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ABSTRACT

Identifying reliable biomarkers of aging is a major goal in geroscience. While the first generation of epigenetic
biomarkers of aging were developed using chronological age as a surrogate for biological age, we hypothesized
that incorporation of composite clinical measures of phenotypic age that capture differences in lifespan and
healthspan may identify novel CpGs and facilitate the development of a more powerful epigenetic biomarker of
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aging. Using an innovative two-step process, we develop a new epigenetic biomarker of aging, DNAm
PhenoAge that strongly outperforms previous measures in regards to predictions for a variety of aging
outcomes, including all-cause mortality, cancers, healthspan, physical functioning, and Alzheimer's disease.
While this biomarker was developed using data from whole blood, it correlates strongly with age in every tissue
and cell tested. Based on an in-depth transcriptional analysis in sorted cells, we find that increased epigenetic,
relative to chronological age, is associated with increased activation of pro-inflammatory and interferon
pathways, and decreased activation of transcriptional/translational machinery, DNA damage response, and
mitochondrial signatures. Overall, this single epigenetic biomarker of aging is able to capture risks for an array
of diverse outcomes across multiple tissues and cells, and provide insight into important pathways in aging.

INTRODUCTION

One of the major goals of geroscience research is to
define ‘biomarkers of aging’[1, 2], which can be
thought of as individual-level measures of aging that
capture inter-individual differences in the timing of
disease onset, functional decline, and death over the life
course. While chronological age is arguably the
strongest risk factor for aging-related death and disease,
it is important to distinguish chronological time from
biological aging. Individuals of the same chronological
age may exhibit greatly different susceptibilities to age-
related diseases and death, which is likely reflective of
differences in their underlying biological aging
processes. Such biomarkers of aging will be crucial to
enable evaluation of interventions aimed at promoting
healthier aging, by providing a measurable outcome,
which unlike incidence of death and/or disease, does not
require extremely long follow-up observation.

One potential biomarker that has gained significant
interest in recent years is DNA methylation (DNAm).
Chronological time has been shown to elicit predictable
hypo- and hyper-methylation changes at many regions
across the genome [3-7], and as a result, the first
generation of DNAm based biomarkers of aging were
developed to predict chronological chronological age
[8-13]. The blood-based algorithm by Hannum [10] and
the multi-tissue algorithm by Horvath [11] produce age
estimates (DNAm age) that correlate with chronological
age well above r=0.90 for full age range samples.
Nevertheless, while the current epigenetic age
estimators exhibit statistically significant associations
with many age-related diseases and conditions [14-27],
the effect sizes are typically small to moderate. One
explanation is that using chronological age as the
reference, by definition, may exclude CpGs whose
methylation patterns don’t display strong time-
dependent changes, but instead signal the departure of
biological age from chronological age. Thus, it is
important to not only capture CpGs that display changes
with chronological time, but also those that account for
differences in risk and physiological status among
individuals of the same chronological age.

Previous work by us and others have shown that
“phenotypic aging measures”, derived from -clinical
biomarkers [28-32], strongly predict differences in the
risk of all-cause mortality, cause-specific mortality,
physical functioning, cognitive performance measures,
and facial aging among same-aged individuals. What’s
more, in representative population data, some of these
measures have been shown to be better indicators of
remaining life expectancy than chronological age [28],
suggesting that they may be approximating individual-
level differences in biological aging rates. As a result,
we hypothesize that a more powerful epigenetic
biomarker of aging could be developed by replacing
prediction of chronological age with prediction of a
surrogate measure of "phenotypic age" that, in and of
itself, differentiates morbidity and mortality risk among
same-age individuals.

RESULTS
Overview of the statistical model and analysis

Our development of the new epigenetic biomarker of
aging proceeded along three main steps (Fig. 1). In step
1, a novel measure of ‘phenotypic age’ was developed
using clinical data from the third National Health and
Nutrition Examination Survey (NHANES). Details on
the phenotypic age estimator can be found in Table 1
and in Supplement 1. In step 2, DNAm from whole
blood was used to predict phenotypic age, such that:

DNAm PhenoAge
= intercept+CpG, X B; + CpG,
X By + - CpGsy3 X P13

The coefficient values of this model can be found in
Supplement 2 (Table S6). Predicted estimates from this
model represent a person’s epigenetic age, which we
refer to as ‘DNAm PhenoAge’. Using multiple indepen-
dent datasets, we then tested whether DNAm PhenoAge
was associated with a number of aging-related outcomes.
We also tested whether it differed as a function of social,
behavioral, and demographic characteristics, and whether
it was applicable to tissues other than whole blood.
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Finally, in step 3, we examine the underlying biology of
the 513 CpGs in the DNAm PhenoAge measure by
examining differential expression, GO and pathway
enrichment, chromosomal locations, and heritability.

Estimating phenotypic age from clinical biomarkers

For step 1, NHANES IIl was used to generate a
measure of phenotypic age. NHANES III is a
nationally-representative sample, with over twenty-
three years of mortality follow-up, from which our
analytical sample included 9,926 adults with complete
biomarker data. A Cox penalized regression model—
where the hazard of mortality was regressed on forty-
two clinical markers and chronological age—was used
to select variables for inclusion in our phenotypic age
score. The forty-two biomarkers considered represent

those that were available in both NHANES III and IV.
Based on 10-fold cross-validation, ten variables
(including chronological age) were selected for the
phenotypic age predictor (Table 1, Table S1). These
nine biomarkers and chronological age were then
combined in a phenotypic age estimate (in units of
years) as detailed in Methods.

