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Summary 

Aging is the main risk factor underlying the dramatic increase in incidence of 

cancer, cardiovascular and neurodegenerative diseases in aging populations. 

However, evidence over the last three decades has revealed that aging rate and 

individual aging-trajectory is more than previously appreciated. This fact opens 

the possibility for therapeutically relevant pharmaceutical interventions to 

ameliorate the impact of population aging in terms of disease burden and to 

potentially even delay the aging process itself. 

Recent insights from work on drugs and genes affecting lifespan in model 

organisms has revealed that the most significant lifespan-effects are the result 

of pathway synergy and drug-drug interactions. While exciting, it is currently 

unclear how common such synergistic interactions are or how to best leverage 

them therapeutically. There is currently no validated approach to construct such 

interactions rationally and systematic screening for such interactions is 

challenging due to the combinatorial explosion in search space. 

I have created and validated an automated high-throughput screening platform 

for the identification of healthspan-extending drugs in Caenorhabditis elegans. 

Using this system, conducted a large pilot screen for combinatorial drug 

benefits, identifying several new drug pairs with additive or synergistic benefits 

in terms of healthspan and lifespan. Furthermore, I generated and analysed 

transcriptional signatures (RNA-Seq) for each drug in my dataset of lifespan-

extending drugs. This transcriptomics information, coupled with the results of 

the screen, were then used to test the nature of drug synergies, and explore 

potential approaches to predicting beneficial drug-drug interactions based on 
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transcriptional data on individual drugs. This analysis reveals that drugs interact 

mainly non-linearly, and that, in contrast to our previous results, dissimilar 

drugs are not more likely to be synergistic. 
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Chapter 1 - Introduction 

1.1 Biogerontology 

Although the main culprit of population aging is a decline of fertility rate in 

many societies1, this socio-demographic crisis arguably is aggravated by the 

undeniable achievements of modern medicine that have significantly increased 

the average human life expectancy without always extending healthspan as 

much as lifespan2. This discrepancy, together with increasingly costly solutions 

in healthcare result in socioeconomic as well as ethical challenges that will 

impact more and more countries as populations around the world continue to 

age3. 

The prevalent disease-centric paradigm of modern medicine relies on diagnosis 

and treatment of specific, well-defined diseases. However the incidences of 

cancer, cardiovascular and neurodegenerative diseases all show a dramatic and 

simultaneous increase with age4. Therfore,  approaches that targets one disease 

at a time, while likely leading to an extension of lifespan5, will not necessarily 

result in similar increases in healthspan6. This culminates in an accumulation of 

individuals which are physically unable7 to be active members of society and 

this may result in an increasing burden to the public healthcare system8. 

It is clearly documented that the aging rate may differs between individual 

animals of the same species and data from model organisms suggest that ageing 

is a highly malleable process9,10. Age is also the main risk factor responsible for 

the diseases underlying the aged population crisis, suggesting that if we were to 

delay the aging process itself, the prevalence of age-related diseases would be 



2 

 

delayed to our later years, in other words, we would achieve healthspan 

extension. This paradigm forms the basis of Biogerontology11,12. 

Of the intervention types discovered to drastically prolong the lifespan in model 

organisms, pharmacological interventions are the ones with the most potential 

to be eventually adapted at the population scale. With the exception of one 

compound, metformin, which has reached the clinical trial stage13, most 

research in this area remains pre-clinical. 

1.2 - Caenorhabditis elegans 

The process of drug discovery typically starts by screening large libraries of 

candidate compounds, for their effect on the phenotype or disease model of 

interest. Although the use of mammalian models might be more immediately 

relevant for estimating the effects of longevity drugs in humans, there is a need 

for a model organism that are suitable for large-scale screening and target 

validation. The desiderata of an ideal model organism for high-throughput 

screening (HTS) for longevity drugs are: complex enough so that the different 

aging pathways and hallmarks are homologous to the ones in humans; short-

lived, easy to handle and cheap enough so that HTS is possible. Caenorhabditis 

elegans (C. elegans) is a model organism that fulfills these requirements. 

This free-living non-parasitic soil nematode enjoys several additional 

characteristics that made it one of the most popular model organism for assaying 

potential genetic14 and pharmaceutical15 longevity interventions. It takes only 3 

days from hatching to adulthood. Additionally, its mean lifespan is about 20 

days. Furthermore, being the first multicellular organism with its genome 

sequenced16 it is easy to manipulate genetically using existing and well-
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established tools17 and, coupled with being monogenic (reduced inter-individual 

variability in populations of hermaphrodites), this facilitates the rapid 

elucidation of new longevity pathway or drug mode of action. As a case in point, 

the first aging gene ever discovered was identified more than three decades ago 

in C. elegans18. 

Importantly, research on this and related pathways since then suggests that the 

gene regulatory network of ageing and longevity determination is largely 

evolutionarily conserved between C. elegans mammals. As a consequence of 

this conservation, several lifespan-extending compounds such as rapamycin and 

metformin have been identified that appear to work in worms and also in mice19. 

1.2.1- High-throughput Lifespan Assays 

The effects of candidate longevity interventions are assessed by survival 

analysis. Traditionally, acquiring a survival curve in C. elegans requires daily 

manual observation of animals cultured on solid agar in Petri dishes using a 

dissecting microscope. In more detail, for each petri dish, individual animal 

death is recognized by failure to react to a probing wire20,21. This routine 

protocol requires manual interaction with each individual animal in the cohort 

for every timepoint and is highly labor-intensive and therefore not amenable to 

HTS. Not surprisingly, several attempts have been made to allow HTS of 

longevity interventions in C. elegans. 

Microfluidic based systems22–24 have been developed but have the major 

drawback that they impose an unnatural culturing environment, as C. elegans 

are not aquatic animals25. This limitation makes the alternative class of 
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approaches more popular26. The alternative methods are based on high-

throughput time-lapse microphotography or recording of animals, maintained 

on solid medium, throughout their lifespan. 

The Lifespan Machine27 is one such system. It is a modular system of modified 

commercial flatbed office scanners that repeatedly scan low profile petri dishes, 

and automatically generate survival curves. Unfortunately, this automated 

scoring involves four 10-minute, high intensity scans per hour, which may 

potentially to influence the lifespan of worms26. 

Another system of this class is the WormMotel28. This system consists of a plate 

handling robot coupled with a camera and custom-designed worm plates, that 

record the movement of individually housed worms longitudinally. The 

WormMotel also requires custom hardware that we did not have access to. I 

therefore decided to develop my own system based on hardware and expertise 

available in our group.  

