The First to Fall: Fast Motor Units as the Hidden Trigger of Human Aging

Tony Ruggia

Independent Researcher
ORCID ID: https://orcid.org/0009-0002-5746-0270
Email: tonyruggia@gmail.com

Abstract

This paper offers a fresh perspective on human aging, one that begins not at the cellular level, but higher up—at the connection between brain and muscle. We argue that the slow, steady loss of fast motor units starting in our late twenties isn't a symptom of aging, but the very spark that sets it off. Instead of blaming telomeres, mitochondria, or DNA damage as the root causes, we suggest these are downstream effects—unleashed only after the nervous system begins to pull back its control. Drawing from neuroscience, elite athletic data, and logic, we propose that defending neuromuscular function—not just repairing cells—may hold the key to extending youth and delaying systemic breakdown.

Keywords: motor unit loss, aging, fast-twitch muscle fibers, neurodegeneration, common drive, neuromuscular control

Introduction

Aging science has long been dominated by cellular narratives—telomere shortening, oxidative stress, stem cell exhaustion, and epigenetic drift are widely cited as primary drivers of human decline. (López-Otín, et al., 2013). Yet none of these mechanisms offer a clear answer to one question: Why do fast motor units begin to deteriorate universally in all humans between the ages of 25 and 30, even in healthy individuals? This paper seeks to answer that question and propose a more consistent upstream model: that motor unit loss—specifically neurogenic degeneration of fast-twitch systems (Figueiredo et al., 2006)—is the root cause from which aging hallmarks emerge, not the other way around.

To understand the implications of this model, it is necessary to first explain the motor unit itself. A motor unit is defined as a single motor neuron and all the muscle fibers it innervates through its axon, functioning as a single coordinated unit (Purves et al., 2001). It is not a simple structure that can be regenerated or replaced. It is a finely tuned neurophysiological system, governed by

the central nervous system, responsible for translating thought and intention into force, movement, and power (Piasecki et al., 2016). There are three primary types of motor units: Type I (slow-twitch), Type IIa (fast fatigue-resistant), and Type IIx (fast-fatigable). (Purves et al., 2001). Of these, the fast motor units—especially the Type IIx variety—are the first to be lost with age, (Figueiredo et al., 2006), and yet they are the most important for maintaining youth, explosiveness, movement coordination, and defense against frailty.

The loss of fast motor units does not occur because of poor health, lifestyle, or disease. It happens in everyone, predictably and silently, beginning in the third decade of life. (Figueiredo et al., 2006). Research has shown that even in the absence of illness, humans begin to lose these motor units universally between the ages of 25 and 30 (Power et al., 2016). This occurs long before any clinical signs of aging or disease appear. There is no telomere crisis at age 27. There is no systemic mitochondrial collapse. There is no runaway inflammation. But the fast motor units are already dying.

This sequence matters. It means that the loss of fast motor units precedes the appearance of every hallmark of aging. They do not die because the mitochondria failed—they die because the neurogenic input from the brain and spinal cord begins to decline. (Figueiredo et al., 2006). This is a process not rooted in cellular malfunction, but in neurological withdrawal. Once the motor neuron retracts, the muscle fiber atrophies, the firing rate is lost, the common drive disintegrates (De Luca & Erim, 1994), and the body begins to spiral into the condition we call aging.

Although the hallmarks of aging—such as telomere shortening, mitochondrial dysfunction, DNA instability, and epigenetic alterations—are detectable from early life, including in utero and at birth (Teschendorff et al., 2013; Rebelo-Marques et al., 2018; Winstanley et al., 2025), they do not impair growth, strength, or resilience during youth. On the contrary, humans become faster, stronger, more agile, and more capable well into their second and third decades. This paradox—of cellular damage coinciding with rising physical performance—has been largely unexplained. But the timeline of motor unit loss offers a resolution. Beginning around age 25 to 30, fast motor units begin to disappear, and soon after, visible signs of aging emerge: muscle loss, slowed healing, diminished immune response, reduced recovery, and structural decline. (Thakolwiboon et al., 2023; Gustafsson & Ulfhake, 2024). Nothing else in the aging literature matches this timeline with such consistency. This suggests that motor units, particularly fast-twitch systems, serve as a functional barrier that suppresses the effects of cellular aging. Once these motor units are lost, the hallmarks are no longer held at bay—they are unleashed.

The following sections will lay out this argument step by step. We will examine why fast motor units are uniquely vulnerable, how their loss aligns with every known aspect of age-related decline, and why no other theory matches the precision of their timeline. We will also address common objections from cellular aging theories and show how their logic breaks when put against neuromuscular reality. The goal of this paper is not to dismiss previous science, but to

reframe it—to show that what we call aging is not caused by mitochondrial dysfunction, inflammation, or telomere attrition, but permitted by the loss of fast motor units that once held those forces at bay.

Aging does not begin with broken cells—it begins with a broken signal. The Hallmarks of Aging framework, while valuable, overlooks this upstream failure. And that broken signal is the early, irreversible loss of fast motor units.

What Makes Fast Motor Units Unique (and Vulnerable)

Fast motor units, particularly those composed of Type IIx muscle fibers, are built for power, speed, and high-force contraction. These units are characterized by their high firing thresholds, rapid fatigue, and reliance on neural input to remain active (Plotkin, Roberts, & Haun, 2021). Unlike slow motor units, which are engaged during low-intensity and endurance-based tasks (Davis et al., 2022), fast motor units are only recruited when the body performs near-maximal or explosive actions. Sprinting, jumping, sudden changes in direction, and powerful reflexive movements are all under the domain of fast motor units. (Lievens et al., 2020).

Their specialization is also their vulnerability. Fast motor units are highly dependent on frequent, high-intensity neural activation to survive. They are not maintained through passive movement or slow, steady activity. Instead, they require stimulation that challenges the nervous system to deliver high-frequency, coordinated signals—often referred to as high-rate firing. (Del Vecchio et al., 2019). In the absence of this, the central nervous system begins to withdraw input to these fibers. The axons degenerate. The neuromuscular junction disassembles. And the muscle fibers they controlled begin to atrophy and die. (Figueiredo et al., 2006; Piasecki et al., 2016).

Unlike muscles, fast motor units cannot regenerate through stem cell proliferation (Zmojdzian & Jagla, 2021). Motor neurons are post-mitotic—they do not divide, and once lost, cannot be replaced (Aranda-Anzaldo, 2012). Once a motor neuron is lost, its corresponding unit cannot be rebuilt. (Piasecki et al., 2016). Even if muscle mass is restored, the intelligence—the neuromuscular patterning and firing architecture characterized by common drive, summation patterns, and muscle wisdom—is permanently gone. While hypertrophy can recover muscle quantity, it cannot restore the quality of coordinated, high-frequency control once the original motor unit architecture has degenerated (De Luca & Erim, 1994; Piasecki et al., 2016; Aranda-Anzaldo, 2012). Muscle without motor command is like a car with no steering wheel.

