
Progress in Cardiovascular Diseases 81 (2023) 2–9

Available online 17 October 2023

SGLT inhibitors for improving Healthspan and lifespan 

James H. O’Keefe *, Robert Weidling, Evan L. O’Keefe, W. Grant Franco 
Saint Luke’s Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, United States of America   

A R T I C L E  I N F O   

Keywords: 
SGLTi 
Cardiovascular 
cancer 
Central nervous system 
Aging 
Longevity 
Autophagy 
Geroprotection 

A B S T R A C T   

Sodium-glucose cotransporter inhibitor/inhibition (SGLTi), initially approved as a glucose-lowering therapy for 
type 2 diabetes, is associated with decreased risks for many of the most common conditions of aging, including 
heart failure, chronic kidney disease, all-cause hospitalization, atrial fibrillation, cancer, gout, emphysema, 
neurodegenerative disease/dementia, emphysema, non-alcoholic fatty liver disease, atherosclerotic disease, and 
infections. Studies also show that SGLTi improves overall life expectancy and reduces risks of cardiovascular 
death and cancer death. These wide-ranging health benefits are largely unexplained by the SGLTi’s modest 
improvements in standard risk factors. SGLTi produces upregulation of nutrient deprivation signaling and 
downregulation of nutrient surplus signaling. This in turn promotes autophagy, which helps to optimize cellular 
integrity and prevent apoptotic cell death. SGLTi decreases oxidative stress and endoplasmic reticulum stress, 
restores of mitochondrial health, stimulates mitochondrial biogenesis, and diminishes proinflammatory and 
profibrotic pathways. These actions help to revitalize senescent cells, tissues, and organs. In summary, SGLTi 
appears to slow aging, prevent disease, and improve life expectancy, and its mechanisms of action lend strong 
biological plausibility to this hypothesis. Further randomized trials are warranted to test whether SGLTi, a safe 
and well-tolerated, once-daily pill, might improve healthspan and lifespan.   

Introduction 

The innate aging process is the most important risk factor for the 
majority of serious chronic disease and death. Aging is characterized by 
the progressive erosion of optimal physiological function beginning at 
the cellular level and culminating in musculoskeletal frailty with an 
increased risk for developing chronic cardiovascular (CV) disease 
(CVD), metabolic, neurodegenerative, infectious and neoplastic dis-
eases. Due to the increasingly well-understood biological mechanisms of 
aging, this process may be theoretically modifiable using targeted 
therapeutic interventions. In recent decades, scientists have explored a 
range of nutritional and pharmacological interventions aimed at 
extending lifespan in lower organisms. Optimal diet and exercise appear 
to be effective at extending lifespan as well as healthspan—the number 
of years a person lives in a state of good health with full mental and 
physical capabilities.1,2 Aerobic exercise/cardiorespiratory fitness and 
calorie restriction/fasting have been shown to improve insulin 

sensitivity, which provides potent protection against age-related disease 
and premature death.2,3 

Scientists are actively studying several drugs that have shown po-
tential for slowing aging and improving lifespan and healthspan. Two of 
the most promising geroprotective (protective against adverse effects of 
aging) agents, metformin and rapamycin, are already being prescribed 
off-label to slow aging despite a paucity of evidence showing safety and 
efficacy.4–8 Sodium-glucose cotransporter inhibitor/inhibition (SGLTi) 
works by blocking reuptake of filtered glucose in the proximal tubule of 
the nephron. These agents all block the SGLT2, but sotogliflozin also 
blocks SGLT1, which is primarily located in the intestinal wall. Origi-
nally formulated to treat type 2 diabetes (T2D), this relatively simple 
mechanism of action leads to extraordinary downstream effects for 
preventing and treating many of the most common and serious age- 
related diseases regardless of T2D status. The aims of this review are 
a) to propose SGLTi as a potential therapy that may prevent/delay many 
of the common age-related diseases and improve lifespan and 
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healthspan, and b) to discuss potential mechanisms of action whereby 
SGLTi might confer these benefits. 