1.2.2- Gene Synergies in C. elegans 

According to my literature review, the two largest lifespan-extending 

interventions ever reported in C. elegans belong to the age-1(mu44) mutant 

strain29 and gonad-ablated daf-2 mutants30. These interventions result in 10- and 

6-fold lifespan extension relative to wild-type, respectively. However, in both 

cases, the individuals are vigorous and metabolic active but sterile. On the other 

hand, the third, fourth and fifth largest lifespan-extending interventions belong 

to the double mutants daf-2 rsks-131, daf-2 clk-132 and daf-2 daf-1233, 

respectively. Unlike age-1(mu44) and gonad-ablated daf-2, these strains are 
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fertile and without severe fitness trade-offs (although this was not deeply 

tested). 

A difference between the two sets of genetic interventions is that they are all 

cases of synergy. For example, the daf-2 and rsks-1 single mutants exhibited a 

169% and 40% (or less) increase in lifespan, but the daf-2 rsks-1 strain 

displayed a 454% longer lifespan than the wild-type N2. In other words, if there 

was independency between the modes by which daf-2 and rsks-1 prolong 

lifespan, we would expect additivity of effects (~209%), but, the lifespan of the 

double mutant strain vastly surpasses that. 

Although highly desirable, synergistic anti-aging interactions are unpredictable. 

For example, in mice, testing all possible combinations of 3 gene therapies 

targeting longevity genes resulted in the identification of a synergistic pair, and 

a toxic pair and triple combinations34. 

1.2.3- Known Drug Synergies 

In terms of pharmaceutical interventions, the same difficulty is generally 

observed. In crickets, combining metformin with aspirin prolonged lifespan to 

a lesser degree than any of the single drugs interventions35. In mice, when 

metformin is added to the lifespan-extending rapamycin, it slightly increases 

effect size19. In the rotifer Brachionus manjavacas, rapamycin and a c-Jun N-

terminal kinase (JNK) inhibitor extended mean lifespan 65% more than either 

compound alone36. In Drosophila, combining rapamycin and/or lithium and/or 

trametiniba creates combinations that are better than any of the monotherapies37. 

 
a Trametinib is a mitogen-activated protein kinase (MEK) inhibitor. 
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In nematodes, we have previously reported a systematic combinatorial drug 

screen, and this result is discussed in more detail in section 1.5.1. 

Possibly due to the complex and non-linear underlying mechanisms, drug 

synergies do not seem to be robust. For example, two anti-oxidants (resveratrol 

and n-acetyl-l-cysteine) could additively extend the lifespan of worms, but only 

if their dosage is carefully calibrated (revealing a U-shape dose-response 

curve)38. Furthermore, in fruit flies, two synergistic drugs pairs only worked on 

females39. Even in the unicellular yeast model organism, synergistic drug pairs 

were highly sensitive to the concentrations of drugs in the medium40,41. 

All the approaches discussed (which to best of my knowledge constitute all the 

known life-extending drug synergies) were the result of drug pairs that were 

constructed in a hypothesis-driven manner (based on detailed hypotheses 

regarding modes of actions of individual interventions and likely interactions 

between these modes). An obvious limitation of this approach is that it 

introduces bias in so far as novel, unexpected or counter-intuitive synergies 

would likely never be assessed (and therefore would remain undiscovered). To 

efficiently exploit drug-drug interactions, it would also be desirable design or 

predict candidate synergistic drug combinations in a hypothesis-free fashion, so 

that large libraries of compounds without known modes of action can be 

screened. 
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1.3 - RNA-seq 

1.3.1 - Introduction 

This brief introduction will be limited to the information necessary for the 

current dissertation and will be limited to the approach taken by me. Other types 

of transcriptomics paradigms and analyses such as: single-cell transcriptome 

sequencing42, long-read transcriptome sequencing42, de novo (or reference-

based) transcriptome assembly43, allele-specific expression analyses44, 

expression quantitative trait loci mapping45, splicing46 could be explored in 

future. 

Part of the new omics, the transcriptome refers to the set of transcripts present 

in a biological sample. In the current project, transcriptomics will be applied for 

the quantification of genome-wide expression changes of each transcripta 

between the control and treatment conditions. More concretely, I will make use 

of the latestb widely adopted high-throughput DNA sequencing method that 

allows mapping and quantifying transcriptomes, named RNA sequencing 

(RNA-Seq). 

A basic step-by-step overview of an RNA-Seq experiment is depicted in Figure 

1.1. One starts with the extraction and purification of RNA from the samples, 

followed by enrichment of target RNAs. In my case, poly(A) capture was used 

to select for polyadenylated RNAsc. The resulting RNAs are then fragmented to 

 
a To be accurate, ultimately, I will compare gene-level expression changes derived by 

the respective transcript-level expression changes. 
b Its original protocols date the year 2008302,303. 
c This is the most commonly used technique. Another popular alternative is ribosomal 

depletion. 
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the appropriate size. In the previous paragraph, I designated RNA-Seq as a high-

throughput DNA sequencing method. This stems from the fact that the current 

market leading system, and the one I will use – Illumina – only sequences DNA. 

As consequence, the single-stranded RNA molecules need to be reverse-

transcribed to cDNA (first strand), this is immediately followed by the 

degradation of the RNA, which then allows the first strand of cDNA to be 

complemented into a double strand. This cDNA synthesis step if followed by 

one last step before sequencing - adapter ligation and polymerase chain reaction 

(PCR). The final goal is to amplify the cDNA library by PCR, and for that the 

ends of every double-stranded cDNA must be standardized. This 

standardization consists in flanking each end with and adapter sequence that 

was ligated to either the 3’ or 5’ end, and, therefore, will work as primer in the 

reverse transcription reaction. 

In my chosen technology, the final cDNA library is loaded into a flow cell of 

the sequencing machine, where through complementarity the adapter sequences 

allow the binding of cDNAs to short oligonucleotides. The process of bridge 

amplification is then leveraged to achieve dense clonal clusters of each cDNA 

loaded47. The elegant process of sequencing by synthesis is then used to 

determine the sequence of each cluster48. 
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Figure 1.1 - Overview of the experimental steps in an RNA-seq protocol. 

The cDNA library is generated from the RNA targets isolated from the samples of 

interest, and then the paired-end readsa are mapped against a reference transcriptomeb. 

This is followed by data analysis, of which some possibilities are enumerated. Source 

of the picture acknowledge in the left bottom corner. 

 

Regarding the design of RNA-Seq experiments, the intuitive basic rules of 

scientific experimental design apply. For example, randomizing and blocking 

over batches are recommended and critical for the subsequent statistical 

modelling49. Furthermore, there are specific design aspects that should be 

considered, such as the number of replicates, sequencing depth and length50. In 

praxis, however, the first limiting factor in the experimental design is budget42. 