Moreover, fast motor units are not uniformly distributed across the body. Certain lower limb muscles involved in explosive locomotion, such as the vastus lateralis and tibialis anterior, have been shown to contain a relatively higher proportion of fast-twitch fibers and large motor units compared to many upper limb muscles (Duchateau & Enoka, 2021). This anatomical distribution helps explain why lower limbs are often among the first regions to show functional decline with age. Studies have shown that the vastus lateralis undergoes significant age-related remodeling,

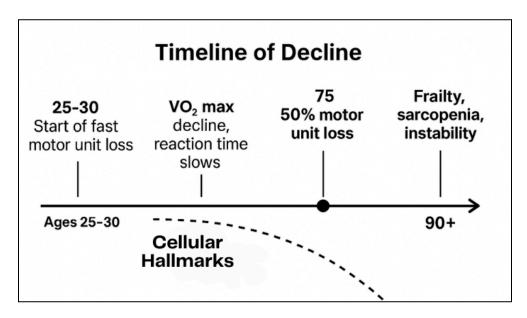
including motor unit loss and compensatory reinnervation, making it particularly vulnerable to sarcopenia and weakness (Piasecki et al., 2016). Additionally, high-density electromyography studies have revealed heterogeneous spatial activation patterns in lower limb muscles during locomotion, suggesting a complex and finely tuned motor unit organization that may be disrupted with aging (Schlink et al., 2020). These patterns of organization and vulnerability help explain why falls, instability, and delayed reaction times often emerge first in the lower extremities. Understanding what makes fast motor units unique clarifies why they are the first to decline — and why their loss appears to initiate the broader aging sequence.

Next, we will explore the timeline of this decline, how it parallels the onset of age-related diseases, and why no current cellular theory can fully account for its precision or universality.

The Timeline of Decline—When Aging Really Begins

One of the most overlooked truths in aging science is that movement capacity, explosiveness, and neuromuscular coordination begin to subtly decline long before any clinical sign of aging appears. The loss of fast motor units begins silently—undetectable by blood tests or imaging—but marks one of the earliest true inflection points in the aging process.

Numerous studies, including the foundational work of Lexell (1995), demonstrate that the average person begins to lose motor units—particularly the high-threshold, fast-twitch Type IIx units—between the ages of 25 and 30. Estimates suggest that motor unit number begins to decline gradually in early adulthood, even in healthy individuals (Fragala et al., 2019), and accelerates with advancing age (Figueiredo et al., 2006). According to Piasecki et al. (2016), by age 75, up to 50% of total motor units may be lost. In the later decades of life, this loss can exceed 90%, leaving behind only sparse, reinnervated units within a diminished neuromuscular network.


What makes this timeline extraordinary is its consistency across populations. The decline does not wait for metabolic disease, mitochondrial dysfunction, or systemic inflammation to appear. Nor is it solely dependent on genetics, diet, or physical activity. Instead, it appears to reflect an intrinsic, progressive withdrawal of neural control—a universal feature of aging that begins far earlier than most realize.

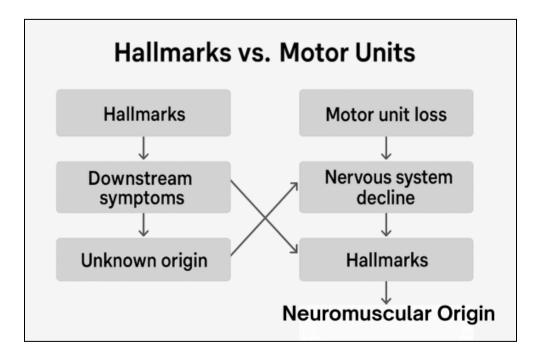
This early loss of fast motor units precedes and predicts nearly every downstream feature of physical aging. VO₂ max declines. Reaction time slows. Coordination deteriorates. Power output fades. These are not merely muscular deficits—they are the functional consequences of neural withdrawal. When fast motor units die, the body's ability to generate force rapidly, maintain postural control, and execute precise movement begins to unravel (Hunter et al., 2016).

Perhaps most revealing is that endurance athletes—despite superior cardiovascular fitness and mitochondrial density—are not protected from this process. In fact, studies show they may

experience similar or even greater reductions in motor unit number than power-trained athletes, likely because their training does not consistently recruit high-threshold motor units (Power et al., 2010). This suggests that motor unit preservation is not guaranteed by general fitness or VO₂ capacity alone—it requires specific neuromuscular loading through explosive, high-intent movement. See Figure 1 for a visual timeline of how fast motor unit loss precedes hallmark-related aging symptoms

This makes the timeline of motor unit loss not just an observation, but a diagnostic fingerprint. It identifies the first structural breakdown in the aging process. Before the onset of sarcopenia (Figueiredo et al., 2006), before chronic inflammation (Li et al., 2023), and before telomere shortening (Vaiserman et al., 2021), there is the quiet retraction of the nervous system's control over the body's most powerful fibers.

Figure 1. Timeline of Decline. Fast motor unit loss begins as early as age 25, long before traditional cellular hallmarks of aging appear. This upstream deterioration in neuromuscular command precedes declines in VO₂ max, coordination, and ultimately frailty—suggesting that aging begins with the nervous system, not the cell.


Importantly, this perspective is not new—but it has been largely ignored. In a landmark paper, Lexell (1997) stated: "Normal aging can be referred to as a slowly progressive neurogenic process, and the degeneration of the nervous system is considered as a major factor underlying the reductions in muscle mass and strength that occur with advancing age." This statement has gone largely unrecognized in modern literature, yet it affirms what this framework proposes: motor unit loss is not a downstream consequence of aging—it may be its origin. The hallmarks of aging do not cause this loss. They follow it.

Why the Hallmarks of Aging Model Fails the Timeline Test

The Hallmarks of Aging framework—first introduced by López-Otín et al. (2013) and expanded to twelve categories in 2023 (López-Otín et al., 2023)—is widely accepted in geroscience as a reference model for cellular deterioration. It identifies genomic instability, telomere attrition, mitochondrial dysfunction, epigenetic alterations, and dysbiosis among its key drivers of aging. While this framework has provided a valuable cellular lens, it fails one crucial criterion: the timing of onset.

If telomere shortening, mitochondrial decline, proteostasis imbalance, and the rest of the hallmarks were truly the root causes of aging, these processes would initiate the earliest observable signs of functional decline. But they do not. None of these hallmarks appear reliably in healthy individuals in their twenties. There is no telomere crisis at age 25 (López-Otín et al., 2023). There is no mitochondrial collapse in a 30-year-old elite athlete. Yet even in such individuals, fast motor unit loss has already begun (Panday et al., 2019).

This mismatch in chronology challenges the sufficiency of the Hallmarks model as a root-cause framework. This contrast is illustrated in Figure 2, which visualizes how fast motor unit loss may precede and even initiate the cellular hallmarks traditionally considered primary.

Figure 2. Competing Models of Aging: Cellular Hallmarks vs. Neuromuscular Origin. This comparative flowchart contrasts two major aging frameworks. The traditional Hallmarks model proposes that cellular damage drives aging, but fails to explain the early, universal decline in fast motor units. The alternative neuromuscular model presented here places motor unit loss at the beginning of the aging timeline, showing how functional deterioration cascades from neurological withdrawal rather than molecular disorder. This upstream model points us toward a different origin—one that forces us to rethink the usual order of cause and effect.

Instead, these hallmarks appear to manifest secondarily—emerging only after the neuromuscular command system begins to deteriorate. Once the nervous system starts withdrawing control over high-threshold motor units, the body's structural coherence unravels. Metabolic efficiency declines. Inflammation rises. Capillary density regresses. Mitochondria become under-stimulated. These are downstream effects of an upstream failure: the progressive disconnection between the central nervous system and the body's most powerful, fast-reacting muscle fibers (Lexell, 1997; Figueiredo et al., 2006; Iyer et al., 2021).

The Hallmarks framework is further weakened by its inability to explain use-dependent degeneration. Why does a lifelong endurance athlete lose fast motor units in muscle groups they rarely train, while preserving some in areas of consistent, explosive use? This selective degradation is not explained by epigenetic drift or proteome instability—but it is explained directly by neural demand, motor unit recruitment thresholds, and firing rate dependency (Power et al., 2016; Piasecki et al., 2019).