SGLTi: Effects on standard CVD risk factors 

Unlike other proposed geroprotective therapies, a large body of data 
provides compelling evidence that SGLTi may reduce risks of many age- 
related diseases and improve life expectancy in humans.9 This class of 
medication produces a modest osmotic diuresis through inhibition of 
renal glucose and sodium reabsorption in patients with or without 
T2D—urinary glucose losses generally total 60 to 80 g/day (~300 cal/ 
day). Randomized controlled trials (RCT) report that SGLTi used in T2D 
patients causes statistically significant reductions in hemoglobin A1c 
(HbA1c) (0.8%), weight (3.75 pounds or 2.4% of body weight) and 
blood pressure (BP; 4/2 mmHg) with a significant increase in high- 
density lipoprotein cholesterol (7%).10 

However, in patients without T2D, these drugs induce small to 
negligent A1c reductions because the urinary glucose losses are offset by 
augmented hepatic gluconeogenesis.11,12 In normotensive, nonobese 
individuals, SGLTi-induced changes in BP and weight are minimal to 
absent.12 Yet, in all patients, the SGLTi-induced glucosuria and natri-
uresis bestow cardioprotective and renoprotective actions such as 
decreasing preload and afterload in the heart and suppressing sympa-
thetic overactivity.9 

SGLTi enhances utilization of body fat stores for energy production 
and aids transformation of white adipose tissue into brown adipose 
tissue (abundant mitochondria imbue these adipocytes with a brown 
color).13 As compared to white fat, brown fat is more metabolically 
active, so it burns more calories and generates less inflammation.13 

SGLTi attenuates obesity-induced inflammation and insulin resistance, 
and decreases levels of proinflammatory mediators including tumor 
necrosis factor alpha (TNF-⍺), C-reactive protein and interleukin-6.12 

SGLTi is associated with reduced risks for many of the most common 
conditions of aging including heart failure (HF), chronic kidney disease 
(CKD), atrial fibrillation (AF), cancer, gout, neurodegenerative disease, 
emphysema, non-alcoholic fatty liver disease, atherosclerotic CVD and 
infections.11,14–49 Studies also consistently report that SGLTi improves 
overall life expectancy with reduced risk of CVD death and cancer 
death.50,51 SGLTi reliably reduces hospitalizations, not only for HF but 
also all-cause hospitalization.11,14–16,21 These systemic benefits in 
healthspan and longevity, however, are not fully explained by the 
modest improvements in standard modifiable risk factors such as 
HbA1c, weight, BP and lipids.52 

SGLTi and life expectancy 

A meta-analysis of 21 randomized trials, mean follow-up of 2 years 
and inclusive of 39,593 patients in the SGLTi arm and 30,771 patients in 
the comparator arm, showed that SGLTi was associated with a highly 
significant 14% relative risk reduction in all-cause mortality (p <
0.00001).19 Another large meta-analysis of five RCTs of HF patients that 
included 21,947 participants found that SGLTi compared to placebo 
significantly reduced risk of all-cause mortality despite relatively short 
study durations (typically 2 to 3 years) (Fig. 1).21 Other meta-analyses 
also reported that SGLT2i decreases risk of death from any cause 
including CVD and cancer.11,14,16,21 EMPA-REG was an RCT of 7020 
patients with preexisting CVD in which empagliflozin compared to 
placebo reduced risk of CVD death by 38% (p < 0.001).22 In a “real- 
world” propensity-matched observational study of ~160,000 patients 
with newly diagnosed T2D, the patients who were prescribed SGLTi had 
45% lower risk of all-cause mortality compared with those not taking 
SGLT2 inhibitors (p = 0.0001) (Fig. 2).53 