Validation data for phenotypic age came from
NHANES IV, and included up to 12 years of mortality
follow-up for n=6,209 national representative US
adults. In this population, phenotypic age is correlated
with chronological age at r=0.94. Results from all-cause
and cause-specific (competing risk) mortality pre-
dictions, adjusting for chronological age (Table 2),
show that a one year increase in phenotypic age is
associated with a 9% increase in the risk of all-cause

Develop a multi-system estimate of “Phenotypic Age” based on clinical markers

and validate associations with:

All-Cause Mortality
Cause Specific Mortality
Co-existing Disease Count

Train a composite epigenetic predictor of Phenotypic Age, called DNAmM PhenoAge

and validate associations with:
Familial Longevity
Mild Cognitive Impairment
Alzheimer’s Disease Neuropathology Diet

All-Cause Mortality
Coronary Heart Disease Incidence
Co-existing Disease Count
Physical Functioning
Disease Free Status

Parkinson’s Disease Prevalence
Down Syndrome

Socioeconomic Status
Race/Ethnicity

Physical Activity
Metabolic Syndrome

Identify underlying biology of the DNAmM PhenoAge CpGs
and the composite score

GO Enrichment
Pathway Enrichment

Immune Cell Associations
CpG Overlap with Existing Clocks (Hannum/Horvath)

Figure 1. Roadmap for developing DNAm PhenoAge. The roadmap depicts our analytical procedures. In step 1, we
developed an estimate of ‘Phenotypic Age’ based on clinical measure. Phenotypic age was developed using the NHANES Il as
training data, in which we employed a proportional hazard penalized regression model to narrow 42 biomarkers to 9 biomarkers
and chronological age. This measure was then validated in NHANES IV and shown to be a strong predictor of both morbidity and
mortality risk. In step 2, we developed an epigenetic biomarker of phenotypic age, which we call DNAm PhenoAge, by regressing
phenotypic age (from step 1) on blood DNA methylation data, using the INCHIANTI data. This produced an estimate of DNAm
PhenoAge based on 513 CpGs. We then validated our new epigenetic biomarker of aging, DNAm PhenoAge, using multiple
cohorts, aging-related outcomes, and tissues/cells. In step 3, we examined the underlying biology of the 513 CpGs and the
composite DNAm PhenoAge measure, using a variety of complementary data (gene expression, blood cell counts) and various
genome annotation tools including chromatin state analysis and gene ontology enrichment.
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mortality (HR=1.09, p=3.8E-49), a 9% increase in the
risk of mortality from aging-related diseases (HR=1.09,
p=4.5E-34), a 10% increase in the risk of CVD
mortality (HR=1.10, p=5.1E-17), a 7% increase in the
risk of cancer mortality (HR=1.07, p=7.9E-10), a 20%
increase in the risk of diabetes mortality (HR=1.20,
p=1.9E-11), and a 9% increase in the risk of chronic
lower respiratory disease mortality (HR=1.09, p=6.3E-
4). Further, phenotypic age is highly associated with
comorbidity count (p=3.9E-21) and physical
functioning measures (p=2.1E-10, Supplement 1: Fig.
S1).

An epigenetic biomarker of
PhenoAge)

aging (DNAm

For step 2 (Fig. 1), data from n=456 participants at two
time-points in the Invecchiare in Chianti (InCHIANTI)
study was used to relate blood DNAm levels to
phenotypic age. INCHIANTI was used as training data
for the new epigenetic biomarker because the study
assessed all clinical measures needed to estimate
phenotypic age, contained data on DNAm, and had a
large age range population (21-100 years). A total of
20,169 CpGs were considered when generating the new

DNAm measure. They represented those CpGs
available on all three chips (27k, 450k, EPIC), so as to
facilitate usability across platforms. Elastic net regres-
sion, with 10-fold cross-validation, produced a model in
which phenotypic age is predicted by DNAm levels at
513 of the 20,169 CpGs. The linear combination of the
weighted 513 CpGs yields a DNAm based estimator of
phenotypic age that we refer to as ‘DNAm PhenoAge’
(mean=58.9, s.d.=18.2, range=9.1-106.1), in contrast to
the previously published Hannum and Horvath ‘DNAm
Age’ measures.

While our new clock was trained on cross-sectional data
in InCHIANTI, we capitalized on the repeated time-
points to test whether changes in DNAm PhenoAge are
related to changes in phenotypic age. As expected,
between 1998 and 2007, mean change in DNAm
PhenoAge was 8.51 years, whereas mean change in
clinical phenotypic age was 8.88 years. Moreover,
participants’ clinical phenotypic age (adjusting for
chronological age) at the two time-points was correlated
at 1=0.50, whereas participants’ DNAm PhenoAge
(adjusting for chronological age) at the two time-points
was correlated at r=0.68 (Supplement 1: Fig. S2). We
also find that the change in phenotypic age between

Table 1. Phenotypic aging measures and Gompertz coefficients.

Variable Units Weight
Albumin Liver g/L -0.0336
Creatinine Kidney umol/L 0.0095
Glucose, serum Metabolic mmol/L 0.1953
C-reactive protein (log) Inflammation mg/dL 0.0954
Lymphocyte percent Immune % -0.0120
Mean (red) cell volume Immune fL 0.0268
Red cell distribution width Immune % 0.3306
Alkaline phosphatase Liver U/L 0.0019
White blood cell count Immune 1000 cells/uL 0.0554
Age Years 0.0804

Table 2. Mortality validations for phenotypic age.

Mortality Cause Cases HR \ P-Value

All-Cause 1052 1.09 3.8E-49

Aging-Related 661 1.09 4.5E-34

CVD 272 1.10 5.1E-17

Cancer 265 1.07 7.9E-10

Alzheimer's 30 1.04 2.6E-1

Diabetes 41 1.20 1.9E-11

Chronic lower respiratory

diseases 53 1.09 6.3E-4

WWWw.aging-us.com 576

AGING



1998 and 2007 is highly correlated with the change in
DNAm PhenoAge between these two time-points
(r=0.74, p=3.2E-80, Supplement 1: Fig. S2).