Moreover, no hallmark accounts for the loss of higher-order motor functions such as muscle wisdom, rate coding precision, or common drive—features only developed through years of coordinated neuromuscular activity (De Luca & Erim, 1994; Garland & Gossen, 2002; Kamen & Knight, 2004). These losses are not cellular—they are neurological. And once degraded, they cannot be restored by gene therapy, pharmacology, or cellular reprogramming.

Motor units are non-myogenic, post-mitotic structures. They do not divide or regenerate after birth. They are governed not by stem cell pools or DNA repair pathways, but by the nervous system itself (Floeter, 2010). When a motor neuron dies, the entire motor unit—its axon, neuromuscular junction, and the dependent fast-twitch muscle fibers—undergoes irreversible degeneration (Piasecki et al., 2016). No known form of regenerative medicine can reassemble this integrated system. More critically, no intervention can restore the neural intelligence embedded in its firing patterns, rate control, or lifetime-refined motor behavior (De Luca & Erim, 1994; Aranda-Anzaldo, 2012).

In this sense, the Hallmarks of Aging are not a roadmap to the origins of aging. They are a map of what happens *after* the nervous system lets go. The sections that follow examine why biological decline begins not in the cell, but in the command system—and why reframing aging around neuromuscular preservation may provide a more precise, actionable foundation for intervention.

Why Modern Longevity Science Has Misidentified the Starting Point of Aging

The scientific field of longevity has made remarkable strides in identifying cellular changes associated with aging, yet it has failed to establish a universally applicable starting point—one that marks the true origin of functional decline. Instead, it has reverse-engineered the aging

process from the presence of cellular damage observed in older individuals, mistaking consequence for cause. (Barzilai et al., 2012; López-Otín et al., 2023).

This misidentification stems from a kind of biological tunnel vision, where the tools of measurement—gene sequencing, epigenetic clocks, and cell culture assays—have determined the framework of theory. These tools reveal damage, but not necessarily origin. And so, aging has been defined by what we can measure, not by what unfolds first. (Horvath, 2013; Kriete, 2013).

As a result, most theories today cite DNA damage, senescence, and proteostasis breakdown as the roots of aging. But these are features of an already-declining system. None of them explain why a healthy, athletic 27-year-old—free of metabolic dysfunction, inflammation, or telomere issues—has already begun to lose fast motor units. The loss begins in the presence of good health, not its absence. (Klass et al., 2008; López-Otín et al., 2013; Kaushik & Cuervo, 2015; Yousefzadeh et al., 2021).

Modern longevity science also assumes that aging is primarily a cellular issue, rather than a neurological one. This assumption has led to countless proposed interventions aimed at improving cellular resilience—such as NAD⁺ boosters, mitochondrial-targeted antioxidants, and senolytics—while ignoring the fact that the nervous system's command signals are collapsing quietly beneath it all (Murphy & Smith, 2007; Verdin, 2015; Kirkland & Tchkonia, 2017).

AI-assisted research has compounded the error. By training models on the existing literature, most of which repeats the cellular paradigm (Visan & Negut, 2024; Bender et al., 2021; Ji et al., 2023), these systems return the same circular reasoning: "Aging is caused by mitochondrial dysfunction, telomere shortening, and inflammation." In truth, these symptoms are visible because the upstream control system—the fast motor units—has been deteriorating, slowly and silently (Kirkwood, 2005; He & Sharpless, 2017).

Another reason for the confusion is that fast motor unit loss does not cause immediate symptoms. It takes decades for the consequences—frailty, falls, sarcopenia, and cognitive slowness—to emerge. (Piasecki et al., 2016; Peng et al., 2020; Tessier et al., 2022). By the time most studies detect aging, the first cause has already passed unnoticed.

If we are to progress, longevity science must shift from treating aging as a problem of damaged molecules to one of failing command systems. It must recognize that the body is not a passive collection of cells—it is a symphony of neural communication. And when the conductor (the nervous system) loses control over its fastest instruments (fast motor units), the music of youth fades (Hepple & Rice, 2016).

This reframing does not reject previous research. It simply realigns it in a more logical sequence: aging accelerates when neuromuscular control declines. And the first, most predictable step in that process is the silent loss of fast motor units.

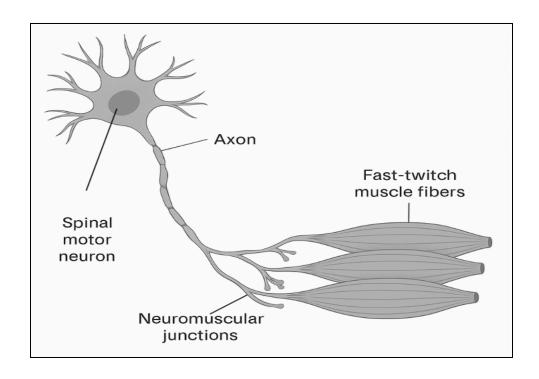
We shift now to a neglected idea: that movement feeds the nervous system. Not through calories, but through chaos, speed, and neural demand. Movement is not just exercise. It is food for the nervous system. And without it, the entire architecture of youth begins to collapse.

Movement as Food — The Forgotten Nutrient for the Nervous System

The nervous system is often studied as a controller of movement, but rarely as a system that is itself nourished by movement. Just as muscles atrophy without load and bones weaken without strain, the nervous system weakens in the absence of dynamic, high-intensity, unpredictable movement. (Duchateau et al., 2006; Lee et al., 2013; Aagaard et al., 2021). This is especially true for the fast motor units, which require not just movement—but movement that is neurologically demanding. (Purves et al., 2001).

Exercise is often seen as a way to improve heart health or burn calories—but its most overlooked role may be how it sustains the nervous system itself. Just as bones need pressure to stay dense and muscles need resistance to stay strong, the brain and spinal cord rely on complex, demanding movement to stay engaged. This kind of neural stimulation helps maintain active firing pathways and keeps high-threshold motor units functioning (Rossignol et al., 2006). Without it, the nervous system starts to retreat from these fibers—quietly and steadily—a process that's been observed as both progressive and difficult to reverse (Sylos-Labini et al., 2022).

But not all movement provides the same nourishment. Repetitive, low-intensity motion fails to challenge the nervous system. (Purves et al., 2001). In fact, it may even reinforce neural laziness. To stimulate growth and preservation, movement must be chaotic—that is, novel, fast, reflexive, and unpredictable. (Czyż et al., 2022) These variables force the brain and spinal cord to remain fully engaged, constantly recalibrating motor output, modulating firing rates, and preserving summation patterns. (Taubert et al. 2010)


This is where traditional exercise recommendations fall short. Most programs emphasize consistency over variation, rhythm over reactivity. But the nervous system adapts to patterns quickly. Within a few weeks of repeating the same movements, it begins to conserve energy by lowering the intensity and complexity of its output (Schmid et al., 2014; Smith et al., 2023). This leads to what we call neural habituation—a decline in the quality of communication, not just quantity (Merchie & Gomot, 2023).

To truly preserve the fast motor units and their controlling architecture, individuals must train in ways that challenge the nervous system's adaptability. Explosive jumps, rapid directional changes, reaction drills, torque-based movements, and unbalanced or rotational force production are examples of "neural food." They prevent stagnation (Del Vecchio et al., 2019; Orssatto et al., 2023). They maintain the pathways responsible for youth (Del Vecchio, Enoka, & Farina, 2024).

This concept also explains why people can lose motor control even while staying physically active. A long-distance cyclist may log thousands of miles but still suffer fast motor unit deterioration because the nervous system is no longer challenged to produce high-threshold, chaotic output. The body may be moving, but the nervous system is starving (Weavil et al., 2016; Sidhu et al., 2017). Just as the immune system weakens in the absence of pathogens, the nervous system weakens in the absence of neurological demand (Curtis et al., 2023). Movement must be designed not only to train the body—but to feed the brain's control over the body (Voss et al., 2010).