Several sample size calculators for detecting differential expression are 

available to guide the experimental design upon the user definition of input 

parameters such as the expected alignment rate, the desired statistical power, 

significance level, and log-fold changes (LFC) of differentially expressed genes 

(DEG). Unfortunately, these tools are of limited use due to considerable 

 
a As opposed to single-end. They are so called this way because both ends of the cDNA 

insert are sequenced, yielding one read from each end, in opposite orientation; and this 

is advantageous50. 
b This is in my case. 
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disagreement among their output51, and difficulty in defining the outcome with 

the required level of precision on the part of the user. The latter originates from 

the fact that, such as the origins of the previously generated data that I will be 

using, most RNA-Seq experiments are exploratory in nature. 

1.3.2- Alignment 

The product of the sequencing machine is a set of files containing data of 

billions of short cDNA fragments. The first step to translate this output into 

quantitative biological information is the alignment to a reference genome. 

There has been a panoply of alignment software available52, but until very 

recently this process would be time consuming. Such was the magnitude of this 

hindrance that an alternative approach allowing to circumvent the alignment 

step altogether was proposed. Ultimately, this approach, based on the extraction 

of k-mers from reads followed by their exact matching using a hash table, 

culminated in the Kallisto software53. This is the software that I selected, as 

without any sacrifice in performance, it reduces the computation time by 

approximately 3 orders of magnitude53. 

The speed of Kallisto results from the fact that it does the pseudoalignment of 

reads and fragments, that is, it only focuses on identifying the transcripts from 

which the reads could have originated, without attempting to pinpoint the exact 

alignment of the sequences of reads and transcripts. 

Also, part of the alignment process are sequence read quality-control (on raw 

and filtered sequenced data), trimming and filtering (of low-quality bases and 
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calls marked as N). The FastqPuri is an RNA-Seq specific software solution for 

these steps and it especially leverages paired-end sequencing data54. 

1.3.3- Quantification and DEG Analysis 

Transcript to Gene-Level 

After obtaining the abundance levels of the transcripts, several distinct analysis 

paths can be undertaken. This choice should be dictated by the underlying 

biological granularity most likely to yield a satisfactory answer to our biological 

question. Transcript-level analysis is used in differential transcript expression 

and in differential transcript/exon usage (differential splicing) analysis 

pipelines, which assess whether individual transcripts are differentially 

expressed between conditions and if for a given gene its expressed isoforms 

composition change, respectively. Gene-level analysis is the choice in the 

canonical DEG pipeline. 

I am interested in the changes in the overall expression output of genes to obtain 

the holistic transcriptome differences induced by drugs, so, accordingly DEG 

will be my sole focus. Nonetheless, it has recently been shown that 

incorporating transcript-level estimates leads to slightly more accurate DEG 

analysis results compared to traditional simple counting apporaches55. An R 

language56 package, tximport55 was created and it will be leveraged to this effect 

in my pipeline. 

Gene-length and GC-content Biases 

Inherent to the method of RNA-Seq are biases that should be ameliorated by 

proper data normalization. In other words, variation due to technical bias and 
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limitations should have a minimal impact on the results, and therefore deliberate 

accounting and removal of these systemic effects should be undertaken. 

Several methods for normalizing data in terms of how to best express the aligned 

counts in terms of their biological assumptions and statistical approach are 

available57,58. Notwithstanding, there are well-defined biases that should take 

priority in terms of normalization. 

In a DEG-based pipeline, the priority should be accounting for gene-length bias. 

This bias has recently been shown to be the major responsible for the functional 

misinterpretation of RNA-Seq data59. 

Gene-length bias is the overrepresentation of long genes in the DEG subset of 

genes. This happens because longer genes in fact tend to get more counts than 

equally expressed shorter genes. The main cause of this effect is the 

experimental step in which molecules are fragmented prior to sequencing, 

which is used by current RNA-Seq protocols to gain sequence coverage of the 

whole transcript. The result of this step is that a longer transcript will have more 

reads mapping to it compared to a shorter gene of otherwise equivalent 

expression, and since the sampling size is proportional to statistical power, there 

is more power to detect DEG that are longer in length. 

There are two R packages shown to be effective in removing effect59, of those I 

will choose to use the EDASeq package60, as it has the additional functionality 

of accounting for GC-content bias, which is the other well-defined bias that was 

hinted above. 

The causes of GC-content bias appear more complex61, but from a statistical 

modelling perspective this bias is said to be in effect when the read counts 
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display a unimodal distribution according to their GC-content, in which GC-

poor and GC-rich fragments are statistically under-represented. 

The EDASeq package normalization approach consists of two steps: within-

lane normalization followed by between-lane normalization60. The first step 

adjusts for within-lane gene-specific effects, such as the aforementioned gene 

length or QC-content biases, and the second step deals with between-lane 

distributional differences, like sequencing depth. 

For the first step, the authors implemented four within-lane normalization 

methods. I will use the full-quantile normalization because this was the 

normalization used to effectively remove gene-length bias effects59. In my case, 

this normalization will stratify the genes into K equally sized bins according to 

their length. The quantiles of the read counts distribution are then matched 

between “length-bins” , by sorting counts within bins and then taking the 

median of quantiles across bins (this is analogous to the between-lane 

normalization of Bullard et al.62). Full-quantile normalization is also my choice 

among the three available methods for between-lane normalization. 

Differential Expressed Genes Detection 

After the gene counts have been normalized for known biases, one can finally 

proceed to filtering, modelling, estimation, and statistical inference of the gene 

expression changes between conditions. There are a multitude of approaches 

and software to do so, but I picked the DESeq263 package for three reasons: it 

is easily integrated with the output from the EDAseq package (it can use its 

normalizing factors directly); it is shown to be the most robust to outliers and 

low replicate number (which is my case)64; its robustness can be further refined, 
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namely for low-expressed genes, by its integration a method that uses a heavy-

tailed Cauchy prior distribution for effect sizes65 (which I will describe shortly). 

1.3.4- Aging Gene Sets 

A crucial method to increase the biological interpretability and relevance of the 

results to a given research question is to restrict the universe of genes being 

tested to the ones that are known to causally influence longevity or for which 

the gene expression significantly changes with age. I will make use of one gene 

set of the first type and two of the second. 

The GenAge database of aging-related genes14 is the largest compilation of 

genetic interventions that are experimentally shown to influence the longevity 

of model organism. In other words, it compiles lifespan-extending and lifespan-

decreasing genetic interventions These are mostly cases of gene knockout and 

overexpression experiments. 

Tarkhov et al. gathered 60 publicly-available age-dependent transcriptomes of 

C. elegans and after scaling gene expression variation by median lifespan 

variation and applying dimensionality reduction found a signature of 327 aging-

related genes66. 