DNAm PhenoAge strongly relates to all-cause
mortality

In step 2 (Fig. 1), the epigenetic biomarker, DNAmM
PhenoAge, was calculated in five independent large-
scale samples—two samples from Women’s Health
Initiative (WHI) (n=2,016; and n=2,191), the
Framingham Heart Study (FHS) (n=2,553), the
Normative Aging Study (NAS) (n=657), and the
Jackson Heart Study (JHS) (n=1,747). The first four
studies used the Illumina 450K array while the JHS
employed the latest Illumina EPIC array platform. In
these studies, DNAm PhenoAge correlated with
chronological age at r=0.66 in WHI (Sample 1), r=0.69
in WHI (Sample 2), r=0.78 in FHS, r=0.62 in the NAS,
and r=0.89 in JHS. The five validation samples were
then used to assess the effects of DNAm PhenoAge on
mortality in comparison to the Horvath and Hannum
DNAm Age measures. DNAm PhenoAge was
significantly associated with subsequent mortality risk
in all studies (independent of chronological age), such
that, a one year increase in DNAm PhenoAge is
associated with a 4.5% increase in the risk of all-cause
mortality (Meta(FE)=1.045, Meta p=7.9E-47, Fig. 2).
To better conceptualize what this increase represents,
we compared the predicted life expectancy and
mortality risk for person’s representing the top 5%
(fastest agers), the average, and the bottom 5% (slowest
agers). Results suggest that those in the top 5% of
fastest agers have a mortality hazard of death that is
about 1.62 times that of the average person, i.e. the
hazard of death is 62% higher than that of an average
person. Further, contrasting the 5% fastest agers with
the 5% slowest agers, we find that the hazard of death
of the fastest agers is 2.58 times higher than that of the
bottom 5% slowest agers (HR=1.045'""/1.0457"%%).
Additionally, both observed and predicted Kaplan-
Meier survival estimates showed that faster agers had
much lower life expectancy and survival rates compared
to average and/or slow agers (Fig. 2).

As shown in Fig. 2, the DNAm age based measures
from Hannum and Horvath also related to all-cause
mortality, consistent with what has been reported
previously [15, 19, 23, 33, 34]. To directly compare the
three epigenetic measures, we contrasted their accuracy
in predicting 10-year and 20-year mortality risk, using
receiver operating characteristics (ROC) curves. DNAmM
PhenoAge (adjusted for age) predicts both 10-year
mortality and 20-year mortality significantly better than
the Horvath and Hannum DNAmAge measures (Sup-
plement 1: Table S2). When examining a model that

includes all three measures (Supplement 1: Table S3),
we find that only DNAm PhenoAge is positively
associated with mortality (HR=1.04, p=1.33E-8),
whereas Horvath DNAm Age is now negatively
associated (HR=0.98, p=2.72E-2), and Hannum DNAm
Age has no association (HR=1.01, p=4.66E-1).

DNAm PhenoAge strongly relates to aging-related
morbidity

Given that aging is believed to also influence disease
incidence/prevalence, we examined whether DNAm
PhenoAge relates to diverse age-related morbidity
outcomes. We observe strong associations between
DNAm PhenoAge and a variety of other aging out-
comes using the same five validation samples (Table 3).
For instance, independent of chronological age, higher
DNAm PhenoAge is associated with an increase in a
person’s number of coexisting morbidities (=0.008 to
0.031; Meta P-value=1.95E-20), a decrease in
likelihood of being disease-free (=-0.002 to -0.039;
Meta P-value=2.10E-10), an increase in physical
functioning problems ($=-0.016 to -0.473; Meta P-
value=2.05E-13), an increase in the risk of coronary
heart disease (CHD) risk (f=0.016 to 0.073; Meta P-
value=3.35E-11).

DNAm PhenoAge and smoking

Cigarette exposure has been shown to have an
epigenetic fingerprint[35-37], which has been reflected
in previous DNAm risk predictors[38]. Similarly, we
find that DNAm PhenoAge significantly differs
between never (n=1,097), current (n=209), and former
smokers (n=710) (p=0.0033) (Supplement 1, Fig. S3A);
however, conversely, we do not find a robust
association between pack-years and DNAm PhenoAge
(Supplement 1, Fig. S3B-D). Given the association
between DNAm PhenoAge and smoking, we re-
evaluated the morbidity and mortality associations
(fully-adjusted) in our four samples, stratifying by
smoking status (Supplement 1: Fig. S4 and Table S4).
We find that DNAm PhenoAge is associated with
mortality among both smokers (adjusted for pack-
years) (Meta(FE)=1.050, Meta p=7.9E-31), and non-
smokers (Meta(FE)=1.033, Meta p=1.2E-10). DNAm
PhenoAge relates to the number of coexisting
morbidities, physical functioning status, disease free
status, and CHD for both smokers and non-smokers
(Supplement 1: Table S4). In previous work we showed
that Horvath DNAm age of blood predicts lung cancer
risk in the first WHI sample [20]. Using the same data,
we find that a one year increase in DNAm PhenoAge
(adjusting for chronological age, race/ethnicity, pack-
years, and smoking status) is associated with a 5%
increase in the risk of lung cancer incidence and/or
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mortality (HR=1.05, p=0.031). Further, when restricting
the model to current smokers only, we find that the
effect of DNAm PhenoAge on future lung cancer
incidence and/or mortality is even stronger (HR=1.10,
p=0.014).

DNAm PhenoAge in other tissues

One advantage of developing biological aging estimates
based on molecular markers (like DNAm), rather than
clinical risk measures (e.g. those in the phenotypic age
variable), is that they may lend themselves to measuring

A

DNAm PhenoAgeAccel, Model 1
Meta P=7.9e-47, Heterog. P=0.038

Hannum AgeAccel

Meta P=1.7e-21, Heterog. P=0.02

tissue/cell specific aging. Although DNAm PhenoAge
was developed using samples from whole blood, our
empirical results show that it strongly correlates with
chronological age in a host of different tissues and cell
types (Fig. 3). For instance, when examining all tissues
concurrently, the correlation between DNAm PhenoAge
and chronological age was 0.71. Age correlations in
brain tissue ranged from 0.54 to 0.92, while correlations
were also found in breast (r=0.47), buccal cells (r=0.88),
dermal fibroblasts (r=0.87), epidermis (r=0.84), colon
(r=0.88), heart (r=0.66), kidney (r=0.64), liver (r=0.80),
lung (r=055), and saliva (r=0.81).

