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Abstract: Coronary artery disease (CAD) is widely recognized as one of the most important clinical
entities. In recent years, a large body of accumulated data suggest that coronary artery calcification, a
process highly prevalent in patients with CAD, occurs via well-organized biologic processes, rather
than passively, as previously regarded. Matrix Gla protein (MGP), a vitamin K-dependent protein,
emerged as an important inhibitor of both intimal and medial vascular calcification. The function-
ality of MGP hinges on two post-translational modifications: phosphorylation and carboxylation.
Depending on the above-noted modifications, various species of MGP may exist in circulation, each
with their respective level of functionality. Emerging data suggest that dysfunctional species of
MGP, markedly, dephosphorylated-uncarboxylated MGP, might find its application as biomarkers
of microvascular health, and assist in clinical decision making with regard to initiation of vitamin
K supplementation. Hence, in this review we summarized the current knowledge with respect
to the role of MGP in the complex network of vascular calcification with concurrent inferences to
CAD. In addition, we discussed the effects of warfarin use on MGP functionality, with concomitant
implications to coronary plaque stability.
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1. Introduction

Despite the fact that coronary artery disease (CAD) has been widely recognized
as one of the most important clinical entities, certain aspects of the pathophysiological
processes underlying this disease have not been completely elucidated [1]. One of those
aspects is coronary artery calcification (CAC), the process of mineral deposition in the
coronary vasculature previously regarded as passive and benign [2]. Nonetheless, in recent
years, a large body of accumulated data suggests that CAC occurs via well-organized
biologic processes, including an imbalance between osteochondrogenic signaling and anti-
calcification events [3]. In line with this, it seems that CAC is highly prevalent in patients
with CAD and that it is associated with the occurrence of major adverse cardiovascular
events (MACEs) [4]. An important relation in this setting is between CAC and vascular
stiffness. Namely, a firm and reciprocal correlation has been established between these two
entities on both the preclinical and clinical level [5]. As vascular stiffness is a consequence
of vascular tree damage caused by multiple CV risk factors, and it can thus be used as
proxy for CV mortality prediction, vascular stiffness should be highlighted as much as
hypertension in the future clinical perspectives of CAD management [5,6].
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There are multiple mechanisms that mediate vascular calcification. One of the most
discussed mechanisms in this setting is the failure of anti-calcification processes, either
owing to the loss of or deficiency in the constitutively expressed mineralization inhibitors,
such as matrix Gla protein (MGP), osteoprotegerin, osteopontin, and many others [3]. MGP,
a small vitamin K-dependent protein, emerged as a potent vascular calcification inhibitor,
and recent data suggest multiple implications of this protein in CAD development [7].
Hence, in this review we aimed to summarize the current knowledge with respect to role of
MGP in the complex network of vascular calcification with concurrent inferences to CAD.

2. Pathophysiology of Vascular Calcification, Arterial Stiffness and Their Interrelation

In the traditional classification system, vascular calcification is divided into two
distinct groups, based on the position of the mineral deposits [3]. Vascular calcification of
the vessel wall can occur in either the intimal or medial layer of a blood vessel.

Intimal calcification is initiated by formation of microcalcifications—small (<5 µm)
calcium deposits that accumulate as a result of necrotic or apoptotic cell death within the
lipid core of atherosclerotic plaques [8]. This process is considered to arise from either
apoptotic SMCs or exosomes released by SMCs near the internal elastic lamina. Rather
interestingly, this process coincides with enhanced expression of the uncarboxylated form
of MGP yet precedes the changes in the intimal content of the calcification-regulation
proteins, such as osteocalcin and bone morphogenic protein-2 (BMP-2) [9]. Consequently,
an increase in nucleation sites facilitates the precipitation of calcium salts at the microscopic
level. Microcalcifications are very important in the setting of acute coronary events as they
are commonly seen in high-risk (“vulnerable”) plaques. The pathophysiologic background
to this observation lies in the fact that microcalcifications accumulate in “vulnerable”
plaque, representing a calcific healing response similar to that occurring in tuberculosis,
which attempts to reduce and wall off the inflamed necrotic environment, thereby reducing
the risk of plaque rupture. However, in the early phases of microcalcification, this process
could be detrimental, as data suggests that microcalcification might itself increase the
propensity to rupture, acting as a focal point that intensifies mechanical stress on the
atheroma cap [10]. If the plaque, however, ruptures, macrocalcifications (>5 µm) form on
the site of the thrombotic occlusion, representing an important step in remodeling of the
lesion [11].