1.4 - Dimensionality Reduction Methods 

As described in the previous section, the output of an RNA-Seq experiment is a 

matrix of 𝑛 samples and their respective 𝑝 gene expression features (which are 

usually counts or logarithmic fold changes relative to a baseline). It is almost 

always the case that the number of these features is on the order of three 
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magnitudes larger than the sample size, convincingly setting the RNA-Seq data 

analysis in the high-dimensional paradigm of 𝑝 ≫ 𝑛. 

Clustering techniques (namely hierarchical clustering) are a great way to 

perform quality control and classifying new samples into previously established 

clusters, but not very elucidative in terms of the biological underpinnings of 

such categorization. And this is the reason dimensionality reduction methods 

are the preferred methods in the more final phases of RNA-Seq data analysis 

pipelines. 

Dimensionality reduction methods aim to describe the gene expression changes 

of a dataset in a lower-dimensional space. They are based on creating new 

features, according to well-defined criteria, that incorporate most of the 

information of the known features 𝑝, and, therefore, bypassing the 𝑝 ≫ 𝑛 issues 

altogether. 

Moreover, these new features are tractable in their aggregation formula and 

therefore further inspection of how each of the aggregated 𝑝 features that 

constitute them is being weighted. The weights of the 𝑝 features can then be 

used for biological insights, for example, as a gene importance measure. 

1.4.1 - Principal Component Analysis for Biologists 

There are two reasons for preferring Principal Component Analysis (PCA) in 

place of other dimensionality reduction technique: compared to specialized 

techniques like Independent Principal Component Analysisa, PCA is general in 

 
a which better models the statistical distribution of gene expression originating from 

microarrays304. 
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its application, widely popular and well characterized; in contrast most of other 

popular techniques like Independent Component Analysis67, the PCA 

calculation is deterministic, and its independence on random seeds makes it 

robust to one source of the “Reproducibility Crisis”68. 

Instead of discussing in detail linear algebra, its long history and implications, 

I will rather fully describe the intuition behind its motivation and innerworkings, 

with only the minimal formalism necessary. 

Let us assume a dataset of the expression of 2 genes in 𝑛 samples. One could 

do the scatter (XY) plot of the samples according to the expression of these two 

genes – each of the genes constituting an axis – and see how the distinct samples 

relate together in this bidimensional space. If the dataset was expanded to 3 

genes, the same inference requires an extra axis for the extra gene expression 

values. For this case, a tridimensional plot would be required (3 axes) to gain 

intuition about how the samples relate to each other in a single graph. The cruse 

of high dimensionality is felt there are several thousands of genes. Humans can 

only visuality up to 3 dimensions, so the one axis per gene correspondence is 

no longer a viable approach. What PCA allows is to define a new chosen number 

of axes, that are created from the linear combination of gene expressions and 

that still retain most of the sample information, to cluster the samples in a more 

human-friendly low-dimensional space. The goal is to bypass the limit imposed 

by the one-to-one gene-axis correspondence, while at the same time retaining 

or even increasinga the interpretability of the dataset. 

 
a When there is significant noise present in the gene expression measurements. 
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Each PCA axis is called a principal component (PC). For a two-dimensional 

PCA-plot, the first of the axes, PC1, will stretch out in the direction where there 

is the most variance in the dataset; and the next axis, PC2, will have the 

restriction of having to be orthogonal to the first, and extend in the direction 

where there is the second most spread of variance. From here, it can be seen that 

an additional benefit of using PCA is that the axes are ranked in terms of 

explanatory power, while in the second toy example it was not clear which of 

the 3 genes was the most discriminatory (and this would be exponentially 

aggravated if an entire transcriptome was to be used). 

Assuming 𝑝 genes and 𝑛 samples, a step-by-step intuition of how PCA is 

calculated goes as followsa: 

1. Center and scale the data – although optional, this is a recommended 

step. Centering is done so that there will be a well-defined origin point 

for the axes, which corresponds to the mean of all gene expressions 

(mean centering). Scaling the data is a way to standardize gene 

expression across all genes, so that a two-fold increase of a lowly 

expressed gene is weighted the same as a two-fold increase of a highly 

expressed gene. This is accomplished by dividing each expression value 

of a given gene by the standard deviation from that gene’s mean 

expression. 

2. Find the PC1 – in this step, the line that passes the origin and better fits 

the data points (samples) is calculated. This is the standard line fitting 

procedure consisting of calculating the line that maximizes the sum of 

 
a Based on the singular value decomposition algorithm for the sake of simplicity, as the 

more commonly used NIPALS algorithm is more complex. 
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the squared distances from the projection points (the projection of the 

samples on the line) to the origina. As a result, the formula of PC1 is a 

linear combination (weighted sum) of the expression of all the genes 

expression values. This vector is called the eigenvector, and the 

proportions of each gene contribution are called loadings (or loading 

score). It is these loadings that latter allow biologist to gain insights into 

the gene sets that explain most of the variation in the dataset. Lastly, the 

sum squared of distance used in PC1 is called the eigenvalue for PC1b. 

3. Find PC2 – this will be the best fitting line that passes on the origin and 

is perpendicular to PC1. The imposing of this perpendicular relationship 

to PC1 is called orthogonality. Apart from the orthogonality constraint, 

the fitting procedure is the same used for calculating PC1. 

4. Find the rest of PCs – repeat step 3 until 𝑛 − 1 PCs have been foundc. 

5. Find the relative importance of each PC – this is accomplished by 

calculating the amount of variation that is accounted by each PC. In PCA 

terminology, these are called the PC loadings and can be inferred by 

dividing the eigenvalues by 𝑛 − 1. 

With slightly more formulism, an alternative formulation of PCA69, that is 

helpful for comparison to the dimensionality reduction technique mentioned in 

the next section, is one in which the principal component vectors are given by 

the eigenvectors of the non-singular portion of the covariance matrix 𝐶: 

 
a Which is equivalent to minimize the distance between the points and the line. 
b And the square root of the eigenvalue is called the singular value of PC1. 
c In the paradigm of 𝑝 ≫ 𝑛. In general, the maximum number of PCs is min(𝑝, 𝑛) − 1. 
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𝐶 =
1

𝑛 − 1
𝑋𝑇𝐶𝑛 

where 𝑋 is a 𝑛 × 𝑝 data matrix (of 𝑛 samples with 𝑝 gene expression features), 

𝐶𝑛is the 𝑛 × 𝑛 centering matrix, and 𝑋𝑇 is the transpose of matrix 𝑋. 

Furthermore, as previously hinted, the loading vectors of 𝐶, denoted by 

𝐿1,…,𝐿𝑛, are given by: 

𝐿𝑖 = √𝜆𝑖𝑒𝑖  𝑖 = 1, … , 𝑛 

where 𝑒1,...,𝑒𝑛 are the eigenvectors and 𝜆1,...,𝜆𝑛 are the eigenvalues of 𝐶. 