Horvath AgeAccel

Meta P=4.5e-05, Heterog. P=0.14
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Figure 2. Mortality Prediction by DNAm PhenoAge. (A) Using five samples from large epidemiological cohorts—two samples
from the Women’s health Initiative, the Framingham Heart Study, the Normative Aging Study, and the Jackson Heart Study—we
tested whether DNAm PhenoAge was predictive of all-cause mortality. The Fig. displays a forest plot for fixed-effect meta-analysis,
based on Cox proportional hazard models, and adjusting for chronological age. Results suggest that DNAm PhenoAge is predictive of
mortality in all samples, and that overall, a one year increase in DNAm PhenoAge is associated with a 4.5% increase in the risk of
death (p=9.9E-47). This is contrasted against the first generation of epigenetic biomarkers of aging by Hannum and Horvath, which
exhibit less significant associations with lifespan (p=1.7E-21 and p=4.5E-5, respectively). (B and C) Using the WHI sample 1, we plotted
Kaplan-Meier survival estimates using actual data from the fastest versus the slowest agers (panel B). We also applied the equation
from the proportional hazard model to predict remaining life expectancy and plotted predicted survival assuming a chronological age
of 50 and a DNAm PhenoAge of either 40 (slow ager), 50 (average ager), or 60 (fast ager) (panel C). Median life expectancy at age 50
was predicted to be approximately 81 years for the fastest agers, 83.5 years for average agers, and 86 years for the slowest agers.
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Table 3. Morbidity validation for DNAm PhenoAge.

Comorbidity Disease Free CHD Risk Physical Functioning
Sample Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value
WHI BA23 White 0.008 2.38E-01 -0.002 3.82E-01 0.016 5.36E-02 -0.396 1.04E-04
WHI BA23 Black 0.013 6.15E-02 -0.006 2.40E-02 0.021 2.02E-02 -0.423 4.50E-04
WHI BA23 Hispanic 0.024 1.64E-02 -0.004 3.67E-01 0.033 5.07E-02 -0.329 7.37E-02
WHI EMPC White 0.031 2.95E-07 -0.026 1.63E-02 0.023 1.89E-01 -0.361 3.81E-05
WHI EMPC Black 0.014 7.67E-02 -0.023 6.98E-02 0.048 2.27E-02 -0.473 3.75E-04
WHI EMPC Hispanic 0.003 7.83E-01 0.002 9.28E-01 0.073 1.98E-01 -0.377 6.54E-02
FHS 0.022 3.93E-07 -0.034 1.59E-03 0.028 5.47E-06 -0.016 4.60E-01
NAS 0.023 7.59E-06 -0.062 2.00E-04 0.030 2.27E-02 NA NA
JHS 0.018 1.86E-08 -0.039 5.92E-05 0.033 4.73E-02 NA NA
Meta P-value (Stouffer) 1.95E-20 2.14E-10 3.35E-11 2.05E-13
DNAmAge Hannum
WHI BA23 White 0.007 3.90E-01 -0.003 3.48E-01 0.013 2.36E-01 -0.399 2.90E-03
WHI BA23 Black 0.022 2.72E-02 -0.007 6.03E-02 0.015 2.67E-01 -0.345 4.29E-02
WHI BA23 Hispanic 0.010 4.33E-01 -0.010 6.24E-02 0.011 6.10E-01 -0.599 1.16E-02
WHI EMPC White 0.025 1.53E-03 -0.020 1.55E-01 0.022 3.30E-01 -0.284 1.43E-02
WHI EMPC Black 0.022 6.34E-02 -0.008 6.62E-01 0.055 6.12E-02 -0.323 9.56E-02
WHI EMPC Hispanic -0.012 4.17E-01 0.035 2.09E-01 -0.012 8.85E-01 -0.345 2.54E-01
FHS 0.019 5.94E-04 -0.030 2.55E-02 0.022 1.55E-02 0.040 1.32E-01
NAS 0.009 2.19E-01 -0.026 2.26E-01 0.025 1.83E-01 NA NA
JHS 0.020 2.09E-05 -0.036 9.91E-03 0.086 1.64E-04 NA NA
Meta P-value (Stouffer) 1.50E-08 1.64E-04 1.40E-05 2.03E-05
DNAmAge Horvath
WHI BA23 White 0.007 3.49E-01 -0.004 1.69E-01 0.001 9.12E-01 -0.440 5.10E-04
WHI BA23 Black 0.018 3.96E-02 -0.006 6.25E-02 0.009 4.07E-01 -0.305 4.52E-02
WHI BA23 Hispanic 0.012 3.65E-01 -0.007 1.86E-01 -0.001 9.78E-01 -0.204 4.12E-01
WHI EMPC White 0.031 1.99E-04 -0.043 5.56E-03 0.000 9.88E-01 -0.288 1.74E-02
WHI EMPC Black 0.016 1.93E-01 -0.003 8.56E-01 0.033 2.87E-01 -0.144 4.68E-01
WHI EMPC Hispanic -0.025 8.99E-02 -0.016 5.70E-01 -0.064 4.63E-01 -0.012 9.70E-01
FHS 0.011 5.82E-02 -0.021 8.34E-02 0.007 5.19E-01 0.027 3.16E-01
NAS 0.011 7.90E-02 -0.039 4.53E-02 0.006 7.14E-01 NA NA
JHS 0.014 2.03E-03 -0.040 1.78E-03 0.049 3.93E-02 NA NA
Meta P-value (Stouffer) 3.26E-06 6.36E-07 1.49E-01 1.43E-03

Alzheimer's disease and brain samples

Based on the accuracy of the age prediction in other
tissues/cells, we examined whether aging in a given
tissue was associated with tissue-associated outcomes.
For instance, using data from approximately 700 post-
mortem samples from the Religious Order Study (ROS)
and the Memory and Aging Project (MAP) [39, 40] we
tested the association between pathologically diagnosed
Alzheimer’s disease and DNAm PhenoAge in dorsolate-

ral prefrontal cortex (DLPFX). Results suggest (Fig. 4)
that those who are diagnosed with Alzheimer’s disease
(AD), based on postmortem autopsy, have DLPFX that
appear more than one year older than same aged
individuals who are not diagnosed with AD postmortem
(p=4.6E-4). Further, age adjusted DNAm PhenoAge was
found to be positively associated with neuropathological
hallmarks of Alzheimer’s disease, such as amyloid load
(r=0.094, p=0.012), neuritic plaques (r=0.11, p=0.0032),
and neurofibrillary tangles (r=0.10, p=0.0073).
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Figure 3. Chronological age versus DNAm PhenoAge in a variety of tissues and cells. Although DNAm PhenoAge was developed
using methylation data from whole blood, it also tracks chronological age in a wide variety of tissues and cells. (A) The correlation across all
tissues/cells we examined is r=0.71. (B-ZJ) report results in different sources of DNA as indicated in panel headings. The numbers correspond
to the data sets from (Horvath 2013). Overall, correlations range from r=0.35 (breast, panel O) to r=0.92 (temporal cortex in brain, panel L).