An observational study of 18,500 T2D patients used propensity score 
matching to compare SGLTi users to dipeptidyl peptidase-4 inhibitor 
(DPP4i) users.20 Observational studies of SGLTi often choose DPP4i as 
the comparator because in RCTs the latter drug generally produces 
neutral effects on long term-survival and adverse CVD events. SGLTi 
users had significantly lower relative risk of all-cause mortality, with a 
hazard ratio (HR) 0.80, 95%confidence interval (CI) 0.68 to 0.94; p =
0.0057.20 Similarly, an observational study of 140,000 T2D patients 
from Japan, Taiwan and Korea used 70,000 matched patient pairs who 
used either SGLTi or DPP4i.17 SGLTi use was associated with lower risk 
of all-cause mortality (HR 0.60, CI 0.51 to 0.70).17 Another large, in-
ternational, observational study of 388,248 T2D patients reported that 
initiation of SGLTi versus DPP4i was associated with a lower risk of all- 
cause mortality (HR 0.64, CI 0.57 to 0.72; p < 0.0001).24 

In the Interventions Testing Program, SGLT2-i consistently extended 
median survival of male mice by 14%.18 SGLT2i led to lower fasting 
glucose and improved glucose tolerance in both sexes, but that study 
demonstrated no benefit to longevity in female mice. 

Effects on CVD and respiratory diseases 

Age is among the strongest risk factors for HF, and large outcome 
studies have consistently reported that SGLTi decreases risk of new or 
worsening HF for both subtypes—HF with reduced ejection fraction and 
HF with preserved ejection fraction.21,23,25,26,31,32 In large RCTs, SGLTi 
therapy demonstrates statistical superiority compared to placebo with 

Fig. 1. Kaplan Meier curves for primary endpoint of CV death or worsening HF in 21,947 patients in RCTs. HR hazard ratio, CI confidence interval.21  
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respect to HF hospitalization and CVD death within just 12 days of drug 
initiation.30 A recent comprehensive meta-analysis of RCTs comprised of 
17,000 HF patients reported that SGLTi significantly decreased relative 
risks for HF hospitalization (− 29%), adverse renal outcomes (− 37%), 
CVD mortality (− 13%), and all-cause mortality (− 11%).14 

In patients with atherosclerotic CVD, SGLTi was shown in a large 
RCT to reduce risk of major adverse CVD events (myocardial infarction, 
ischemic stroke, or CVD death).22 A meta-analysis of nine large RCTs 
reported that SGLTi was associated with lower incidence of several CV 
disorders, including HF, AF, bradycardia, hypertension, hypertensive 
emergency, and varicose veins.34 AF is the most common serious 
arrhythmia, and large studies consistently show that SGLTi is associated 
with a ~25% reduction in risk of AF.53,54 Additionally, SGLTi was linked 
with lower rates of respiratory diseases including asthma, bronchitis, 
emphysema, pulmonary edema, non-small cell lung cancer, pneumonia, 
pleural effusion, respiratory tract infections and sleep apnea.34 SGLTi 
therapy, compared to DPP4i therapy, has been linked to lower risk for 
pneumonia and pneumonia-related mortality.34 

SGLTi and CKD 

Age is the most prevalent risk factor for CKD, which is present in 34% 
of people ≥65 years of age.29 SGLTi is the most effective drug class for 
preserving renal function and slowing progression of CKD.16,21,27 In 
large RCTs, SGLTi significantly reduced risk of kidney disease progres-
sion and acute kidney injury by 25 to 40%,16 risk of end-stage renal 
disease (ESRD) and risk of death from CKD.16,21,27,33 These reno- 
protective benefits are similar in patients with and without T2D and 
are present irrespective of baseline kidney function.16,21,27 A large meta- 
analysis of RCTs found that SGLTi reduces risk of serious hyperkalemia 
by 16%.28 A model based on RCT data estimated that SGLTi has the 
potential to delay ESRD and the need for dialysis by 15 years.41 SGLTi 
also acts as a functional antagonist of renal sympathetic nerve hyper-
activity in the setting of HF.9 In EMPA-KIDNEY, empagliflozin decreased 
risk of all-cause hospitalizations by 14%.16 