1.5 - This Thesis 

1.5.1 - Context 

We have previously published a pilot study70 that serves as the basis of my PhD 

project. 

In a hypothesis-driven fashion, an initial drug library of 11 compounds was 

selected, targeting 4 distinct but connected well-known longevity pathways, of 

which only 5 reproducible extended the lifespan of Caenorhabditis elegans in 

our lab. 

Based on the intuition that drugs regulating highly connected pathways are more 

likely to produce synergistic effects, we tested all the possible pair-wise 

combinations of these 5 compounds. We found that 2 (rapamycin with 

rifampicin, and psora-4 with rifampicin) out of the 10 drug pairs acted 

synergistically70. Furthermore, some triple combinations were tested (addition 

of a third drug to the 2 synergistic pairs) and displayed further lifespan-
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extension. These triple drug combinations have the largest reported effect size 

for any adult-onset pharmacological intervention in a model organism. 

Moreover, the triple drug combination interventions also doubled healthspan70. 

In other words, we maximized effect size without compromising translatability 

potential. 

1.5.2 – Hypotheses and Goals 

Hypothesis 1 – Combinations of dissimilar drugs are synergistic. 

As discussed in section 1.2.31.2.2 and in the previous paragraph, it has been 

suggested that combining drugs targeting distinct subsets of the aging regulatory 

network is more likely to result in synergistic pharmaceutical interventions. 

Albeit the previously discovered anti-aging drug synergies were designed 

assuming that drugs with dissimilar modes of action are likely to be synergistic, 

careful observation of the tested interventions reveals that a large part of them 

were not synergistic. 

It is my hypothesis that in a larger size combinatorial drug screen, I will be able 

to test if combinations of dissimilar drugs are more likely to be synergistic. 

However, this also requires a quantitative metric of “drug similarity”, something 

that I will further explore in Chapter 6. 

Hypothesis 2 – Gene expression changes in known ageing genes are predictive 

of effect size for monotherapies. 

Another implicit assumption in the cases of all the previously synergistic 

pharmaceutical longevity interventions is that simply targeting additional nodes 

in the aging regulatory network leads to increased effects size (sections 1.2.3 
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and 1.5.1). Albeit, once again, there were a large number of cases of lack of 

synergistic interaction even though distinct aging related gene sets were being 

targeted. 

One hypothesis to test was that combining drugs that target additional known 

aging genes will result in a concomitant increase in effect size. In other words, 

that targeting more aging genes (and/or having a bigger impact in terms of 

favorable fold-changes) would result in larger therapeutic effect.  

Hypothesis 3 – Combinatorial interventions are linear combinations of their 

monotherapies. 

A corollary of this assumption is that transcriptional changes of a drug 

combination is assumed to be mostly the result of a linear combination of the 

changes seen for drugs that constitute it. At least to first approximation, 

perturbations involving a pair of drugs are assumed to be modelled as linear 

super-position of the individual drug effects. For two drugs (Drug A and Drug 

B), the DEG for the drug pair (AB) needs to be, at least to first approximation:  

𝐴𝐵 ~ 𝛼 ∗ 𝐴 +  𝛽 ∗ 𝐵 

Where alpha and beta are real-valued factors allowing for linear interactions 

between genes (e.g., saturation effects or changes in effective in vivo drug 

concentration due to global effects on drug detoxification and transport 

pathways). This linearity assumption is a strong assumption, and I will 

explicitly test how far from realistic it is (see sub-chapter 6.3). 
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Goal 1 – Design and validate an automated HTS for longevity interventions in C. 

elegans 

Both of my hypotheses require a larger number of drug combinations to be 

assayed (as well as the respective monotherapies). The lack of a satisfactory 

solution (section 1.2.1) led me to design and validate a new automated HTS for 

longevity pharmaceutical intervention in C. elegans (Chapter 3). 

Goal 2 – Conduct a combinatorial HTS to identify new drug synergies. 

After having created a functional automated HTS, I used to identify new 

synergistic drug combinations (Chapter 5). 

Goal 3 – Generate and analyze a larger RNA-Seq dataset of lifespan-extending 

pharmaceutical intervention. 

Hypothesis 2 requires me to know which known aging-genes are target by my 

drugs. I found out this information by generating and analyzing the 

transcriptome of each of my drugs (Chapter 4). 

Goal 4 – Test my hypotheses using drugs’ transcriptomic profiles and screen 

results. 

I tested the similarity assumption (hypothesis 1) and linearity assumption 

(hypothesis 2) by combined computational analysis of the data previously 

generated (Chapter 6). 
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Chapter 2 - General Experimental Methods 

2.1 - Drug Library Selection 

I wanted to maximize the chance of identifying novel drug-drug interactions 

and I therefore created a careful set of criteria which candidate drugs had to 

fulfill before being considered for inclusion in my test set. 

According to the DrugAge (build 3) database of aging-related drugsa, at the time 

there were 567 compounds that had been shown to extend the lifespan of model 

organisms. By far the most popular among these model organisms is C. elegans 

with 395 compounds tested through a total of 970 individual lifespan assays. 

 

Figure 2.1 – Distribution of average lifespan change for C. elegans in GenAge. 

Distribution of number of GenAge lifespan assays that resulted in a given magnitude 

of average lifespan change in worms. 

 

The first criterion that I applied was based on effect size displayed by a 

compound. The mode of the distribution of average lifespan changes reported 

in DrugAge71 for C. elegans is 10% with a standard deviation of 20%. To 

maximize my statistical power, I set an effect size threshold of 30% (equivalent 

 
a Freely available at https://genomics.senescence.info/drugs/index.php .  

https://genomics.senescence.info/drugs/index.php
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to one standard deviation over the mode). That is, I considered only compounds 

that at least in one lifespan assay statistically significantly extended the average 

lifespan of C. elegans by 30%. I further prioritized compounds that work at the 

standard temperature of 20 C and excluded those for which control lifespan was 

abnormally short. Specifically, I required the control group having a mean 

lifespan of at least 17 days. 

Some compounds (for example some FDA-approved drugs) require the mode 

of administration to be intravenous administration to have therapeutic effects. 

This makes these compounds potentially hard to further investigate in 

vertebrates and I therefore also only selected compound that could be delivered 

through oral administration. 

For similar reasons, I excluded compounds shown to extend lifespan in worms 

but that had already failed to do so in mammals.  

Lifespan studies can be notoriously difficult to reproduce and show large lab-

to-lab variability. I therefore excluded compounds that other members of our 

lab had tested previously but for which they were unable to reproduce published 

lifespan benefits.  

Furthermore, to increase the reproducibility and tractability of my results, 

natural extracts or multi-compound formulations were rejected as possible 

candidate pharmaceutical interventions. 

