosage-and-frequency/>
3. <https://drihydration.com/blog/how-often-should-you-take-nad/>
4. <https://resetiv.com/blogs/news/nad-iv-therapy>
5. <https://regenics.com/the-correct-nad-injection-dosage-per-day/>
6. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7278809/>
7. [https://hydright.com/docs/NAD/NAD Protocol_Hydright_Updated 5.24.23.pdf](https://hydright.com/docs/NAD/NAD%20Protocol_Hydright_Updated%205.24.23.pdf)
8. <https://www.trumed.ca/nad-iv2>
9. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7558103/>
10. <https://www.addictioncenter.com/treatment/nad-therapy/>
11. <https://ivdrips.com/blog/nad-injection-dosage-per-day/>
12. <https://www.peachiv.com/blog-post/nad-dosage-frequency-guide>
13. <https://www.jinfiniti.com/nad-injection-dosage-chart/>
14. <https://www.naturopath-edmonton.ca/nad-iv>
15. <https://goldmanlaboratories.com/blogs/blog/how-to-get-nad-dosage-right>

16. <https://www.joinmidi.com/post/nad-supplements>
17. <https://www.canada.ca/en/health-canada/services/substance-use/get-help-with-substance-use.html>
18. <https://walnutcreek aesthetics.com/nad-injection-standard-operating-procedure-sop/>
19. <https://upperroomclinic.com/nad-iv-therapy/>
20. <https://www.webmd.com/mental-health/addiction/nad-therapy-addiction>
21. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7558103/>
22. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10828186/>
23. <https://scity.org/articles/activity/10.1101/2024.06.06.24308565>
24. <https://pmc.ncbi.nlm.nih.gov/articles/PMC9036060/>
25. <https://pubmed.ncbi.nlm.nih.gov/37971292/>
26. <https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.868640/full>
27. <https://pmc.ncbi.nlm.nih.gov/articles/PMC9835564/>
28. <https://pubmed.ncbi.nlm.nih.gov/36515353/>
29. <https://nadresearch.org/ivnad-improves-withdrawal-symptoms/>
30. <https://onlinelibrary.wiley.com/doi/10.1111/ace.13754>
31. <https://pubmed.ncbi.nlm.nih.gov/35479740/>
32. <https://www.nature.com/articles/s41467-023-43514-6>
33. <https://clinicaltrials.gov/study/NCT06919328>
34. <https://altiumhealth.com/blog/nad-iv>
35. <https://onlinelibrary.wiley.com/doi/abs/10.1111/ace.13754>
36. <https://clinicaltrials.gov/study/NCT06382688>
37. <https://www.jinfiniti.com/nad-for-addiction/>
38. <https://www.aboutnad.com/blogs/studies/randomized-placebo-controlled-pilot-clinical-study-evaluating-acute-niagen-iv-and-nad-iv-in-healthy-adults>
39. <https://recoveruscenters.com/pilot-study-finds-nad-effective-for-addiction-treatment/>
40. <https://clinicaltrials.gov/study/NCT06882096>
41. <https://www.nature.com/articles/s41392-020-00311-7>
42. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7494058/>
43. <https://pmc.ncbi.nlm.nih.gov/articles/PMC4487780/>
44. <https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.704779/full>
45. <https://pmc.ncbi.nlm.nih.gov/articles/PMC8231866/>
46. <https://pmc.ncbi.nlm.nih.gov/articles/PMC8917930/>
47. <https://onlinelibrary.wiley.com/doi/10.1111/jcmm.15912>
48. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7793634/>
49. <https://www.sciencedirect.com/science/article/pii/S0021925820494797>
50. <https://portlandpress.com/biochemj/article/393/3/697/79190/Extracellular-NAD-regulates-intracellular-calcium>
51. <https://pmc.ncbi.nlm.nih.gov/articles/PMC6013257/>
52. <https://pmc.ncbi.nlm.nih.gov/articles/PMC8371318/>

53. <https://www.sciencedirect.com/science/article/pii/S1286457912001293>
54. https://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide
55. <https://www.science.org/doi/10.1126/sciadvaea7460>
56. <https://pubmed.ncbi.nlm.nih.gov/34142751/>
57. <https://www.sciencedirect.com/science/article/pii/S2211124723016546>
58. <https://aacrjournals.org/clincancerres/article/29/12/2184/727090/ENPP1-Immunobiology-as-a-Therapeutic-TargetA-New>
59. <https://pmc.ncbi.nlm.nih.gov/articles/PMC6751327/>
60. <https://nadresearch.org/measuring-nad-metabolome-during-intravenous-infusion/>
61. <https://pmc.ncbi.nlm.nih.gov/articles/PMC6482912/>
62. <https://www.nature.com/articles/s41392-020-00354-w>
63. <https://www.nature.com/articles/s41392-020-00311-7>
64. <https://pmc.ncbi.nlm.nih.gov/articles/PMC4487780/>
65. <https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.886485/full>
66. <https://pmc.ncbi.nlm.nih.gov/articles/PMC8612620/>
67. <https://www.asapivs.com/blog/nad-iv-therapy-information>
68. <https://renuebyscience.com/blogs/scientific-evidence-library/nad-iv-increases-nad-levels-in-blood-plasma-400-in-humans>
69. <https://www.sciencedirect.com/science/article/pii/S1550413119305029>
70. <https://www.peachiv.com/blog-post/nad-dosage-frequency-guide>
71. <https://www.jinfiniti.com/nad-injections/>
72. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7558103/>
73. <https://pubs.rsc.org/en/content/articlelanding/2025/an/d4an01560f>
74. <https://www.empowerpharmacy.com/compounding-pharmacy/nad-injection/>
75. <https://www.naturopath-edmonton.ca/nad-iv>
76. <https://driphydration.com/blog/how-often-should-you-take-nad/>
77. <https://www.olympiapharmacy.com/blog/nad-dosage-chart-nad-dosage-per-day/>
78. https://ppl-ai-file-upload.s3.amazonaws.com/web/direct-files/collection_2cc7e788-eaba-4a3a-8b89-e880b924bc4a/22fac5b9-077c-48ec-a706-c557361f1f98/what-are-the-synergies-between-zNUin5TIRjCz_0izjvNEng.md
79. <https://allureaestheticsllc.com/blog/what-is-nad-actual-evidence/>