

Three significant practical examples of incorrect responses from large language models (LLMs) in tasks requiring **abductive reasoning** (inferring the best explanation for observations) are outlined below.

1. Temporal ordering in commonsense scenarios

Prompt: "David arrived after Joe. Joe arrived before me. John arrived after David. Who arrived first?"

Correct abductive inference: Joe (chain: Joe → David → John, with Joe before the speaker).

LLM failure (observed in ChatGPT variants): Models often provide incorrect answers (e.g., "John" or "me") or fail to resolve the order, due to weak backward causal chaining from effects to prior causes.

2. Psychological reasoning and theory of mind

Prompt: Classic false-belief task variants (e.g., Sally places a ball in a basket, leaves; Anne moves it to a box. Where will Sally look upon return?).

Correct abductive inference: The basket (Sally's outdated belief).

LLM failure (documented in ChatGPT evaluations): Models sometimes predict the box, failing to abduce the character's false belief and instead reasoning from current reality or training patterns.

3. Clinical diagnosis from symptoms

Prompt: Hypothetical patient symptoms requiring inference of underlying cause (e.g., in mARC-QA benchmark cases).

Correct abductive inference: Prioritize the most plausible disease fitting all observations, including rare conditions.

LLM failure (in models like o1, Gemini, Claude): High error rates in abductive steps, often defaulting to common diagnoses or missing key explanatory links, performing poorly relative to human physicians.