The clinical importance of intimal calcification in the setting of CAD lies in the fact
that calcification of atherosclerotic plaque represents a risk factor for plaque rupture [12,13].
However, it is noteworthy that this relation is controversial, as even though the amount of
coronary calcification seems to have predictive value for CV events in various populations,
the actual impact of calcification on plaque “stability” remains elusive [14,15]. In clinical
terms, the visualized presence of calcium deposits within coronary vessels, quantified
by the CAC score, showed a robust correlation with CAD [16–19]. A CAC score of 0 has
been consistently associated with a very low risk of adverse CV events and low mortality,
whereas very high CAC scores strongly indicate substantial CV risks and advanced plaque
burden, as they are associated with increased risks of all causes of mortality, extensive
coronary plaque burden, adverse CV events, and even cancer [20,21]. A strong link between
calcium deposition and coronary plaque morphology and burden was also demonstrated in
a seminal histopathologic study by Sangiorgi et al. [22]. The authors showed that coronary
calcium quantification highly correlated with atherosclerotic plaque area within coronary
vessels, but not with respect to lumen stenosis, thus showing that CAC quantity is a reliable
correlate of atherosclerotic plaque presence and severity, rather than luminal narrowing.
These findings rebounded in clinical practice as large CV societies nowadays endorse CAC
screening as a highly distinct marker of coronary atherosclerosis and use it to guide the
intensity of statin regimens among individuals with subclinical CV disease or those with
intermediate risk for atherosclerotic CV disease [23,24]. Taken together, the important role
of calcification in CAD development has been unequivocally proven from the basic aspects
of anatomy and histopathology, as well as from a clinical standpoint.
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Medial calcification, on the other hand, is a process most commonly seen in chronic
kidney disease (CKD), but also with diabetes mellitus, hypertension, aging, and osteo-
porosis [25,26]. Rather interestingly, by affecting vascular stiffness, medial calcification
can increase the incidence of CV complications even in the absence of vascular lumen
stenosis [27–29]. The media of the blood vessel wall has two main components: SMCs and
elastin-rich extracellular matrix (ECM). A critical process that enables the calcification of
the media is differentiation of SMCs into osteoblast-like cells, a process that somewhat
resembles bone formation. In fact, components implicated in this process (BMP-2, Msh
Homeobox 2, and alkaline phosphatase (ALP)) are the same components that participate in
bone remodeling [30]. The initiation of the above-noted process is enabled by reduction
of calcification inhibitors, an increase in oxidative or endoplasmic reticulum (ER) stress,
impaired SMC signaling, apoptosis, and disorder of the calcium-phosphate homeostasis
which arises for hormonal dysregulation [31,32]. These processes warrant calcium deposi-
tions via production of matrix vesicles by SMCs [31]. Notable inducers and inhibitors of
vascular calcification are listed in Table 1.

Table 1. Notable inducers and inhibitors of vascular calcification.

Role Molecule Mechanism Evidence

Vascular
calcification

inducers

BMP-2
Contributes to the transdifferentiation of VSMCs into
osteochondrogenic cells; induces osteoblast differentiation;
enhances apoptosis, oxidative stress and inflammation in VSMCs

[33–35]

ALP Its activity is important for hydroxyapatite formation [36]

FGF-23 Increases osteoblastic marker expression in VSMCs * [37,38]

Runx2 Transcription factor—increases expression of osteogenic genes [39,40]

PDK4 Induces osteogenic differentiation of VSMCs [41,42]

Cathepsin K Degrades organic bone matrix in osteoclasts [43,44]

Vascular
calcification
inhibitors

Osteoprotegerin Interferes with RANK-RANKL interaction [45,46]

Osteopontin Strong binding affinity for hydroxyapatite [47,48]

Fetuin-A Binds to early calcium phosphate crystals inhibits growth and
deposition [49,50]

BMP-7 Reduces transformation to VSMC osteogenic phenotypes [51]

MGP Binding to hydroxyapatite; BMP-2 binding and inhibition [52,53]

* Data regarding the role of FGF-23 in vascular calcification is conflicting. Abbreviations: BMP: bone morphogenetic protein; ALP: alkaline
phosphatase; FGF-23: fibroblast growth factor-23; Runx2: runt-related transcription factor 2; PDK4: Pyruvate Dehydrogenase Kinase;
VSMCs: vascular smooth muscle cells; MGP: Matrix Gla protein.