Lastly, and taking in consideration the goals of my project, after looking at the 

remaining candidate drugs, I gave priority to compounds with published 

information suggesting a clearly defined and distinct modes of action and large 

effect size. Applying these criteria, I arrived at final drug library comprising 15 
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drugs in total: alpha-ketoglutarate, aspirin, captopril, curcumin, 

epigallocathecin-3-gallate, DL-alpha-lipoic acid, icariin, lithium chloride, n-

acetyl-l-cysteine, myricetin, piceatannol, resveratrol, spermidine, thioflavin-T 

and ursolic acid. For each of these compounds I conducted a full literature 

review to further refine / inform my understanding of mode of action and 

potential or reported interactions.  

2.2 - Drugs Literature Review 

In the following subsections, I will analyze the available literature for each drug 

that is part of my library plus all 5 drugs that were used in our previous work70a. 

The methodology for identifying the relevant literature for each compound was 

the following: I started by extracting the literature referred in DrugAge71; I then 

checked the abstracts of literature that cite the previously selected DrugAge 

references; additionally, I included new literature that is yet to be included in 

DrugAge but that I was aware of. 

To acquire expertise is not sufficient to exhaustively read the necessary 

literature. One must also examine it in a critical fashion, namely, through the 

lens of consilience72. In our context, consilience is applied by searching for 

agreeable and disagreeable evidences among distinct research papers, and 

checking if there is the emergence of a stronger conclusion73. Even if there is 

no general convergency of evidence, this exercise allows the development of an 

unbiased holistic view of the current state of knowledge. 

 
a This is because I will be joining the RNA-Seq samples that we had previously 

generated with the ones from this project. 
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2.2.1 - Allantoin 

According to the DrugAge15 database (build 3), the only time that allantoin was 

subjected to a lifespan assay was in C. elegans74. In this paper, the authors 

selected allantoin with the hypothesis that it would function as a caloric 

restriction mimetic. The evidence suggesting this hypothesis was that allantoin 

is one of the drugs inducing a transcriptional profile in human cell lines that 

most resemble the transcription profile induced by caloric restriction (CR). 

Since the transcription profiles used came from Connectivity Map75, and were 

of mammalian origin, the authors then proceeded to test allantoin in C. elegans. 

Allantoin, at a dosage of 250µM starting with adulthood, significantly extended 

mean lifespan by 20.1% and 4.2% on wild-type and eat-2a (DA465 strain) 

background, respectively. I interpret this result as showing that allantoin is at 

best a partial CR mimetic, as supported by the additional lifespan increase on 

the eat-2 strain. 

Evidence against my interpretation is provided by the authors74 when they show 

that allantoin significantly extended the lifespan in daf-16(mgDf50) worms by 

19.7%. The rationale for testing in this strain is that it is known that lifespan 

extension by CR does not require DAF-1676. Nonetheless, I counter-argue that 

it might just be that the only commonality between CR and allantoin is to the 

extent that they simply extend lifespan in a daf-16 independent manner. 

From a healthspan perspective, allantoin displays mixed effects of its 

components in N2 worms74: it increased healthspan if measured by pharyngeal 

 
a eat-2 strains are the standard genetic model of CR. They exhibit reduced food intake 

due to impaired pharyngeal pumping305. 
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pumping rate77; but had no effect on healthspan as measured by movement 

(body bends per minute). 

In our recent paper, we show that for another strain of EAT-2a, allantoin fails to 

extend lifespan. Furthermore, we replicated the DAF-16 independence of 

allantoin, albeit using the daf-16(mu86) strain. Additionally, we demonstrate 

that allantoin does not extend the mean or maximum lifespan of the C. elegans 

transforming growth factor beta homologue DAF-7b mutants. 

It is worth noticing that the anti-aging translation potential of allantoin is 

supported by our results on Drosophila melanogaster70. In more detail, we show 

that at the same previously used dosage, the mean lifespan of wild-type Oregon-

R male fruit flies is significantly extended by 15%. 

2.2.2 - Alpha-ketoglutarate 

To the best of my knowledge, the first time in which alpha-ketoglutarate (α-

KG) was tested in a lifespan assay was in 201478. It was a success (and lifespan 

extension has since been replicated in two other studies79,80), with the magnitude 

of lifespan extension shown to be independent of whether the treatment was 

started at the egg stage or adulthood. In metrics of healthspan, α-KG did not 

influence the rate of egg laying, total progeny, and pumping rate. 

Regarding the mode of action (MoA), the authors suggest that α-KG specifically 

disrupts the energetic flow in the complex V of the electron transport chain by 

binding to the ATP synthase subunit beta, and therefore, being an uncompetitive 

 
a eat-2(ad1116) strain. 
b daf-7(e1372) mutants. 
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inhibitor of it. Namely, the longevity benefits of α-KG require ATP-2a because 

there was no lifespan extension in the already longer lived worms that had the 

expression of atp-2 gene knockdown by RNA interference (RNAi)78. 

Additionally, five lines of evidence were provided to make a compelling case 

that α-KG is a CR mimetic. Firstly, as it is the case with eat-2;daf-2 double 

mutants78, α-KG fed daf-2 worms live longer than their respective daf-2 

controls, that is, the longevity mechanism of α-KG appears to be independent 

of the insulin/IGF-1 (IIS) pathway. Secondly, similarly to eat-2 mutants α-KG 

fails to increase the lifespan of CeTOR(RNAi) animals. This suggests that α-

KG requires TOR/let-363. Thirdly, the lower ATP content present in α-KG fed 

worms may partial being inducing a CR-like state, and this is supported by the 

failing to extend the lifespan of eat-2(ad1116) animals. Regarding this point, 

the authors fail to mention that the early mortality (corresponding to 

approximately the first half of their lifespan) of N2+α-KG is much less than the 

one achieved even in eat-2+α-KG78. Fourthly, the FoxA transcription factor 

PHA-481 is required by α-KG to prolong longevity, just like what happens in 

the case of dietary restriction (DR) and reduced CeTOR signaling. The last 

evidence consists that in the same vein as TOR inhibited, dietary restricted and 

atp-2(RNAi) animals, α-KG fed wild-type worms exhibit increased autophagy, 

while α-KG had no further effect on the autophagy levels of atp-2(RNAi) and 

CeTOR(RNAi) animals. 

In this very same work78, the authors were further able to reveal that α-KG is 

partially dependent on the AMP-activated protein kinase (AMPK) and forkhead 

 
a the orthologue of ATP5B in C. elegans. 
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box protein O (FoxO)a pathways, as judging by its significant but smaller 

magnitude of lifespan extension on the aak-2b and daf-16 strains. In contrast, 

another canonical aging pathway, the hypoxia inducible factor (HIF-1) 

pathway, does not seem to be involved, as α-KG extends the lifespan in loss-of-

function hif-1, egl-9, and vhl-1 mutants. 