Elevated uric acid and gout are common age-related issues that are 
associated with increased risk of insulin resistance, T2D, CKD, 
myocardial infarction, stroke and HF. An RCT found that SGLTi therapy 

decreased serum uric acid level by 13% compared with placebo.44 A 
recent comprehensive meta-analysis reported that SGLTi was associated 
with a 34% lower risk of developing gout among patients with T2D.39 

SGLTi and cancer 

The sodium-glucose cotransporter functions as a key channel often 
overexpressed in cancer, which allows for glucose uptake in malignant 
cells and fuels tumor growth.35 Sodium-glucose cotransporters have 
been reported in adenocarcinomas of the pancreas, breast, kidney and 
prostate. In animal models, SGLTi has been shown to interfere with 
tumor growth and induce tumor necrosis.35 A retrospective propensity 
score-matched cohort study comprised of T2D patients diagnosed with 
cancer found that cancer patients treated with SGLTi had significantly 
better survival outcomes compared to patients not treated with SGLTi 
(Fig. 3).50 Emerging evidence suggests that SGLTi may have anticancer 
activity against several malignancies, including pancreatic, breast, 
prostate, liver, thyroid and lung cancers.35 In an observational study, 
SGLTi use was associated with lower risks of new-onset overall cancer, 
cancer-related mortality and all-cause mortality compared to DPP4i.36 

Observational studies report that SGLTi is associated with improved 

Fig. 2. Cumulative risk curve showing all-cause mortality for the study cohort treated with SGLTi versus non-SGLTi cohort.53 Permission obtained.  

Fig. 3. Kaplan-Meier analysis showing the overall survival for cancer patients 
treated with SGLTi compared to those not treated with SGLTi..50 
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survival among patients with non-small cell lung cancer.40 

SGLTi and dementia 

Sodium-glucose cotransporters are widely present in the central 
nervous system (CNS). SGLTi drugs are lipid-soluble and cross the blood- 
brain barrier with brain/serum ratio of ~0.5; thus are being studied for 
their potential protective activity against neurodegenerative diseases.43 

SGLTi decreases leakage of the blood-brain barrier, reduces reactive 
oxygen species, ameliorates microglia dysfunction and improves endo-
thelial function.39 Empagliflozin significantly increases CNS levels of 
brain-derived neurotrophic factor (BDNF), which facilitates growth, 
survival and plasticity of neurons and favorably modulates neurotrans-
mission.43,46 In animal models, SGLT2i reduces amyloid beta levels, 
senile plaque density, TNF-⍺ and has neuroprotective effects against 
Parkinson’s disease.38 Observational studies of patients with T2D 
consistently show that SGLTi is associated with lower risks for neuro-
degenerative disorders, such as dementia and Parkinson’s dis-
ease.42,47,48 A meta-analysis of 10 observational studies involving 
819,511 individuals with T2D reported that SGLTi users had a lower risk 
of all-cause dementia compared to non-SGLT2 inhibitor users (RR 0.62, 
CI 0.39–0.97).45 

SGLTi enhances autophagy 

Autophagy is an evolutionarily conserved intracellular “house- 
cleaning” pathway whereby senescent cellular components are encircled 
by a double-membrane vesicle (the autophagosome). Subsequent fusion 
with the lysosome allows degradative enzymes to break down and 
recycle the contents of the vesicle.55,56 Nutrient and/or oxygen depri-
vation are the fundamental stimuli that activate autophagy. Such 
signaling permits cellular digestion of damaged components like 
oxidized proteins and dysfunctional organelles for salvage and reuse, 
which revitalizes mitochondria and generates ATP for energy-depleted 
cells.57 Autophagy can be stimulated in response to stressors like fast-
ing, calorie restriction and exercise—both aerobic and resistance 
training.58 

Oxidative stress plays a major role in aging. Principal sources of 
intracellular oxidative stress are dysfunctional mitochondria and endo-
plasmic reticulum stress. Generally caused by excess glucose or fatty 
acids or accumulation of misfolded proteins, endoplasmic reticulum 
stress can lead to apoptosis of the cell and has been associated with 
neurodegenerative disorders, T2D, atherosclerosis, and cancer.9,59 