A firm and reciprocal correlation has been established between vascular stiffness and
calcification in both basic and clinical studies [5,54–56]. The principal consequences of
vascular stiffness increment are left-ventricular overload and impairment of coronary per-
fusion pressure, which naturally occurs during diastolic filling and increased transmission
of pulsatile energy towards low-resistance organs, such as the kidneys and brain [57]. ECM
stiffness, arising as a result of ECM calcification, leads to a decrease in production of nitric
oxide (NO), the main culprit of the vascular stiffness, guiding to transdifferentiation of
SMCs into the hypercontractile phenotype and stimulating endothelial cells to endothelial-
to-mesenchymal transition (EndoMT) [58]. The newly formed mesenchymal stem cells then
further differentiate into osteochondrogenic cells, stimulating fibrosis and mineralization
of the ECM, subsequently closing a vicious cycle between vascular stiffness and vascular
calcification. These two processes in combination represent important predictors of CV
morbidity and mortality and initiate end-organ failure in multiple organs, including brain
and kidneys [59,60]. In addition, hypertension is implicated in this interplay, as it promotes
extracellular remodeling by accelerating type 1 collagen, fibronectin, and proteoglycan
accumulation [61]. In fact, as discussed by McEniery et al., in comparison to normotensive
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patients, patients with isolated systolic hypertension present with increased calcification of
both the abdominal and thoracic aorta [62]. Finally, a recent study, which was comprised of
10-year monitoring of ambulatory blood pressure in older hypertensives, revealed that 24 h
pulse pressure better predicts mortality than 24 h systolic blood pressure; it is warranted
that arterial stiffness reduction gains as much attention as lowering blood pressure in
future clinical perspectives of CAD management [6].

3. MGP and Its Conformations

MGP, a small 12 kDa vitamin K-dependent protein, has been shown to play an impor-
tant role in inhibition of both intimal and medial vascular calcification (Figure 1) [7]. It has
been demonstrated that MGP is the most powerful natural inhibitor of calcification in the
human body [52,53,63]. In fact, mice with knockout of the MGP gene die within 2 months
as a result of widespread arterial calcification that leads to disintegration and rupture of
the arterial wall [64]. In order to exert its functions, two post-translational modifications of
MGP are warranted.
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The first modification is a vitamin K-dependent γ-glutamate carboxylation at posi-
tions 2, 37, 41, 48, and 52 [65]. This modification enables binding of MGP to the crystal
nuclei in hydroxyapatite and empowers MGP to binding and inhibition of the BMP-2,
the aforementioned osteogenic growth factor that stimulates vascular calcification [66].
Binding of MGP to hydroxyapatite crystals abrogates their accumulation within the arterial
wall and stimulates macrophages to promote phagocytosis and apoptosis of the newly
formed MGP-hydroxyapatite complex [31]. On the other hand, MGP creates a complex
with BMP-2 as well, thus preventing the binding of BMP-2 to its high-affinity receptor and
preventing downstream signals that will lead to vascular calcification [67].
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On the other hand, unlike carboxylation, phosphorylation of the serine residues at po-
sitions 3, 6, and 9 by a Golgi-casein kinase is a non-vitamin K-dependent process that seems
to enable MGP to regulate the secretion of MGP into the extracellular environment [68]. In
addition, since MGP retains its affinity for hydroxyapatite after thermal decarboxylation
and ucMGP can also be seen at sites of calcification, it seems that these negatively charged
carboxylated residues may also affect binding of MGP to calcium salts [69–72]. Of impor-
tant note, apart from the phosphorylation state, plasma concentrations of MGP may also
depend upon synthesis and degradation of MGP [65].

Based on the state of carboxylation and/or phosphorylation, various species of MGP
may exist in circulation: phosphorylated-carboxylated MGP (p-cMGP), phosphorylated
uncarboxylated MGP (p-ucMGP), dephosphorylated-carboxylated MGP (dp-cMGP), and
dp-ucMGP. It is now obvious that their respective affinity for calcium salts and concomitant
calcification-inhibitory activity may differ widely. This is of important relevance, as the
levels of circulating MGP species may reflect the degree of calcification, or more accurately,
inhibition of calcification in the vascular wall. Moreover, respecting the fact that carboxyla-
tion depends upon vitamin K, these may also reflect the availability of vitamin K present
in the vascular wall.