Lifestyle and demographic variables

In evaluating the relationship between DNAm
PhenoAge in blood and additional characteristics we
observe significant differences between racial/ethnic
groups (p=5.1E-5), with non-Hispanic blacks having the
highest DNAm PhenoAge on average, and non-
Hispanic whites having the lowest (Supplement 1: Fig.
S5). We also find evidence of social gradients in DNAm
PhenoAge, such that those with higher education
(p=6E-9) and higher income (p=9E-5) appear younger
(Figure 5). DNAm PhenoAge relates to exercise and
dietary habits, such that increased exercise (p=7E-5)
and markers of fruit/vegetable consumption (such as
carotenoids, p=2E-27) are associated with lower DNAm
PhenoAge (Figure 5, Supplement 1: Fig. S6). Cross-
sectional studies in the WHI also revealed that
DNAmPhenoAge acceleration is positively correlated
with C-reactive protein (r=0.18, p=5E-22, Figure 5),
insulin (r=0.15, p=2E-20), glucose (r=0.10, p=2E-10),
triglycerides (r=0.09, p=5E-9), waist to hip ratio
(r=0.15, p=5E-22) but it is negatively correlated with
HDL cholesterol (r=-0.09, p=7E-9).

DNAm PhenoAge and Immunosenescence

To test the hypothesis that DNAm PhenoAge captures
aspects of age-related decline of the immune system, we
correlated DNAm PhenoAge with estimated blood cell
count (Supplement 1, Fig. S7). After adjusting for age,
we find that DNAm PhenoAgeAccel is negatively
correlated with naive CD8+ T cells (=-0.35, p=9.2E-
65), naive CD4+ T cells (r=-0.29, p=4.2E-42), CD4+
helper T cells (r=-0.34, p=3.6E-58), and B cells (r=-
0.18, p=8.4E-17). Further, DNAm PhenoAgeAccel is
positively correlated with the proportion of granulocytes
(r=0.32, p=2.3E-51), exhausted CDS8+ (defined as
CD28-CD45RA-) T cells (r=0.20, p=1.9E-20), and
plasma blast cells (r=0.26, p=6.7E-34). These results are
consistent with age related changes in blood cells [41]
and suggest that DNAm PhenoAge may capture aspects
of immuno-senescence in blood. However, three lines
of evidence suggest that DNAm PhenoAge is not
simply a measure of immunosenescence. First, another
measure of immunosenescence, leukocyte telomere
length, is only weakly correlated with DNAm
PhenoAgeAccel (r=-0.13 p=0.00019 in the WHI; r=-
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0.087, P=7.6E-3 in Framingham Heart study; JHS
p=7.83E-7, Supplement 1, Fig. S8). Second, the strong
association between DNAm PhenoAge and mortality
does not simply reflect changes in blood cell
composition, as can be seen from the fact that in
Supplement 1, Fig. S9 the robust association remains
even after adjusting for estimates of seven blood cell
count measures (Meta(FE)=1.036, Meta p=5.6E-21).
Third, DNAmPhenoAge correlates with chronological
age in non-blood tissue.

DNA sequence characteristics of the 513 CpGs in
DNAm PhenoAge

Of the 513 CpGs in DNAm PhenoAge, we find that, 41
CpGs were also in the Horvath DNAm age measure
(Supplement 2: Table S6). This represents a 4.88-fold
increase over what would be expected by chance
(p=8.97E-15). Of the 41 overlapping CpGs, the average
absolute value for their age correlations was r=0.40, and
31 had age correlations with absolute values in the top
20% of what is found among the 513 CpGs in the
DNAm PhenoAge score. We also observed 6 CpGs that
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DNAm PhenoAgeAccel
DNAm PhenoAgeAccel

Amyloid Neuritic Plaques

overlapped between the Hannum DNAm Age score and
the DNAm PhenoAge score—five of which were also
found in the Horvath DNAm Age measure. All six
CpGs had extremely high age correlations (half positive,
half negative), with absolute values between 1=0.49 and
=0.76. The five CpGs that are found in all three
epigenetic aging measures were: ¢g05442902 (P2RXL1),
cg06493994  (SCGN), ¢g09809672 (EDARADD),
cgl19722847 (IPO8), and ¢g22736354 (NHLRC1).

Several additional DNAm biomarkers have been
described in the literature [12, 13]. A direct comparison
of 6 DNAm biomarkers (including DNAm PhenoAge)
reveals that DNAm PhenoAge stands out in terms of its
predictive accuracy for lifespan, its relationship with
smoking status, its relationship with leukocyte telomere
length, naive CD8+ T cells and CD4+ T cells
(Supplement 1: Table S5).

Next, we conducted a functional enrichment analysis of
the chromosomal locations of the 513 CpGs and found
that 149 CpGs whose age correlation exceeded 0.2
tended to be located in CpG islands (p=0.0045, Supple-
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Figure 4. DNAm PhenoAge measured in dorsolateral prefrontal cortex relates to Alzheimer’s disease and related
neuropathologies. Using postmortem data from the Religious Order Study (ROS) and the Memory and Aging Project (MAP), we find
a moderate/high correlation between chronological age and DNAm PhenoAge (panel A). We also estimate the Pproportion of
neurons via the CETS algorithm and show that it correlates with DNAm PhenoAge (B). Further, the correlation between chronological
agen and DNAm PhenoAge is increased after adjusting for the estimated proportion on neurons in each sample (panel C). We also
find that DNAm PhenoAge is significantly higher (p=0.00046) among those with Alzheimer’s disease versus controls (panel D), and
that it positively correlates with amyloid load (p=0.012, panel E), neuritic plaques (p=0.0032, panel F), diffuse plaques (p=0.036, panel

G), and neurofibrillary tangles (p=0.0073, panel H).
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ment 1: Fig. S10) and were significantly enriched with
polycomb group protein targets (p=8.7E-5, Supplement
1: Fig. S10), which in line with results of epigenome
wide studies of aging effects [4, 5, 42].