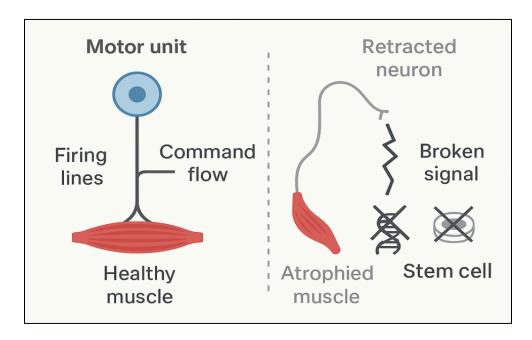
We now return to the core of the argument: even if every cellular hallmark of aging could be reversed, the unique architecture of the fast motor unit cannot be restored once lost. And if the nervous system is no longer feeding it, no intervention—biological or technological—can bring it back.

Why Fast Motor Units Cannot Be Rebuilt — Even if Everything Else Is Fixed

Figure 3. **Structural anatomy of a fast motor unit.** This diagram illustrates the spinal motor neuron, axon, neuromuscular junction, and innervated fast-twitch muscle fibers. Once lost, the system degenerates irreversibly, making restoration biologically infeasible.

In the field of regenerative medicine, optimism runs high. With breakthroughs in gene therapy, stem cell engineering, CRISPR editing, and induced pluripotent stem cells (iPSCs), many scientists believe that the future will allow us to restore or even reverse aging by repairing damaged tissue at the cellular level (Hussen et al., 2024). While these technologies hold promise in targeted contexts, they fail to address the fundamental limitation posed by fast motor units: once they are lost, they cannot be rebuilt.

Fast motor units are not cells that simply divide and replace. They are integrated, non-myogenic, post-mitotic structures. The motor neurons that innervate these units do not undergo mitosis (Floeter, 2010). Once they are lost due to axonal retraction or degeneration, their functional architecture—axons, neuromuscular junctions, and downstream muscle fibers—cannot be naturally regenerated (Zelada et al., 2020). This integrated structure is illustrated in Figure 3, which shows the full anatomy and complexity of a fast motor unit and its critical neuromuscular connections.


Even if we developed the ability to implant new motor neurons, the real challenge would still remain: teaching them what to do. These neurons would need to reconnect with the right muscle fibers, reestablish the original firing rhythms, and restore the intricate coordination patterns known as common drive and summation (De Luca & Erim, 2002; Rubin et al., 2022). But that's not just a wiring problem—it's a learning problem. Over time, our nervous system develops what researchers call "muscle wisdom"—a kind of deeply embedded motor intelligence built through years of movement, practice, and repetition (Madison & Robinson, 2014; Inoue & Nishimune, 2023). Imagine trying to rewire a hand to play the violin again—not just structurally, but with the nuance, timing, and fluidity it once had. That kind of skill can't be programmed or regenerated in a lab. It has to be earned—and once lost, it may be gone for good.

Imagine replacing a severed nerve with a new one, but asking it to drive a violinist's hand with the same mastery as before. The structure alone is insufficient. The symphony of learned control is gone. Rebuilding fast motor units is not a hardware issue—it's a loss of command, identity, and precision (Madison & Robinson, 2014; Rubin et al., 2022).

Even if we could somehow regenerate fast motor units in an older body, we'd run into a biomechanical paradox. Over the years, the body's connective tissues—tendons, ligaments, bones, and joints—adjust to lower levels of physical stress. They're no longer built to handle the sudden, explosive forces that fast motor units produce. For example, aging tendons lose their structural integrity; their collagen fibers become disorganized, their regenerative cells decline, and they're more prone to injury (Kwan et al., 2023). The spots where tendons anchor into bones also weaken with age, making them especially fragile under high load (Wang et al., 2024). These

changes go beyond just tissue—they affect bone density, ligament stretch, and joint stability (Rispler & Day, 2011). So even if we could bring back the neurons, the body they connect to might not be able to handle them. In this case, restoration wouldn't mean recovery—it could mean collapse. You can't just fix one part of the system; either the whole structure stays intact, or the whole thing fails.

This leads to the most sobering truth in longevity science: even if we fix telomeres, clear senescent cells, restore mitochondria, and perfect our gene-editing tools—we cannot restore a lost fast motor unit. As illustrated in Figure 4, the loss of a fast motor unit represents a complete circuit failure—one that no current intervention can reverse.

Figure 4. Irreversible Breakdown of the Motor Unit. Once a fast motor unit is lost—due to motor neuron death, axonal retraction, or disconnection from the neuromuscular circuit—it cannot be rebuilt. No known intervention, including gene therapy, stem cells, or reprogramming, can restore the original firing pattern, summation behavior, or command structure. Restoration attempts are met with system failure because the learned intelligence embedded in the circuit is gone.

This is not simply a challenge of technology—it is a biological boundary. Fast motor units are neurogenic, not myogenic. They are governed by motor neurons, which are post-mitotic and do not regenerate after birth (Lexell, 1997; Figueiredo et al., 2006; Floeter, 2010). All twelve Hallmarks of Aging—including mitochondrial dysfunction, telomere attrition, and intracellular stress responses—operate within cells (López-Otín et al., 2013; López-Otín et al., 2023; Biga et al., 2025). But they do not reestablish synaptic connections, restore firing patterns, or rebuild neuromuscular circuits. Once the neuron retracts and its axon degenerates, the motor unit it once controlled is gone. No cellular intervention can recreate the functional intelligence encoded in its firing rates, summation patterns, or common drive. As Lexell (1997) stated: "Normal aging can

be referred to as a slowly progressive neurogenic process." That process cannot be reversed with cellular therapy. And if the nervous system's original architecture is gone, the foundation for youth is permanently fractured.

This is why prevention—not restoration—is the only viable strategy. Preserving fast motor units, their neural command, and their experience-based intelligence must be the core of any longevity paradigm. It is not enough to treat the symptoms. We must defend the command system before it retracts.

These insights set the stage for a new framework for longevity—one that shifts the focus from genetic manipulation to the long-term preservation of neuromuscular communication. This is the focus of the final section.

Discussion

Longevity must be redefined—not through genetic manipulation, but by preserving neuromuscular communication for as long as it can be sustained.

While the Hallmarks of Aging framework has dominated longevity science for over a decade (López-Otín et al., 2013), and was recently expanded to include twelve cellular hallmarks (López-Otín et al., 2023), it fails to account for the irreversible breakdown of motor units. These frameworks remain entirely myogenic—focused on DNA repair, mitochondrial function, proteostasis, and senescence—but say nothing of the spinal motor neurons that orchestrate human movement.

Yet studies consistently show that muscle decline with age is not solely due to intrinsic degeneration, but largely a consequence of denervation and motor unit loss (Figueiredo et al., 2006). As Lexell (1997) wrote, "normal aging can be referred to as a slowly progressive neurogenic process." This withdrawal of motor neurons leads to the collapse of muscle fiber activation patterns, firing rate synchrony, and summation control. Once lost, these neuromuscular circuits cannot be rebuilt—no matter how intact the surrounding cellular machinery may be.

If aging research continues to ignore this, it risks optimizing the periphery while losing the core. The foundation of youth is not merely the health of the cell, but the fidelity of command between the brain and the body. Longevity efforts must move upstream—toward the nervous system's architecture, where true biological failure begins.

Future Directions

If we're serious about extending human vitality, aging research needs to look upstream—not just at cells, but at the systems that control them. That means focusing on the nervous system, and specifically, on the early signs of motor unit withdrawal: fading firing rates, disrupted common drive, and the quiet retreat of neural control.