Apart from the well-established role in vascular calcification inhibition, growing evi-
dence suggests that activated MGP is implicated in preserving the structure and function
of multiple organs, including the retina, bones and cartilages, kidney, and heart [73–80].
In line with this, the presence of inactive forms of MGP was observed in various patholo-
gies. For instance, in our previous study, we found elevated dp-ucMGP levels in pa-
tients with inflammatory bowel disease (IBD), suggesting the involvement of MGP in
IBD pathophysiology through inflammation process and disease activity [81]. In addition,
Vilovic et al. demonstrated elevated dp-ucMGP levels in patients with obstructive sleep
apnea (OSA), bringing further evidence to the complex interrelation between OSA and
bone metabolism [82]. The widespread implications of MGP throughout the whole human
body address the need for further clarification of MGP effects, especially with respect to
consequences of its functional impairment.

4. MGP in Coronary Artery Disease (CAD)

Early reports suggested increased expression of MGP in human atherosclerotic le-
sions, paving a way for establishment of its role in this setting [83]. In apoE−/− mouse
models, overexpression of functional MGP reduced both intimal and medial calcification
of atherosclerotic plaques, whereas deletion of the MGP gene led to accelerated intimal
calcification of plaque in the same mouse model [84]. In line with this, warfarin treatment
of apoE−/− mice exhibited plaque calcification already after 1 week of administration,
indicating that mechanisms that operate in developing plaques limiting pro-calcifying
processes are vitamin K dependent [85]. As we discussed, vitamin K is necessary for post-
transcriptional modification of MGP, and the above-noted processes seem to be mediated
by MGP-induced BMP-2 suppression [86]. Moreover, in a study by van Gorp et al., the
authors demonstrated that warfarin treatment significantly increased ucMGP in atheroscle-
rotic lesions as compared to both control and dabigatran treatment in apoE−/− mice [87].
Additionally, it has been demonstrated in the same study that ucMGP significantly cor-
relates with vascular calcification. However, Rattazzi et al. reported that warfarin, but
not rivaroxaban, could induce calcific valve degeneration, yet that neither of the two
significantly affects the progression of atherosclerosis in apoE−/− mice [88].

Given the widespread use of warfarin, a vitamin K antagonist (VKA) that affects the
functionality of MGP, a doubt was raised with regard to the safety of this medication. In
fact, Schurgers et al. investigated the effects of VKA treatment on the coronary calcium
score in patients with suspected CAD who underwent multidetector computed tomogra-
phy, demonstrating that both the use and duration of warfarin treatment correlate with
coronary artery plaque calcification [85]. In line with this, Roijers et al. found a positive
correlation between calcification of human coronary artery plaques and ucMGP expression
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in the plaque, demonstrating that mechanisms of warfarin-mediated accelerated plaque
calcification are similar to that in the aforementioned mouse model [89]. Furthermore,
Dalmeijer et al. established an association between CAC, as assessed by the Agatston
score, and total ucMGP and dp-ucMGP, but not dp-cMGP, further substantiating the role
of vitamin K in this setting [88]. In fact, multiple authors suggest that dp-ucMGP may
serve as a biomarker of vascular vitamin K status with multiple clinical implications [65,90].
For instance, in our unpublished observations, we noticed that dp-ucMGP is associated
with increased bleeding risk in patients with myocardial infarction (MI), suggesting a
viable use of dp-ucMGP as an adjunctive biomarker complementary to the established
bleeding scores.

Importantly, respecting that coronary artery calcium (CAC) scores improve CV risk
discrimination, reclassifying a proportion of intermediate risk individuals, and that dp-
ucMGP may reflect vascular calcification at a very early stage, Vassalle et al. argued
that plasma dp-ucMGP levels could be used in CV risk assessment as an alternative to
CAC [91,92]. Nevertheless, each novel biomarker should firstly be assessed depending on
its appropriateness to answer several fundamental questions in order to evaluate its clinical
relevance. Firstly, a biomarker must provide additional information beyond traditional
biomarkers. Secondly, it has to be established to which group of patients should the marker
be applied, and at which point in time should the biomarker be measured. Observations
from our previous study even suggest the prognostic role of dp-ucMGP in CAD, as we
demonstrated markedly higher dp-ucMGP plasma levels among NSTEMI patients at
higher risk of in-hospital mortality, as assessed by the Global Registry of Acute Coronary
Events (GRACE) score, an in-hospital mortality risk score holding a IIa recommendation
in the current European Society of Cardiology (ESC) guidelines [93]. However, earlier
studies reported rather conflicting data with respect to the association between elevated
dp-ucMGP and poor outcomes in CV diseases. Mayer et al. demonstrated that the dp-
ucMGP plasma levels were associated with all cause and CV mortality, with dp-ucMGP
strongly predicting mortality in patients with lower CV risk [94]. Similar observations
were also reported in populations with diabetes, and risk assessment with dp-ucMGP was
independent of the classical risk factors and vitamin D status [95,96]. On the other hand,
Dalmeijer et al. reported that the dp-ucMGP levels were not associated with increased CAD
risk in their prospective case-cohort study [97]. Furthermore, a Mendelian randomization
study conducted on the Flemish population showed that higher circulating dp-ucMGP
predicts total, non-cancer, and CV mortality but lower coronary risk, remarking that non-
cancer mortality and coronary events associations are likely causal [98]. In addition, the
authors reported that the dp-ucMGP plasma levels in range between 1.4 and 4.6 µg/L are
optimal in this setting, as they yield the lowest risk of mortality and macrovascular CVD.