Transcriptional
PhenoAge

and genetic studies of DNAm

Using the genome-wide data from FHS and WHI, we
estimated the heritability of DNAm PhenoAge. The heri-

tability estimated by the SOLAR polygenic model for
those of European ancestry in the FHS was h2=0.33,
while the heritability estimated for those of European
ancestry in WHI, using GCTA-GREML analysis [43]
was h?=0.51.

Using the monocyte data mentioned above, as well as
PBMC expression data on 2,188 persons from the FHS,
we conducted a transcriptional analysis to identify dif-
ferential expression associated with DNAm PhenoAge-

Pooled WHI samples
Adjusted for ethnicity and dataset

PhenoAgeAccel
n g .

bicor p
log2(Total energy)| 3700 10.58 0.01 0.40
Carbohydrate| 3700 48.64 -0.02 0.23
Protein| 3700 16.39 -0.01 0.45
Fat| 3700 35.05 0.03 012
log2(1+Red meat)[3700 0.69 0.05 2E-3
ko log2(1+Poultry)| 3700  0.39 -0.02 0.14
o log2(1+Fish)| 3700 0.25 -0.03 0.10
log2(1+Dairy)| 3700 1.21 -0.01 0.76
log2(1+Whole grains)| 3700 1.00 -0.02 0.19
log2(1+Nuts)[ 3700 0.10 -0.04 0.03
log2(Fruits)[ 3700  0.57 -0.02 0.13
log2(Vegetables)| 3700  0.71 -0.03 0.09
° Retinol| 2267 0.58 0.03 017
5 Mean carotenoids| 2266 2E-27
é Lycopene | 2267 3E-7
£ log2(alpha-Carotene)| 2267 5E-20
2 log2(beta-Carotene)| 2266 2E-17
> log2(Lutein+Zeaxanthin)| 2267 2E-16
g log2(beta-Cryptoxanthin)| 2267 2E-15
o log2(alpha-Tocopherol)| 2267 0.19
log2(gamma-Tocopherol)| 2267 : 0.07 6E-4
log2(C-reactive protein)| 2809 5E-22
log2(Insulin)| 4042  5.78 015 2E-20
log2(Glucose)| 4144  6.57 010 2E-10
‘2 log2(Triglyceride)| 4148  7.02 0.09 5E-9
o Total cholesterol| 4148 224.00 -0.04 4E-3
g LDL cholesterol| 4084 140.00 -0.05 2E-3
2 HDL cholesterol{ 4145 53.00 -0.09 7E-9
o log2(Creatinine)( 2748 -0.43 0.01 0.52
= Systolic blood pressure| 4177 129.00 0.08 1E-6
Diastolic blood pressure| 4178 76.00 0.02 012
log2(Waist / hip ratio)| 4037 -0.28| 015 5E-22
BMI[4145 28.88 013 5E-16
= Education| 4143  7.00 -0.09 6E-9
e ncome|4054 300 -0.06 [ 9E%
g = log2(1+Exercise)| 3914 275 -0.06 7E-5
» G Current smoker| 2321 0.00 010/ 3E-6
< log2(1+Alcohol)| 3700  0.14 -0.04 0.02

Figure 5. Lifestyle factors versus DNAm PhenoAge acceleration in blood in the WHI. In this cross
sectional analysis, the correlation test analysis (bicor, biweight midcorrelation) between select variables and
DNAm PhenoAgeAccel reveals that education, income, exercise, proxies of fruit/vegetable consumption, and
HDL cholesterol are negatively associated (blue) with DNAm PhenoAge, i.e. younger epigenetic age.
Conversely, CRP, insulin, glucose, triglycerides, BMI, waist-to-hip ratio, systolic blood pressure, and smoking have
a positive association (red) with DNAm PhenoAge. All results have been adjusted for ethnicity and batch/data
set. Similar results based on multivariate regression models can be found in Supplementary Figure 6B.
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Accel (Supplement 3: Table S7). Overall, we find that
genes show similar associations with chronological age
and DNAm PhenoAgeAccel. DNAm PhenoAgeAccel
represents aging differences among same-aged
individuals and is adjusted so as to exhibit a correlation
of r=0.0 with chronological age. Thus, this observation
suggests that genes whose transcription increases with
age are upregulated among epigenetically older
compared to epigenetically younger persons of the same
chronological age (Supplement 1: Fig. S11); the same
applies for genes that show decreases with chrono-
logical age being downregulated in epi-genetically older
versus younger persons of the same age.

Using the transcriptional data from monocytes
described above (adjusting for array, sex, race/ethnicity,
age, and imputed cell counts), we tested for GO
enrichment among genes that are positively associated
with DNAm PhenoAge and those that are negatively
associated with DNAm PhenoAge (Supplement 4:
Table S8). Among those with positive aging
associations (over-expression among epigenetically
older individuals), we observed enrichment for a
number of pro-inflammatory signaling pathways. These
pathways included, but are not limited to: multiple toll-
like receptor signaling pathways (7,9,3,2), regulation of
inflammatory response, JAK-STAT cascade, response
to lipopoly-saccharide, tumor necrosis factor-mediated
signaling pathway, and positive regulation of NF-
kappaB transcription factor activity. Additionally,
positively associated genes were also enriched for a
number anti-viral response pathways—type I interferon
signaling, defense response to virus, interferon-gamma-
mediated signaling pathway, cellular response to
interferon-alpha, etc. Other interesting GO terms
enriched among positively associated genes included:
response to nutrient, JAK-STAT cascade involved in
growth hormone signaling pathway, multicellular
organism growth, and regulation of DNA methylation.

When testing for enrichment among genes that were
negatively associated with DNAm PhenoAgeAccel
(decreased expression among epigenetically older
persons) we observed that many were implicated in
processes involving transcriptional and translational
machinery, as well as damage recognition and repair.
These included: translational initiation; regulation of
translational initiation; ribosomal large subunit assemb-
ly; ribosomal small subunit assembly; translational
elongation; transcription initiation from RNA
polymerase 1 promoter; transcription-coupled nucleo-
tide-excision repair; nucleotide-excision repair, DNA
incision, 5'-to lesion; nucleotide-excision repair, DNA
damage recognition;, DNA damage response, detection
of DNA damage; and regulation of DNA damage
checkpoint.