Right now, most research assumes that fixing cellular damage is enough. But what if the real problem begins before the damage even starts—when the nervous system stops telling the body what to do?

Future studies should ask: Can the loss of fast motor units predict broader decline, even in people who still show "healthy" biomarkers? And more importantly, can we delay that loss through specific types of movement, neural stimulation, or spinal training? If fast motor units are the true bottleneck in aging, then preserving them could be the key not just to living longer—but living better. This should be the new frontier in aging science.

Conclusion

This study makes a bold, but evidence-based argument: aging doesn't start in the cell—it starts with the slow, silent loss of the body's most powerful signaling system. Fast motor units, once gone, take with them the speed, control, and precision that define youth. And yet, they begin to fade before any traditional sign of aging appears.

While science continues to chase damaged DNA, faulty mitochondria, and senescent cells, it may be missing the point. You can't fix what's downstream if the upstream signal—the brain's command over the body—is already breaking down. Without that signal, even perfect cells won't know what to do.

Aging, at its core, is about disconnection. It's about losing the clear, fast communication between the brain and muscle that keeps the body coordinated, responsive, and strong. Fast motor units are the first to go, and they're rarely the focus. But they may be the key.

That's why we need a shift—not away from cellular science, but beyond it. Toward preserving neural control: firing rates, synchronization, summation. Toward training the nervous system the way we train muscle. Toward viewing movement not just as fitness, but as preservation.

The biggest breakthroughs in longevity might not come from a pill or a gene-editing tool. They might come from how we move. From how we challenge the nervous system with speed, surprise, and complexity. From how we protect not just the mass of muscle—but the intelligence behind it

This new perspective doesn't reject what we've learned about cellular aging—it just reorders the story. Aging begins when the signal begins to fade. And once it's gone, there is no bringing it back.

So if we want to extend youth, we have to protect the command system that makes it possible. Not later. Now.

Postscript: Reframing the Field

For over a decade, the Hallmarks of Aging framework has shaped how we think about getting older. But if the loss of fast motor units comes first—before mitochondria falter, before telomeres shorten—then maybe we've been looking at the wrong starting point.

This paper doesn't try to rewrite the hallmarks. It simply reshuffles the order. Because aging might not begin with damaged cells—it might begin with a signal that goes quiet. A signal that once held everything together.

Clarifications, Limitations, and Declarations

Clarification of Key Terms

Biomechanical Paradox

A term describing the irreconcilable mismatch between neuromuscular restoration and aged structural systems. It refers to the phenomenon where even if fast motor units or neural signals were theoretically restored, the aged connective tissues—such as tendons, ligaments, bones, and joints—can no longer withstand the explosive force demands required. As a result, restoration becomes destabilization, and intervention without structural integrity leads to injury or failure.

Common Drive

Common drive refers to the way the brain sends unified signals to groups of motor units when we move. Instead of firing randomly, these units work together—receiving shared input that helps muscles contract smoothly and efficiently. This coordination is what allows us to walk steadily, lift objects with control, or balance on one foot. But as we age and motor units start to fade, that harmony breaks down. The signal becomes fragmented, and with it, our movement becomes shakier, slower, and less precise.

Firing Rates

Firing rates describe how often a motor neuron sends signals to its muscle fibers. The faster it fires, the more force and speed the muscle can generate. In young people, fast motor units fire rapidly, which makes movements quick, powerful, and precise. But as we age, those firing rates drop—especially in the muscles responsible for explosive motion. That's why reaction time slows, coordination fades, and power declines. And because this timing comes from the nervous system—not the muscle itself—you can't fix it with strength training or cell repair alone. It's a communication problem, not just a tissue one.

High-Threshold Motor Units

High-threshold motor units are recruited only during high-intensity, high-velocity, or explosive movements. They innervate fast-twitch muscle fibers—particularly Type IIx—and are responsible for actions like sprinting, jumping, and rapid reflexes. These units are activated by

high-frequency neural signals and are especially vulnerable to disuse and age-related neural withdrawal.

Leiopenia

Leiopenia—from the Greek words for "smooth" and "loss"—is a term used to describe something we rarely talk about in aging: the fading of fluid, coordinated movement. It's not about losing muscle size or strength, but about losing control. Movements that were once natural—graceful, balanced, precise—start to feel jerky or off. This drop in motor finesse often comes long before major weakness or frailty. The term was introduced by the author to capture this early, subtle loss: the quiet breakdown of how smoothly the brain and body work together.

Motor Unit Remodeling

Motor unit remodeling is the body's way of trying to patch things up when some motor neurons die off. The neurons that are still alive can grow new branches to reconnect with abandoned muscle fibers—a process called collateral sprouting. This helps keep those fibers alive a little longer, but it's far from perfect. The original fast, powerful motor units are often replaced by slower ones, which means you lose speed, sharpness, and control. And as we age, even this repair process starts to break down. It's like using spare parts to fix a machine that once ran with precision—it might work, but it'll never perform the same.

Muscle Wisdom

Muscle wisdom is what the body gains through years of real movement. It's the nervous system's ability to adjust how and when it fires muscle fibers—knowing when to push harder, when to conserve energy, and how to stay balanced during complex or high-pressure movements. It's not something we're born with; it's something we earn through repetition, experience, and fine motor control. And once the fast motor units that carry this wisdom are lost, no amount of strength training or muscle building can bring that intelligence back.

Neurological Withdrawal

Neurological withdrawal is the slow pullback of nerve signals from the brain and spinal cord to the muscles as we get older. It doesn't happen because of illness or injury—it's something built into the way our system ages. Over time, the brain starts sending fewer signals to certain muscles, especially the powerful fast ones, and they begin to shut down. This quiet retreat happens before we notice most signs of aging—and may even be what triggers them.

Neuromuscular Junction (NMJ) Decay

The neuromuscular junction (NMJ) is where nerve meets muscle—like a tiny handshake that tells the muscle to contract. But as we age, that handshake starts to weaken. The structure frays, the chemical signals don't fire as reliably, and the muscle's ability to receive those signals fades. This breakdown is known as NMJ decay. When it happens, muscles don't get clear instructions, which leads to weakness, clumsier movement, and eventually, muscle fibers being abandoned

altogether. Sometimes, this decline even starts before the motor neuron itself is lost—making it one of the earliest signs that the nervous system is pulling back.

Summation Patterns

Summation patterns refer to the way motor neurons fire in rapid succession to produce a smooth, continuous muscle contraction. Instead of a single twitch, multiple action potentials are spaced closely enough that their effects combine—or "summate"—resulting in stronger, more sustained force output. In healthy young individuals, this summation is finely tuned, enabling precise control over strength, timing, and coordination. With aging, the timing between signals becomes more erratic, reducing contraction efficiency and contributing to delayed response and power loss.

Limitations and Future Work

While the neurogenic hypothesis presented in this paper is grounded in current evidence and logical sequencing, several limitations must be acknowledged. First, most available data on motor unit loss are derived from indirect techniques such as motor unit number estimation (MUNE) or post-mortem analysis. Improved longitudinal studies with direct measures of neural integrity are needed to validate the proposed timeline.

Second, although the paper argues that motor unit loss precedes hallmark cellular changes, causality has not yet been definitively demonstrated. Experimental models that can isolate and manipulate fast motor unit preservation would provide critical insight into whether their loss directly initiates systemic aging.

Third, the model assumes a relatively uniform timeline of decline across populations. Future research should explore how genetic, hormonal, and lifestyle factors may modulate the rate of motor unit loss and whether interventions can meaningfully alter that trajectory.