Autophagic clearance of this cellular debris—dysfunctional mitochon-
dria and endoplasmic reticuli—ameliorates intracellular oxidative stress 
and mitigates proinflammatory and profibrotic responses.9 The cumu-
lative effect of enhanced autophagic flux is the preservation of cellular 
integrity and prevention apoptotic cell death, thereby helping to restore 
and maintain optimal structure and function of the cells, tissues and 
organs.55,56 

SGLTi reliably amplifies autophagic flux throughout the body and 
facilitates the disposal of defective mitochondria, rejuvenates healthy 
mitochondrial function and stimulates mitochondrial biogenesis.39,60,61 

Furthermore, SGLTi alleviates endoplasmic reticulum stress, diminishes 
the generation of reactive oxygen species and boosts endogenous anti-
oxidant activity.59,62–64 

Anti-aging mechanisms of action 

As outlined above, SGLTi promotes cellular housekeeping by aug-
menting autophagic flux, which slows aging at a cellular level. These 
benefits appear to arise from the ability of SGLTi to simultaneously 
upregulate nutrient deprivation signaling and downregulate nutrient 
surplus signaling.65 These alterations in nutrient sensing reduce acti-
vation of mammalian target of rapamycin (mTOR) receptors and in-
crease expression and activity of adenosine monophosphate–activated 

protein kinase (AMPK), sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), sirtuin 6 
(SIRT6) and peroxisome proliferator–activated receptor γ coactivator 1- 
α (PGC1-α).9,65 

AMPK, sirtuins, PGC-1α and mTOR are 4 master transcription factors 
and enzymes that regulate numerous genes and proteins that function to 
maintain cellular homeostasis and allow organisms to adapt to envi-
ronmental challenges and opportunities.9 During times when nutrients 
are plentiful, and mTOR signaling is robust, organisms prioritize the use 
of fuels to expand cell mass. Such activity is useful in young organisms 
while they are still growing, but it is potentially detrimental in mature 
organisms who may be at risk for cancer and disorders of nutrient excess 
like obesity and diabetes.66 Conversely, when nutrients are depleted, 
organisms shut down anabolic pathways and instead ramp up AMPK, 
sirtuins and PGC-1α, which are proteins synthesized in the liver as the 
body’s primary response to starvation.9,67 For example, AMPK is a 
fundamental energy sensor of the cell and, in response to energetic 
stress—starvation, fasting, vigorous exercise—augments energy pro-
duction, mitochondrial biogenesis and insulin sensitivity.65 

In the clinical setting, SGLTi-induced nutrient deprivation signaling 
promotes gluconeogenesis, ketogenesis, erythrocytosis and reduces uric 
acid levels.67 By inducing glycosuria, SGLTi mimics a state of starvation 
characterized by the hepatic production of ketone bodies, predomi-
nantly β-hydroxybutyrate.67 Ketogenesis and erythrocytosis are the key 
clinical biomarkers of the action of SGLTi because they reflect the 
typical physiological responses to nutrient deficit and oxygen depriva-
tion, respectively.65 SGLTi reduces serum uric acid, a marker of oxida-
tive stress.9 Upregulated nutrient and oxygen deprivation signaling can 
augment erythropoietin synthesis in the kidney and reduce oxidative 
stress in cardiomyocytes, neurons and other cells throughout the 
body.9,65 Tellingly, large RCTs have consistently identified hemoglobin 
increases and uric acid reductions as statistical determinants of the 
ability of SGLTi to decrease risks for HF hospitalizations and major 
adverse renal events.9 