DISCUSSION

Using a novel two-step method, we were successful in
developing a DNAm based biomarker of aging that is
highly predictive of nearly every morbidity and mortali-
ty outcome we tested. Training an epigenetic predictor
of phenotypic age instead of chronological age led to
substantial improvement in  mortality/healthspan
predictions over the first generation of DNAm based
biomarkers of chronological age from Hannum[10],
Horvath[11] and other published DNAm biomarkers. In
doing so, this is the first study to conclusively demons-
trate that DNAm biomarkers of aging are highly
predictive of cardiovascular disease and coronary heart
disease. DNAm PhenoAge also tracks chronological
age and relates to disease risk in samples other than
whole blood. Finally, we find that an individual’s
DNAm PhenoAge, relative to his/her chronological age,
is moderately heritable and is associated with activation
of pro-inflammatory, interferon, DNAm damage repair,
transcriptional/ translational signaling, and various
markers of immuno-senescence: a decline of naive T
cells and shortened leukocyte telomere length
(Supplementary Information).

The ability of our measure to predict multifactorial
aging conditions is consistent with the fundamental
underpinnings of Geroscience research [1, 44], which
posits that aging mechanisms give rise to multiple
pathologies and thus, differences in the rate of aging
will have implications for a wide array of diseases and
conditions. Further, these results answer a fundamental
biological question of whether differences in multi-
system  dysregulation (estimated wusing clinical
phenotypic age measures), healthspan, and lifespan are
reflected at the epigenetic level, in the form of
differential DNAm at specific CpG sites.

The improvement over previous epigenetic biomarkers,
likely comes down to the types of CpGs selected for the
various measures. Only 41 of the 513 CpGs in DNAm
PhenoAge were shared with the Horvath clock, while
only five CpGs were shared between all three clocks
(DNAm PhenoAge, Horvath, and Hannum). In general,
these CpGs did not tend to be drivers of the DNAm
PhenoAge score, and instead represented those with
large age correlations. This may explain the
improvements of DNAm PhenoAge over previous
epigenetic biomarkers of aging. While the previous
DNAm age estimators selected CpGs to optimize
prediction of chronological age, the CpGs in DNAm
PhenoAge were optimized to predict a multi-system
proxy of physiological dysregulation (phenotypic age).
In doing so, we were able to not only capture CpGs that
exhibited strong correlations with age, but also those
that captured variations in risk of death and disease
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among same aged individuals. In general, the CpGs
with the highest weights in the new clock did not
correlate with chronological age (Supplement 1: Fig.
S12), but instead were related to the difference between
phenotypic and chronological age—i.e. divergence in
the rate of aging.

While DNAm PhenoAge greatly outperformed all
previous DNAm biomarkers of aging (Supplement 1:
Table S5), the utility of DNAm PhenoAge for
estimating risk does not imply that it should replace
clinical biomarkers when it comes to informing medical
and health-related decisions. In fact, but perhaps not
surprisingly, the phenotypic age measure used to select
CpGs is a better predictor of morbidity and mortality
outcomes than DNAm PhenoAge. While the addition of
error in performing a two-step process, rather than
training a DNAm predictor directly on mortality may
contribute, we don’t believe this accounts for the
difference in predictive performance. In fact, a recent
DNAm measure by Zhang et al. [38] was trained to
directly predict mortality risk, yet it appears to be a
weaker predictor than both our DNAm PhenoAge
measure and our clinical phenotypic age measure
(Supplement 1: Table S9). The first generation of
DNAm age estimators only exhibit weak associations
with clinical measures of physiological dysregulation
[24, 45]. Physiological dysregulation, which is more
closely related to our clinical age measure “phenotypic
age” than to chronological age, is not only the result of
exogenous/endogenous stress factors (such as obesity,
infections) but also a result of age related molecular
alterations, one example of which are modifications to
the epigenome. Over time, dysregulation within organ
systems leads to pathogenesis of disease (age-related
molecular changes - physiological dysregulation >
morbidity = mortality)[46]. However, stochasticity and
variability exist at each of these transitions. Therefore,
measures of physiological dysregulation, will be better
predictors of transition to the next stage in the aging
trajectory (i.e. morbidity and mortality) than will
measures of age related molecular alterations, like
DNAm PhenoAge. Similarly, quantification of disease
pathogenesis (cancer stage, Alzheimer’s stage) is likely
a better predictor of mortality risk than clinical
phenotypic aging measures. As a result, clinical pheno-
typic aging measures may be preferable to epigenetic
measures when the goal is risk prediction, and samples
come from blood.

That being said, when the aim is to study the
mechanisms of the aging process, DNAm measures
have advantages over clinical measures. First, they may
better capture “pre-clinical aging” and thus may be
more suited for differentiating aging in children, young
adults, or extremely healthy individuals, for whom

measures like CRP, albumin, creatinine, glucose, etc.
are still fairly homogenous. Second, as demonstrated,
these molecular measures can capture cell and/or tissue
specific aging rates and therefore may also lend
themselves to in vitro studies of aging, studies for which
blood is not available, studies using postmortem
samples, and/or studies comparing aging rates between
tissues/cells. While the fundamental drivers of aging are
believed to be shared across cells/tissues, that is not to
say that all the cells and tissues within an individual will
age at the same rate. In fact, it is more likely that
individuals will vary in their patterning of aging rates
across tissues, and that this will have implications for
death and disease risk. Relatedly, it is not known how
predictions based on DNAm PhenoAge measures from
non-blood samples will compare to phenotypic age
predictions. It may be the case that various outcomes
will be more tightly related to aging in specific
cells/tissues, rather than blood. Finally, examination of
DNAm based aging rates facilitates the direct study of
the proposed mechanisms of aging, of which
“epigenetic alterations” is one of the seven hypo-
thesized “pillars of aging” [1].