Finally, while this study introduces the concept of movement as neural nourishment, the optimal type, intensity, and frequency of movement required to preserve neuromuscular command remain open questions. These should be investigated through comparative studies across training modalities and age groups.

Ethics Statement

This study is a theoretical synthesis based entirely on publicly available scientific literature. No human participants, animal models, or proprietary data were involved. As such, institutional ethics approval was not required.

Conflict of Interest

The author declares no conflict of interest.

Funding Statement

This research was conducted independently and received no funding or institutional support.

Acknowledgments

The author affirms that all core ideas, hypotheses, and structural design were fully developed by the human author. Portions of the manuscript benefited from AI-assisted editing and structuring using large language models such as ChatGPT to improve clarity and academic formatting. All final content, claims, and citations were verified and approved by the author.

AI Assistance Disclosure:

The author independently conceived, researched, and developed the hypothesis and theory presented in this paper. The ideas are original and have not been derived from any AI model, publication, or existing body of work.

The author used OpenAI's ChatGPT for assistance with formatting, grammar, and visual clarity in constructing diagrams. No content, structure, or conclusions were generated by AI. All scientific claims, references, and interpretations were selected and synthesized solely by the author.

About the Author

Tony Ruggia is an independent thinker and lifelong practitioner of human performance. Now 61, he has trained his body and excelled across multiple sports continuously since the age of 16. Without formal academic credentials, he approaches science through the lens of direct physical mastery and long-term observation of movement, decline, and adaptation. His work challenges cellular models of aging by proposing that neuromuscular withdrawal—not molecular damage—is the true starting point of biological failure. He coined the term *leiopenia* to describe the early loss of movement fluidity with age, and his writing seeks to reframe how we understand the origin of aging.

Figure Legends

Figure 1. Motor Unit Architecture and Firing Hierarchy.

This diagram illustrates the neurophysiological structure of a motor unit, showing the motor neuron, axon, neuromuscular junction, and the specific muscle fibers it innervates. Fast-twitch fibers (Type IIa and IIx) are shown with higher firing thresholds and greater force output

compared to slow-twitch (Type I). This visual underscores the importance of fast motor units in explosive movement and their early vulnerability in the aging process.

Figure 2. Timeline of Neuromuscular Decline.

A chronological illustration showing how fast motor unit loss begins between ages 25 and 30—decades before traditional cellular hallmarks of aging become clinically significant. The figure demonstrates how VO₂ max decline, sarcopenia, and systemic deterioration follow this neuromuscular breakdown, positioning it as the earliest measurable point of decline.

Figure 3. Hallmarks Model vs. Motor Unit Model.

A comparative flowchart presenting two aging paradigms. The left pathway shows the conventional Hallmarks of Aging framework leading to symptoms such as inflammation, mitochondrial dysfunction, and DNA damage. The right pathway places motor unit loss at the origin, suggesting these hallmarks emerge as downstream consequences of neuromuscular withdrawal. Cross-links emphasize causal reordering.

Figure 4. Irreversible Breakdown of the Fast Motor Unit Circuit.

A dual-panel schematic contrasting an intact fast motor unit circuit with a degenerated one. The healthy side shows proper neural signaling and muscle activation. The opposite side depicts axonal retraction, atrophy, and broken neuromuscular junctions. Crossed-out icons for stem cells and gene therapy highlight the failure of current interventions to repair this unique, experience-dependent system.

References

Aagaard, P., Bojsen-Møller, J., & Lundbye-Jensen, J. (2020). Assessment of neuroplasticity with strength training. *Exercise and Sport Sciences Reviews*, 48(4), 151–162. https://doi.org/10.1249/JES.0000000000000229

Aranda-Anzaldo, A. (2012). The post-mitotic state in neurons correlates with a stable nuclear higher-order structure. *Communicative & Integrative Biology*, *5*(2), 134–139. https://doi.org/10.4161/cib.18761

Barzilai, N., Huffman, D. M., Muzumdar, R. H., & Bartke, A. (2012). The critical role of metabolic pathways in aging. *Diabetes, 61*(6), 1315–1322. https://doi.org/10.2337/db11-1300

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? *Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency,* 610–623. https://doi.org/10.1145/3442188.3445922

Biga et al. (2025). Hallmarks of aging: A user's guide for comparative biologists. https://doi.org/10.1016/j.arr.2024.102616

- Choi, J. J., Shin, E. J., Han, W. M., et al. (2020). Regenerating motor neurons prime muscle stem cells for myogenesis by enhancing protein synthesis and mitochondrial bioenergetics. *bioRxiv*. https://doi.org/10.1101/2020.05.24.113456
- Czyż, S. H., Marusiak, J., Klobusiaková, P., Sajdlová, Z., & Rektorová, I. (2022). Neuroplasticity in motor learning under variable and constant practice conditions—Protocol of randomized controlled trial. *Frontiers in Human Neuroscience*, *16*, Article 773730. https://doi.org/10.3389/fnhum.2022.773730
- Davis, L. A., Fogarty, M. J., Brown, A., & Sieck, G. C. (2022). Structure and function of the mammalian neuromuscular junction. *Comprehensive Physiology*, *12*(4), 3731–3766. https://doi.org/10.1002/cphy.c210022
- De Luca, C. J., & Erim, Z. (1994). Common drive of motor units in regulation of muscle force. *Trends in Neurosciences*, *17*(7), 299–305. https://doi.org/10.1016/0166-2236(94)90064-7
- De Luca, C. J., & Erim, Z. (2002). Common drive in motor units of a synergistic muscle pair. *Journal of Neurophysiology*, 87(4), 2200–2204. https://doi.org/10.1152/jn.00793.2001
- Del Vecchio, A., Casolo, A., Negro, F., et al. (2019). The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. *The Journal of Physiology*, 597(7), 1873–1887. https://doi.org/10.1113/JP277250
- Del Vecchio, A., Enoka, R. M., & Farina, D. (2024). Specificity of early motor unit adaptations with resistive exercise training. *The Journal of Physiology, 602*(12), 2679–2688. https://doi.org/10.1113/JP282560
- Del Vecchio, A., Negro, F., Holobar, A., et al. (2019). You are as fast as your motor neurons: Speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans. *The Journal of Physiology, 597*(9), 2445–2456. https://doi.org/10.1113/JP277396
- DrHunter, S. K., Pereira, H. M., & Keenan, K. G. (2016). The aging neuromuscular system and motor performance. *Journal of Applied Physiology, 121*(4), 982–995. https://doi.org/10.1152/japplphysiol.00475.2016
- Duchateau, J., & Enoka, R. M. (2021). Distribution of motor unit properties across human muscles. *Journal of Applied Physiology*, *131*(4), 1350–1363. https://doi.org/10.1152/japplphysiol.00290.2021
- Duchateau, J., Semmler, J. G., & Enoka, R. M. (2006). Training adaptations in the behavior of human motor units. *Journal of Applied Physiology*, *101*(6), 1766–1775. https://doi.org/10.1152/japplphysiol.00543.2006

Figueiredo, P. A., Mota, M. P., Appell, H. J., & Duarte, J. A. (2006). Ceasing of muscle function with aging: Is it the consequence of intrinsic muscle degeneration or a secondary effect of neuronal impairments? *European Review of Aging and Physical Activity, 3*(2), 75–83. https://doi.org/10.1007/s11556-006-0011-9

Floeter, M. K. (2010). Structure and function of muscle fibers and motor units. In G. Karpati, D. Hilton-Jones, K. Bushby, & R. C. Griggs (Eds.), *Disorders of Voluntary Muscle* (8th ed., pp. 1–10). Cambridge University Press.