These clinical findings, in conjunction with extensive data from 
experimental studies, support the hypothesis that SGLTi mitigates a 
number of afflictions associated with aging and improves life expec-
tancy. This ability of this class of therapy to augment healthspan and 
lifespan arises in part through alterations in nutrient deprivation/sur-
plus signaling with consequent effects in promoting autophagy and 
restoring mitochondrial vitality, reducing reactive oxygen species, 
dampening inflammation and fibrosis and enhancing the viability of 
cells throughout the body.9 Recent studies have shown that the adaptive 
cellular reprogramming produced by SGLTi is also seen in isolated cell 
cultures. Otherwise stated, these agents have direct, glycosuria- 
independent, effects that decrease cellular stress and enhance cell sur-
vival.65 This finding suggests that SGLTi may bind directly to nutrient 
sensors to influence their function. Indeed, SGLTi has been shown to 
bind to mTOR in the same structural domain used by rapamycin.63 

SGLTi inhibits inflammation and diminishes fibrosis by reducing 
proinflammatory cytokines and diminishing profibrotic pathways, 
fibroblast proliferation and collagen deposition.68,69 Through these ac-
tions, SGLTi helps to maintain normal tissue architecture,68,69 regress of 
adverse structural remodeling and rejuvenate organ function.60,70–73 

Adverse effects 

Any candidate compound being considered for use as a ger-
oprotective agent to improve life expectancy should meet the Primum 
non nocere (first do no harm) maxim. A compound to be used for decades 
by healthy people must have very low risk for serious adverse effects. 
SGLTi are generally well tolerated, with discontinuation rates in RCTs 
that are similar to placebo (Fig. 4). A network meta-analysis of 47,000 
patients in RCTs reported no significant changes in the risk of adverse 
events, including hypoglycemia, urinary tract infection, bone fractures 
or volume depletion.51,74 RCTs show that SGLTi users report improved 
quality of life metrics compared to the control group.15 Notably, SGLTi 
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therapy does increase risk of genital yeast infection due to glycosuria. A 
large meta-analysis found that SGLTi use was associated with statisti-
cally significant 3.3-fold increased risk of genital yeast infections 
compared to controls, but the absolute risk was modest, 6.3% for SGLTi 
versus 1.7% for control.74 

Although canafligozin in one study was associated with increased 
risk of lower limb amputation, a recent large meta-analysis showed no 
increased risk of amputation with any drugs in the SGLTi class.75 

Fournier’s gangrene of the perineum is an exceedingly rare infection 
that occurs in diabetics. A total of 29 cases of Fournier’s gangrene have 
been reported with SGLTi.76 Additionally, SGLTi can also cause eugly-
cemic ketoacidosis in patients with diabetes, generally in the context of 
serious medical illness often in and individual whose pancreas makes 
little to no insulin. In RCTs, ketoacidosis was a rare event despite a 
doubling of its risk with SGLTi.16 Only a single starvation ketoacidosis 
event has been reported in an individual without T2D during ~30,000 

Fig. 4. Results from two recent trials and two recent meta-analyses conclusively demonstrated the cardio-protective and kidney-protective effects of SGLTi in HF and 
CKD populations. The absolute benefits convincingly outweighed the potential harms.15 Permission obtained. 
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years of trial participant follow-up.16 For nondiabetic individuals, 
SGLT2i therapy virtually never causes ketoacidosis, lower limb ampu-
tation or Fournier’s gangrene.15,16,51 Empagliflozin, dapagliflozin, and 
sotagliflozin are the agents in the SGLTi drug class with the strongest 
safety and efficacy for improving healthspan and lifespan.51,77,78 

Conclusion 

SGLTi simultaneously upregulates nutrient deprivation signaling and 
downregulates nutrient surplus signaling. This promotes autophagy, 
restores mitochondrial health, reduces intracellular oxidative stress, 

Fig. 5. (Central Figure) – Mechanisms of action whereby SGLTi improves health and reduces risk of age-related diseases. Figure made by authors.  
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decreases proinflammatory and profibrotic pathways, and preserves 
integrity and viability in cells and organs. Clinical studies show SGLTi 
lowers risks for premature mortality and many of the diseases of aging 
(Fig. 5-Central Figure). Of the candidate geroprotective agents including 
metformin and rapamycin, SGLTi has the most RCT data for safety and 
efficacy in humans. Further studies are warranted to assess SGLTi for 
reducing age-related disease and improving life expectancy. 
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