Latter work shows that the pro-longevity effect of α-KG is evolutionary 

conserved in Drosophila melanogaster82. Although, in this model organism 

reproduction is compromised for some dosages but not others. Additionally, α-

KG effects on other fly healthspan assays were null (normal tolerance to 

oxidative stress, starvation, and desiccation) or positive (enhanced climbing 

ability and increased heat stress resistance). 

In great support of the evolutionary conservation of the MoA proposed in the 

aforementioned worm manuscript, in flies α-KG also: activates leads to a 

reduction of ATP and ATP/ADP ratio, AMPK, inhibits the target of rapamycin 

(TOR) pathway and activates autophagy-associated genes82. In sum, the entire 

biological chain of events elicited by α-KG seems to be entirely conserved. This 

is interesting, considering that the α-KG performance in the Caenorhabditis 

Intervention Testing Program (CITP) was positive in 3 different C. elegans 

wild-type strains but neutral or even detrimental to the longevity of 3 wild-type 

strains of C. briggsae83. 

 
a FOXO in humans, is the O subclass of the forkhead family of transcription factors. 

These transcription factors have a fork head protein domain. 
b aak-2 carry a deletion on the gene that encodes the catalytic (α) subunit of AMPK, 

the cellular sensor of low energy levels. 
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2.2.3 - Aspirin 

Aspirin or acetylsalicylate is rapidly converted in vivo to salicylate, and 

therefore it is considered its pro drug. Accordingly, I analyzed the literature that 

directly administered either compound, to present a holistic view of aspirin as a 

potential pro-longevity intervention. 

In D. melanogaster, aspirin increases the minimum and maximum lifespan in 

both genders (albeit at different dosages), with no clear effect on spontaneous 

activity and activity as tested by negative geotaxis84. In this paper, it exists 

sexual dimorphism in other measures of healthspan: in males aspirin increases 

the resistance to heat, paraquat, and starvation, while in females it is of benefit 

only in starvation conditions. The results on the stress-resistance of female flies 

were largely contradicted by a more recent study that shows that they do display 

increased resistance to heat-stress, to two types of oxidative stressors and to 

starvation85. Nonetheless, both works agree in that there is a decrease in the 

number of eggs laid84,85. 

Perhaps the most striking fact is that aspirin-fed flies live longer although their 

food consumption increases84. I might be the first considering this free-lunch a 

signature of aspirin treatment, but my reasoning is that it is also occurs in 

crickets (on top of extending mean and maximum lifespan in both genders)86. 

Furthermore, the fact that the lifespan of female flies is increased whether they 

are fully-fed84,85 or food-restricted85. 

In C. elegans, two studies report an extension of mean lifespan of N2 but not of 

daf-16 mutants, accompanied by an improvement in motility and pharyngeal 

pumping rate87,88. Specific to each study, it is also shown that aspirin reduces 
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the formation of aging-associated protein aggregates87, increases resistance to 

oxidant87 and heat-stress88. The robust lack of longevity effect on the daf-16 

strain, coupled with the absence of changes to peroxide resistance87 and to the 

expression of the sod-3 antioxidant gene (which is heavily induced by aspirin 

in the wild-type87,88 and a known DAF-16 target89), suggests that most or all the 

pro-longevity effects of aspirin are mediated by the DAF-16/FOXO pathway. 

Like α-KG, the MoA of aspirin is suggested to consist in the increase of the 

AMP to ATP ratioa, which leads to an increase of AMPK. This is supported by 

the fact that aspirin does not extend the lifespan of aak-2 or par-4 wormsb88. 

This can be considered the main candidate explanation for aspirin effects, as it 

is the same mechanism suggested to be at play in flies85. 

Alternative modes of action explaining the pro-longevity effects of aspirin in C. 

elegans are: the reduction of mitochondrial respiration (evidenced by the lack 

of longevity effects on clk-1c and isp-1d mutant strains88); inhibition of 

proliferative germline stem cells leading to the activation of DAF-16 (supported 

by the absence of increased longevity and heat-stress resistance in glp-1 

germline deficient mutants fed aspirin90); and competitive inhibition of EP300, 

which induces autophagy (namely mitophagy) in worms and mice91. In contrast, 

the hypothesis that the aspirin-mediated extension of lifespan is the result of 

DAF-16 activation by the binding of silent information regulator 2 (SIR2) is 

 
a which is taken to be equivalent to the reduction of the ATP to AMP ratio. 
b AMP can stimulate AMPK by two mechanisms: allosteric activation, and, mainly, by 

binding to AMPK and promote its phosphorylation by LKB1. This latter mechanism is 

conserved from worms to humans306, with PAR-4 being the worm homolog of LKB1. 
c strain defective in the enzyme involved in ubiquinone synthesis. 
d strain with a defect on a component of the respiratory chain complex III. 
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rejected empirically, as aspirin treatment increases the lifespan of the null 

mutant worm strain sir-2.1(ok434)88. 

Curiously, aspirin slightly extended the lifespan of daf-2(e1370) animals88, 

suggesting only a partial dependence on the IIS pathway. Although, the small 

magnitude of lifespan extension (approximately 3%) might just be an artifact 

due to a residual expression of DAF-2, since daf-2(e1370) is not a null mutant. 

If this is the case, aspirin could fully depend on the IIS pathway. 

Unfortunately, under the recent gold standard of CITP, aspirin treatment did not 

altered the longevity of any of the species (and respective strains) tested83. 

Furthermore, studies using Mus musculus conclusively show that aspirin does 

not extend the longevity of females92–94. Regarding male mice, in an initial 

report, aspirin extended average lifespan (no effect on maximum lifespan)93, but 

it subsequently failed to do so under the American National Institute of Aging 

Interventions Testing Program (ITP), leading the authors to consider their first 

report a false positive94. 

Taking into consideration the lack of reproducibility in mammals and under the 

CITP, the best way to translate this intervention to humans might be on a case-

by-case basis95. A cheerful example of oral aspirin benefits in a well-defined 

human subpopulation is the reduction in all-cause mortality observed in a cohort 

of 226 centenarians96. 

2.2.4 - Captopril 

Captopril is an FDA-approved treatment for high blood pressure. It is an 

angiotensin-converting enzyme (ACE) inhibitor, which is of importance as the 
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ACE gene has been conserved from bacteria to mammals97 and it is one of the 

few genes with genetic polymorphisms robustly associated with longevity in 

humans98. 