https://assets.cambridge.org/97805218/76292/excerpt/9780521876292 excerpt.pdf

Fragala, M. S., Cadore, E. L., Dorgo, S., Izquierdo, M., Kraemer, W. J., Peterson, M. D., & Ryan, E. D. (2019). Resistance training for older adults: Position statement from the National Strength and Conditioning Association. *Journal of Strength and Conditioning Research*, *33*(8), 2019–2052. https://doi.org/10.1519/JSC.00000000000003230

Garland, S. J., & Gossen, E. R. (2002). The muscular wisdom hypothesis in human muscle fatigue. *Exercise and Sport Sciences Reviews*, *30*(1), 45–49. https://doi.org/10.1097/00003677-200201000-00009

Gustafsson, T., & Ulfhake, B. (2024). Aging skeletal muscles: What are the mechanisms of age-related loss of strength and muscle mass, and can we impede its development and progression? *International Journal of Molecular Sciences*, *25*(20), 10932. https://doi.org/10.3390/ijms252010932

Hepple, R. T., & Rice, C. L. (2016). Innervation and neuromuscular control in ageing skeletal muscle. *The Journal of Physiology*, 594(8), 1965–1978. https://doi.org/10.1113/JP270561

Horvath, S. (2013). DNA methylation age of human tissues and cell types. *Genome Biology*, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115

Inoue, R., & Nishimune, H. (2023). Neuronal plasticity and age-related functional decline in the motor cortex. *Cells*, *12*(17), 2142. https://doi.org/10.3390/cells12172142

Iyer, S. R., Shah, S. B., & Lovering, R. M. (2021). The neuromuscular junction: Roles in aging and neuromuscular disease. *International Journal of Molecular Sciences*, *22*(15), 8058. https://doi.org/10.3390/ijms22158058

Ji, Z., Lee, N., Frieske, R., et al. (2023). Survey of hallucination in natural language generation. *ACM Computing Surveys*, *55*(12), 1–38. https://doi.org/10.1145/3571730

Jones, E. J., Chiou, S.-Y., Atherton, P. J., et al. (2022). Ageing and exercise-induced motor unit remodelling. *The Journal of Physiology*, 600(8), 1839–1849. https://doi.org/10.1113/JP281726

Kamen, G., & Knight, C. A. (2004). Training-related adaptations in motor unit discharge rate in young and older adults. *Journal of Gerontology: Series A*, *59*(12), 1334–1338. https://doi.org/10.1093/gerona/59.12.1334

Kaushik, S., & Cuervo, A. M. (2015). Proteostasis and aging. *Nature Medicine*, *21*(12), 1406–1415. https://doi.org/10.1038/nm.4001

Kirkland, J. L., & Tchkonia, T. (2017). Cellular senescence: A translational perspective. *EBioMedicine*, 21, 21–28. https://doi.org/10.1016/j.ebiom.2017.04.013

Klass, M., Baudry, S., & Duchateau, J. (2008). Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. *Journal of Applied Physiology*, 104(3), 739–746. https://doi.org/10.1152/japplphysiol.00550.2007

Kriete, A. (2013). Robustness and aging—A systems-level perspective. *BioSystems*, *112*(1), 37–48. https://doi.org/10.1016/j.biosystems.2013.03.014

Kwan, K. Y. C., Ng, K. W. K., Rao, Y., et al. (2023). Effect of aging on tendon biology, biomechanics and implications for treatment approaches. *International Journal of Molecular Sciences*, 24(20), 15183. https://doi.org/10.3390/ijms242015183

Lee, S. S. M., de Boef Miara, M., Arnold, A. S., et al. (2013). Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion. *Journal of Experimental Biology, 216*(2), 198–207. https://doi.org/10.1242/jeb.072637

Lexell, J. (1995). Human aging, muscle mass, and fiber type composition. *The Journals of Gerontology Series A: Biological Sciences and Medical Sciences*, 50A(Special Issue), 11–16. https://doi.org/10.1093/gerona/50A.Special_Issue.11

Lexell, J. (1997). Evidence for nervous system degeneration with advancing age. *The Journal of Nutrition*, 127(5 Suppl), 1011S–1013S. https://doi.org/10.1093/jn/127.5.1011S

Lievens, E., Klass, M., Bex, T., & Derave, W. (2020). Muscle fiber typology substantially influences time to recover from high-intensity exercise. *Journal of Applied Physiology, 128*(4), 648–659. https://doi.org/10.1152/japplphysiol.00636.2019

Li, X., Li, C., Zhang, W., Wang, Y., Qian, P., & Huang, H. (2023). Inflammation and aging: Signaling pathways and intervention therapies. *Signal Transduction and Targeted Therapy*, 8(1), Article 239. https://doi.org/10.1038/s41392-023-01502-8

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. *Cell*, *153*(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. *Cell*, 186(2), 243–278. https://doi.org/10.1016/j.cell.2022.11.001

Madison, R. D., & Robinson, G. A. (2014). Accuracy of regenerating motor neurons: Influence of diffusion in denervated nerve. *Neuroscience*, *273*, 128–140. https://doi.org/10.1016/j.neuroscience.2014.05.016

Merchie, A., & Gomot, M. (2023). Habituation, adaptation and prediction processes in neurodevelopmental disorders: A comprehensive review. *Brain Sciences*, *13*(7), 1110. https://doi.org/10.3390/brainsci13071110

Murphy, M. P., & Smith, R. A. J. (2007). Targeting antioxidants to mitochondria by conjugation to lipophilic cations. *Annual Review of Pharmacology and Toxicology, 47*, 629–656. https://doi.org/10.1146/annurev.pharmtox.47.120505.105110

Orssatto, L. B. R., Rodrigues, P., Mackay, K., et al. (2023). Intrinsic motor neuron excitability is increased after resistance training in older adults. *Journal of Neurophysiology*, *129*(3), 635–650. https://doi.org/10.1152/jn.00462.2022

Panday, S. B., Pathak, P., Moon, J., & Ahn, J. (2019). Aging induces a step-like change in the motor ability structure of athletes. *Aging*, *11*(14), 5276–5283. https://doi.org/10.18632/aging.102126

Peng, T.-C., Chen, W.-L., Wu, L.-W., Chang, Y.-W., & Kao, T.-W. (2020). Sarcopenia and cognitive impairment: A systematic review and meta-analysis. *Clinical Nutrition*, *39*(9), 2695–2701. https://doi.org/10.1016/j.clnu.2019.12.014

Piasecki, M., Ireland, A., Jones, D. A., & McPhee, J. S. (2016). Age-dependent motor unit remodelling in human limb muscles. *Biogerontology*, *17*(3), 485–496. https://doi.org/10.1007/s10522-015-9627-3

Piasecki, M., Ireland, A., Jones, D. A., & McPhee, J. S. (2016). Age-dependent motor unit remodeling in human limb muscles. *The Journal of Physiology, 594*(16), 4525–4536. https://doi.org/10.1113/JP271614

- Plotkin, D. L., Roberts, B. M., & Haun, C. T. (2021). Muscle fiber type transitions with exercise training: Shifting perspectives. *Sports*, *9*(9), 127. https://doi.org/10.3390/sports9090127
- Power, G. A., Allen, M. D., Gilmore, K. J., et al. (2016). Motor unit number and transmission stability in octogenarian world class athletes: Can age-related deficits be outrun? *Journal of Applied Physiology*, 121(4), 1013–1020. https://doi.org/10.1152/japplphysiol.00149.2016
- Purves, D., Augustine, G. J., Fitzpatrick, D., et al. (Eds.). (2001). *Neuroscience* (2nd ed.). Sunderland (MA): Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK10874/