In a study by Zwakenberg et al., the authors selected and analyzed 100 samples from
the Athero-Express biobank in order to examine the interrelation of plasma MGP and
plaque characteristics, as well as to compare plaque and plasma MGP [99]. The study
showed that neither the dp-ucMGP nor total ucMGP plasma concentrations reflect the
plaque ucMGP levels, and that the elevated dp-ucMGP levels are associated with less
plaque hemorrhage, suggesting increased plaque stability. On the contrary, in the aforemen-
tioned study by Schurgers et al., the authors demonstrated that the use of VKAs enhances
features of plaque instability by preventing post-translational modifications of MGP [85].
However, as BMP is implicated in the signaling networks regulating inflammation, SMC
differentiation, and apoptosis, the authors concluded that VKAs could potentially affect
the plaque phenotype on a more profound level, rather than solely accelerating the process
of coronary plaque calcification [100–104]. According to these observations, one could infer
that VKA use may be a risk factor for acute coronary events, which would be contrary to
the available data, as the relatively safe profile of VKAs suggests differently. However,
there is a possibility that the harmful effects of VKAs are masked by their inhibitory effects
on the coagulant system, an important factor of atherothrombosis, addressing the need for
alternative anticoagulants that do not interfere with the vitamin K cycle [105]. The role
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of MGP in the setting of CAD was also explored in our recent study [106]. For the first
time, we demonstrated that patients with non-ST elevation MI (NSTEMI) have significantly
higher circulating levels of dp-ucMGP then the ST elevation MI (STEMI) counterparts [106].
We hypothesized that higher circulating dp-ucMGP levels might reflect more calcified coro-
nary lesions and a higher vascular calcification burden in patients with NSTEMI, indicating
a difference in plaque pathobiology between STEMI and NSTEMI. Nonetheless, further
large-scale studies are needed to substantiate these notions. Studies dealing with the role
of MGP in the context of prognosis in patients with CAD are summarized in Table 2.

Table 2. Longitudinal studies relating the plasma MGP levels to cardiovascular disease and mortality.

Study Study Population Measured Outcomes (Median
Duration) Results

Dalmeijer
et al. [93] 518 DM type II patients

HRSD of dp-ucMGP, t-ucMGP and
dp-cMGP for CVD, CHD, PAD, HF and
stroke adjusted for sex, age, BMI,
waist-to-hip ratio, blood pressure, total
cholesterol, smoking, physical activity,
and education (11.2 y)

Significant HRSD
1:

1. dp-ucMGP: 1.21 (1.06–1.38) for
CVD; 1.33 (1.07–1.65) for PAD; 1.75
(1.42–2.17) for HF

2. dp-cMGP: No significant HRSD
3. t-ucMGP: No significant HRSD

Dalmeijer
et al. [95]

1154 incident cases of
CHD and 380 of stroke +

1406 random
participants (EPIC-NL)

HRSD of dp-ucMGP for CHD risk and
stroke (11.5 y)

HRSD of dp-ucMGP:

1. CHD: 1.00 (0.93–1.07)
2. Stroke: 0.98 (0.90–1.08)

Keyzer et al.
[107]

518 stable kidney
transplant recipients

HR highest vs. lowest tertile of
dp-ucMGP for TM and transplant failure
(9.8 y)

HRs highest vs. lowest tertile of
dp-ucMGP:

1. TM: 3.10 (1.87–5.12)
2. Transplant failure: 2.61 (1.22–5.57)

Liu et al. [96] 2318 FLEMENGHO
participants

HR associated with dp-ucMGP doubling
for TM, CVM, CVD and CHD adjusted
for sex, age, body mass index, systolic
blood pressure, heart rate, smoking and
drinking, total cholesterol, DM,
antihypertensive drug treatment, and
history of CVD (14.1 y)

Significant HRs for dp-ucMGP doubling:

1. TM: linear/squared term [1.06
(1.01–1.11)/1.02 (1.01–1.03)]

2. CVM: 1.14 (1.01–1.28)
3. CVD: No significant HRs
4. CHD: No significant HRs

Mayer et al.
[94]

799 patients with
myocardial infarction,

coronary
revascularization or first

ischemic stroke

HR highest vs. other quartiles of
dp-ucMGP and dp-cMGP for TM and
CVM (5.6 y)

HRs for highest quartile vs. Q1–Q3:

1. dp-ucMGP:

a. TM: 1.89 (1.32–2.72)
b. CVM: 1.88 (1.22–2.90)

2. dp-cMGP:

a. TM: 1.76 (1.18–2.61)
b. CVM: 1.79 (95% CI,

1.12–2.57)

Riphagen
et al. [108]

4275 PREVEND
participants

HR associated with dp-ucMGP doubling
for TM and CVM, adjusted for 2 (8.5 y)

HRs for dp-ucMGP doubling:

1. TM: linear/squared term [0.33
(0.17–0.66)/1.08 (1.03–1.13)]

2. CVM: linear/squared term [0.17
(0.05–0.58)/1.11 (1.03–1.20)]

Schurgers
et al. [109] 107 patients with CKD

RR of dp-ucMGP median (>921 p·mol/L)
for TM adjusted for age, CKD stage or
hemoglobin

RR for TM:
2.85 (1.36–5.90); significance lost in
multivariable-adjusted models

Ueland et al.
[110]

147 patients with
symptomatic severe

aortic stenosis

HR high versus low dp-cMGP and
dp-ucMGP concentration for TM (23
months)

HRs high vs. low:

1. dp-ucMGP: 9.33 (2.67–32.51)
2. dp-cMGP: No significant HRs
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Table 2. Cont.

Study Study Population Measured Outcomes (Median
Duration) Results

Ueland et al.
[111]

179 patients with chronic
HF

HRSD of dp-ucMGP for TM, fatal HF and
heart transplant (2.9 y)

HRSD of dp-ucMGP:

1. TM: No significant HRSD
2. Fatal HF: 5.62 (2.05−15.5)
3. Heart transplant: No significant

HRSD
1 HR per SD. HRs and RRs are presented as HR (95% CI) 2 adjusted for ethnicity, sex, age, BMI, SBP, smoking, eGFR, total-to-HDL serum
cholesterol ratio, CRP, albuminuria, use of antihypertensive drugs and warfarin, DM, history of CVD, and education.

5. Conclusions

To summarize, although the role of MGP as a vascular calcification inhibitor has
been well established, implications of this small protein and its various conformations in
development of CAD still remains elusive. The main obstacle in defining the proper role of
MGP in this setting is the dual role of calcification in atherosclerotic plaque development.
Yet, it is clear that dp-ucMGP can reflect the vascular vitamin K status. Hence, dp-ucMGP
might find its application as a biomarker of microvascular health and assist in clinical
decision making with respect to the initiation of vitamin K supplementation. In addition,
accumulating data, suggesting that VKAs could affect the plaque phenotype by interfering
with the signaling networks regulating inflammation, SMC differentiation, and apoptosis,
address the need for more vigilant prescription of these medications.
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BMP bone morphogenic protein
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FGF-23 fibroblast growth factor-23
Runx2 RUNX family transcription factor 2
PDK4 pyruvate dehydrogenase kinase 4
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BMP-2 bone morphogenetic protein-2
GGCX gamma-glutamyl carboxylase
VKOR vitamin K epoxide reductase
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KO vitamin KO
Fam20C family with sequence similarity 20, member C
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dp-ucMGP dephosphorylated-uncarboxylated MGP
ER endoplasmic reticulum
HR hazard ratio
RR relative risk
CHD coronary heart disease
CKD chronic kidney disease
CVD cardiovascular disease
CVM cardiovascular mortality
DM diabetes mellitus
eGFR glomerular filtration rate estimated from serum creatinine
HF heart failure
BMI body mass index
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