While more work needs to be done to model the biology
linking DNAm PhenoAge and aging outcomes, we
began to explore this using differential expression,
functional enrichment, and heritability estimates.
Overall, we found that CpGs that had larger increases
with aging tended to be located in CpG islands and
enriched with polycomb group protein targets,
consistent with what has been reported in previous
epigenome wide studies of aging effects [4-7, 42].
While typically DNAm of CpG islands and/or
polycomb recruitment is linked to transcriptional
silencing [47], for the most part, we did not observe
associations between DNAm and expression for co-
locating CpG-gene pairs—this was also true when only
considering CpGs located in islands. These findings
may suggest that the genes annotated to the CpGs in our
score are not part of the link between changes in DNAm
and aging. Nevertheless, we also recognize that these
null results could stem from the fact that 1) associations
were only tested in monocytes, 2) DNAm and
expression represents what is present globally for each
sample, rather than on a cell-by-cell basis, and 3)
stronger associations between DNAm and gene
expression levels may only exist early in life.

Nevertheless, we do identify potentially promising
transcriptional pathways when considering DNAm
PhenoAge as a whole. For instance, we observe that
higher DNAm PhenoAge is associated with increases in
the activation of proinflammatory pathways, such as
NF-kappaB; increased interferon (IFN) signaling;
decreases in ribosomal-related and translational
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machinery pathways; and decreases in damage
recognition and repair pathways. These findings are
consistent with previous work describing aging
associated changes, comprising increases in dysregulat-
ed inflammatory activation, increased DNA damage,
and loss of translational fidelity. For instance, there
exists a large body of literature highlighting the
importance of an increased low-grade pro-inflammatory
status as a driver of the aging process, termed inflamm-
aging [41, 48, 49]. IFN signaling pathways have been
shown to be markers of DNA damage and mediators of
cellular senescence[50]. Additionally, it has been shown
that breakdown of the transcriptional and translational
machinery may play a central role in the aging process
[51, 52]. For instance, the ribosome is believed to be a
key regulator of proteostasis, and in turn, aging [51, 53].
Relatedly, loss of integrity in DNA damage repair
pathways is considered another hallmark of the aging
process [54-56].

In general, many of these pathways will have implica-
tions for adaptation to exogenous and endogenous
stressors. Factors related to stress resistance and
response have repeatedly been shown to be drivers of
differences in lifespan and aging [49, 57-61]. This may
partially account for our findings related to smoking. In
general, it is not surprising that a biomarker of aging
and mortality risk relates to smoking, given that life
expectancies of smokers are on average ten years shorter
than never smokers, and smoking history is associated
with a drastic increase in the risk of a number of age-
related conditions. However, perhaps more interesting-
ly, we find that the effects of DNAm PhenoAge on
mortality appear to be higher for smokers than non-
smokers, which could suggest that DNAm PhenoAge
represent differences in innate resilience/ vulnerability to
pro-aging stressors, such as cigarette smoke.

Interestingly, we observed moderately high heritability
estimates for DNAm PhenoAge. For instance, we
estimated that genetic differences accounted for one-
third to one-half of the variance in DNAm PhenoAge,
relative to chronological age. In moving forward, it will
be useful to identify the genetic architecture underlying
differences in epigenetic aging. Finally, we reported
that individuals’ DNAm PhenoAges—relative to their
chronological ages—remained fairly stable over a nine-
year period. However, it is unclear whether it is
attributable to genetic influences, or the fact that social
and behavioral characteristics tend to also remain stable
for most individuals.

If the goal is to utilize accurate quantifiable measures of
the rate of aging, such as DNAm PhenoAge, to assess
the efficacy of aging interventions, more work will be
needed to evaluate the dynamics of DNAmPhenoAge

following various treatments. For instance, it remains to
be seen whether interventions can reverse
DNAmPhenoAge in the short term. Along these lines, it
will be essential to determine causality—does DNAm
drive the aging process, or is it simply a surrogate
marker of organismal senescence? If the former is true,
DNAm PhenoAge could provide insight into promising
targets for therapies aimed at lifespan, and more
importantly, healthspan extension.

Overall, DNAm PhenoAge is an attractive composite
biomarker that captures organismal age and the func-
tional state of many organ systems and tissues, above
and beyond what is explained by chronological time.
Our validation studies in multiple large and independent
cohorts demonstrate that DNAm PhenoAge is a highly
robust predictor of both morbidity and mortality
outcomes, and represents a promising biomarker of
aging, which may prove to be beneficial to both basic
science and translational research.

METHODS

Using the NHANES training data, we applied a Cox
penalized regression model—where the hazard of
aging-related mortality (mortality from diseases of the
heart, malignant neoplasms, chronic lower respiratory
disease, cerebrovascular disease, Alzheimer’s disease,
Diabetes mellitus, nephritis, nephrotic syndrome, and
nephrosis) was regressed on forty-two clinical markers
and chronological age to select variables for inclusion in
our phenotypic age score. Ten-fold cross-validation was
employed to select the parameter value, lambda, for the
penalized regression. In order to develop a sparse
parsimonious  phenotypic age estimator (fewer
biomarker variables preferred to produce robust results)
we selected a lambda of 0.0192, which represented a
one standard deviation increase over the lambda with
minimum mean-squared error during cross-validation
(Supplement 1, Fig. S13). Of the forty-two biomarkers
included in the penalized Cox regression model, this
resulted in ten variables (including chronological age)
that were selected for the phenotypic age predictor.

These nine biomarkers and chronological age were then
included in a parametric proportional hazards model
based on the Gompertz distribution. Based on this
model, we estimated the 10-year (120 months)
mortality risk of the j-the individual. Next, the
mortality score was converted into units of years
(Supplement 1). The resulting phenotypic age estimate
was regressed on DNA methylation data using an
elastic net regression analysis. The penalization
parameter was chosen to minimize the cross validated
mean square error rate (Supplement 1, Fig. S14), which
resulted in 513 CpGs.
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Estimation of blood cell counts based on DNAm
levels

We estimate blood cell counts using two different
software tools. First, Houseman's estimation method
[62] was used to estimate the proportions of CD8+ T
cells, CD4+ T, natural killer, B cells, and granulocytes
(mainly neutrophils). Second, the Horvath method,
implemented in the advanced analysis option of the
epigenetic clock software [11, 18], was used to estimate
the percentage of exhausted CD8+ T cells (defined as
CD28-CD45RA-), the number (count) of naive CD8+ T
cells (defined as CD45RA+CCR7+) and plasmablasts.
We and others have shown that the estimated blood cell
counts have moderately high correlations with
corresponding flow cytometric measures [62, 63].

Additional descriptions of methods and materials can be
found in Supplement 1.
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