Rebelo-Marques, A., De Sousa Lages, A., Andrade, R., et al. (2018). Aging Hallmarks: The Benefits of Physical Exercise. *Frontiers in Endocrinology*, 9, 258. https://doi.org/10.3389/fendo.2018.00258

Rispler, D. T., & Day, S. M. (2011). Age-related changes in bone and soft tissue. In *Orthopaedic Knowledge Update: Musculoskeletal Aging* (pp. 743–754). Springer. https://doi.org/10.1007/978-1-4419-6999-6_90

Rossignol, S., Dubuc, R., & Gossard, J. P. (2006). Dynamic sensorimotor interactions in locomotion. *Physiological Reviews*, 86(1), 89–154. https://doi.org/10.1152/physrev.00028.2005

Rubin, D. B., Hosman, T., Kelemen, J. N., et al. (2022). Learned motor patterns are replayed in human motor cortex during sleep. *The Journal of Neuroscience*, *42*(25), 5007–5020. https://doi.org/10.1523/JNEUROSCI.2074-21.2022

Schlink, B. R., et al. (2020). Human myoelectric spatial patterns differ among lower limb muscles and locomotion speeds. *Physiological Reports*, *8*(24), e14652. https://doi.org/10.14814/phv2.14652

Schmid, S., Wilson, D. A., & Rankin, C. H. (2014). Habituation mechanisms and their importance for cognitive function. *Frontiers in Integrative Neuroscience*, *8*, 97. https://doi.org/10.3389/fnint.2014.00097

Sidhu, S. K., Weavil, J. C., Mangum, T. S., et al. (2017). Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. *Clinical Neurophysiology, 128*(1), 44–55. https://doi.org/10.1016/j.clinph.2016.10.008

Smith, J. A. B., Murach, K. A., Dyar, K. A., & Zierath, J. R. (2023). Exercise metabolism and adaptation in skeletal muscle. *Nature Reviews Molecular Cell Biology*, *24*(9), 607–632. https://doi.org/10.1038/s41580-023-00606-x Sylos-Labini, F., La Scaleia, V., d'Avella, A., et al. (2022). Neural control and sensorimotor integration in human locomotion: Lessons from dynamic experiments. *Communications Biology*, *5*, Article 1087. https://doi.org/10.1038/s42003-022-04225-8

Taubert, M., Draganski, B., Anwander, A., et al. (2010). Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. *Journal of Neuroscience*, *30*(35), 11670–11677. https://doi.org/10.1523/JNEUROSCI.2567-10.2010

Teschendorff, A. E., West, J., & Beck, S. (2013). Age-associated epigenetic drift: implications, and a case of epigenetic thrift? *Human Molecular Genetics*, 22(R1), R7–R15. https://doi.org/10.1093/hmg/ddt375

Tessier, A.-J., Wing, S. S., & Rahme, E. (2022). Association of low muscle mass with cognitive function during a 3-year follow-up among adults aged 65 to 86 years in the Canadian longitudinal study on aging. *JAMA Network Open, 5*(7), e2219926. https://doi.org/10.1001/jamanetworkopen.2022.19926

Thakolwiboon, S., et al. (2023). *Immunosenescence and multiple sclerosis: inflammaging for prognosis and therapeutic consideration. Frontiers in Aging*, 4, 1234572. https://doi.org/10.3389/fragi.2023.1234572

Vaiserman, A., & Krasnienkov, D. (2021). Telomere length as a marker of biological age: State-of-the-art, open issues, and future perspectives. *Frontiers in Genetics, 11*, Article 630186. https://doi.org/10.3389/fgene.2020.630186

Verdin, E. (2015). NAD⁺ in aging, metabolism, and neurodegeneration. *Science*, *350*(6265), 1208–1213. https://doi.org/10.1126/science.aac4854

Visan, A. I., & Negut, I. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. *Life*, *14*(2), 233. https://doi.org/10.3390/life14020233

Voss, M. W., Prakash, R. S., Erickson, K. I., et al. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. *Frontiers in Aging Neuroscience*, *2*, 32. https://doi.org/10.3389/fnagi.2010.00032

Wang, H., He, K., & Cheng, C. K. (2024). The structure, biology and mechanical function of tendon/ligament-bone interfaces. *Tissue Engineering Part B: Reviews*. https://doi.org/10.1089/ten.teb.2023.0295

Weavil, J. C., Sidhu, S. K., Mangum, T. S., et al. (2016). Fatigue diminishes motoneuronal excitability during cycling exercise. *Journal of Neurophysiology*, *116*(4), 1743–1751. https://doi.org/10.1152/jn.00300.2016 Winstanley, Y. E., Rose, R. D., Sobinoff, A. P., et al. (2025). Telomere length in offspring is determined by mitochondrial-nuclear communication at fertilization. *Nature Communications*, 16, Article 2527. https://doi.org/10.1038/s41467-025-57794-7

Yousefzadeh, M. J., Henpita, C., Vyas, R., et al. (2021). DNA damage—how and why we age? *eLife*, 10, e62852. https://doi.org/10.7554/eLife.62852

Zelada, D., Bermedo-García, F., Collao, N., & Henríquez, J. P. (2020). Motor function recovery: Deciphering a regenerative niche at the neuromuscular synapse. *Biological Reviews*, *96*(3), 752–766. https://doi.org/10.1111/brv.12675

Zmojdzian, M., & Jagla, K. (2021). The relationship between muscle stem cells and motor neurons. *Cellular and Molecular Life Sciences*, *78*, 2337–2354. https://doi.org/10.1007/S00018-021-03838-2

Supplementary Demonstrations: Real-World Evidence of Neuromuscular Longevity Principles

The following supplementary video materials provide visual demonstrations and real-world applications of the neuromuscular theories presented in this study, including motor unit preservation, common drive, torque generation, gamma motor neuron function, and respiratory motor unit activation. These real-world applications are performed by the author at age 61 and are provided to support the scientific hypotheses presented.

Each video has been publicly available on YouTube, viewed by thousands, and received extensive positive feedback. These demonstrations are intended to enhance understanding of the theoretical framework by showing its practical implementation.

Supplementary Video S1.

Title: Losing Torque Is More Dangerous Than You Think — Here's One Drill to Fight It

Link: https://youtu.be/NDfOLgpfn2M

Views: 10,000

Summary: Demonstrates the "chaos cut" drill—a real-world movement technique designed to stimulate motor unit recruitment, torque preservation, and functional strength on unstable terrain. Emphasizes the importance of chaotic, reactive training for preserving neuromuscular control as we age.

Supplementary Video S2.

Title: Common Drive: Endurance Training Mimics Aging by Killing It — Here's Proof

Link: https://youtu.be/x-MEoybeCig

Views: 31,000

Summary: Explores how traditional endurance training can reduce common drive, lower firing rates, and accelerate neuromuscular aging. The speaker argues for training that preserves

synchronization, power, and fast motor unit engagement.

Supplementary Video S3.

Title: 61-Year-Old Moves Like a Teenager — Here's Why!

Link: https://youtu.be/TQw0UoZhqRw

Views: 82,000

Summary: Shows the role of gamma motor neurons and intra-fusal fibers in maintaining movement fluidity. The video introduces the concept of "leiopenia"—the loss of smoothness in

movement—and explains why agility, not strength, is the first to decline with age.

Supplementary Video S4.

Title: Breathing Power & Longevity: The Missing Key Revealed!

Link: https://youtu.be/D3eOnUEkrJ0

Views: 273,000

Summary: Introduces the RMUA (Respiratory Motor Unit Activation) Theory and explains how aging impairs respiratory motor units—particularly the diaphragm and intercostal fast fibers. Demonstrates targeted explosive breathing drills to preserve endurance and VO₂ capacity through neuromuscular training.