It has only been explored once under the biogerontology paradigm and was 

shown to extend the mean and maximum lifespan of C. elegans97. Moreover, its 

pro-longevity effect was robust in 3 distinct culture temperatures and to live and 

heat-killed bacteria feeding conditions; but with no effect on brood size, 

reproductive span, and pharyngeal pumping rate. The same authors replicated 

these effects using acn-1a RNAi-treated worms, with the exception that the 

RNAi treatment was able to increase the pharyngeal pumping rate from days 

12th to 20th of adulthood. 

There is substantial evidence that the pro-longevity MoA of captopril is the 

inhibition of the ACN-1 gene: combined treatment of acn-1 RNAi with 

captopril, did not have and addictive effect on lifespan and both interventions 

have the same results in distinct genetic backgrounds. Going into more detail 

on the later point, reducing the activity of ACN-1: has additive pro-longevity 

benefits with caloric restriction (eat-2), mitochondrial insufficiency (isp-1) and 

with long-lived IIS pathway mutants (daf-2 and age-1); it is a lifespan-extension 

pathway independent of TOR (rict-1), proteotoxic stress (hsf-1)b and of sir-2.1 

activity; and it is toxic to daf-16 worms, reducing their lifespan. 

 
a the C. elegans homologue of the ACE gene. 
b although it is also revealed that acn-1 RNAi increases resistance to heat-stress. 
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Even though captopril has not been assayed for longevity in mammals, its pro-

longevity MoA is tractable and evolutionary conserved in humans98 and fliesa, 

robust to different conditions and additive to the main pro-longevity genetic 

interventions (which indicates its potential to be combined with other drugs). 

2.2.5 - Curcumin 

Curcumin is a component of turmeric in Indian curry. The metabolite of 

curcumin, tetrahydrocurcumin, extends the mean and maximum lifespan of 

male C57BL/6 mice when treatment is initiated at 13-months of age, but is of 

no effect when started at the 19th month of age99. However, in under the ITP 

these benefits were not reproduced100. Despite failing in the gold standard 

testing program, curcumin is still consideration from a biogerontology 

perspective due to its very robust results in all the other model organisms tested, 

e.g. in worms, curcumin does promote lifespan101b. The rest of supporting 

literature was conducted in flies. 

Curcumin robustly extends lifespan of male and female D. melanogaster from 

two distinct wild-type strain, confers additional protection against oxidative 

stress and improves climbing ability102. In yet another fly strain, a female and a 

male group of flies exhibited increased mean lifespan and activity of the 

superoxide dismutase103. Moreover, several works reproduced the gender and 

strain-independent pro-longevity effect of curcumin in flies104–106. Other 

beneficial effects include enhanced progeny viability and parental reproductive 

 
a another FDA-approved ACE inhibitor, lisinopril, extends the lifespan of 3 D. 

melanogaster strains through the same MoA307. 
b I am disregarding results in which the control group had a mean lifespan of less than 

9 days. Albeit there is still lifespan-extension in this work308. 
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fitness107. Larval feeding of curcumin in flies did not yield any additional benefit 

on CR flies, which indicates potential overlapping modes of action between 

these two pro-longevity interventions. Furthermore, age-specific lifespan assays 

reveal that curcumin treatment effects are incredibly age-dependent, going from 

benefic to harmful; accordingly to if the treatment is stated at the healthspan to 

the senescent span, respectively104,106. An additional factor influencing the 

magnitude of lifespan-extension caused by curcumin treatment is temperature. 

Through regulation of heat shock proteins, the higher the environmental 

temperature, in other words, heat stress, the larger the effect size relative to 

untreated flies, independently of gender108. 

2.2.6 - Epigallocathecin gallate 

The first trial of the popular green tea polyphenol epigallocatechin gallate 

(EGCG), resulted in no effects on the survival of worms, but improvement in 

healthspan-associated traits including augmented resistance to oxidative stress, 

attenuated decline of pharyngeal pumping rate and enhance chemotaxis index 

in old age109. Three years after, the potent oxidative stress resistance induced by 

EGCG was replicated, but this time it was accompanied the a reported mean 

lifespan-extending effect of 10%110. 

The unclear role of EGCG as a lifespan-extending compound in worms was 

resolved by Liu Gui Xiong et al.111 which showed that this effect is robust to 

different temperatures and genetic backgrounda, but highly sensitive to 

 
a two distinct wild-type strains were used. 
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concentrationa. EGCG induces longevity by causing a transient increase in 

reactive oxygen species, that stimulates the endogenous detoxification defense 

system. More importantly for my approach, co-administration of n-acetyl-l-

cysteine abolished EGCG-mediated lifespan and oxidative stress resistance 

benefits and further supports that EGCG is a case of mitohormesis112. Due to 

the transient induction of reactive oxygen species, and consequent defense 

response, declining with age, EGCG treatment is progressively blunted with 

age. This work also reiterated the requirement of the DAF-16 pathway for the 

EGCG-induced longevity that was reported in a previous manuscript113. 

The proposed mode of action of EGCG seems to be conserved in mammals, as 

male weaning Wistar rats fed EGCG display increased median lifespan, 

improved age-associated oxidative stress and superior activation of the FoxO3a 

longevity factor114. 

For the sake of completeness I must mention that there is an alternative mode 

of action for EGCG based on results obtained in flies that proposes that 

reduction in glucose metabolism is the key contributor for the superior fitness 

and lifespan observed in EGCG-treated D. melanogaster115. 

2.2.7 - Icariin 

At the optimal dosage of 45µM when under 25ºC, icariin extends the mean 

lifespan of worms by 25%116. Icariin is not the active biological form, and this 

flavonoid is eventually hydrolyzed to icariside II. The direct administration of 

 
a the reader might notice that this is common for compounds that act mainly by 

antioxidant mechanisms. For the relevant literature please read the subsection about n-

acetyl-l-cysteine. 
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icariside II resulted in increased tolerance to thermo and oxidative stress and 

slowed the locomotion (as measured by swimming bends) decline in late 

adulthood. In terms of the genetic pathways involved, both icariin and icariside 

II fail to extend the mean lifespan of daf-16(mu86) and daf-2(e1370) mutants, 

but they did prolong the lifespan of eat-2(ad1116) and rsks-1(ok1255) strains; 

suggesting that icariin depends on the IIS pathway and it is not a caloric 

restriction mimetic116. Furthermore, the expression of SOD-3 increased as 

confirmed by PCR and fluorescent marking. 

The results from mice are in agreement with the ones obtained in worms: there 

is a mean lifespan extended by 8% but no maximal lifespan; and the SOD gene 

expression is increased, moreover it is indistinguishable from youth levels117. 

Treated mice were lighter than the control individuals, even though they 

consumed more calories. Healthspan improved as measured by the Morris water 

maze, rotarod and bone mineral density (worth notice that bone mineral density 

is conserved at youth levels). The icariin-treated mice also display less DNA 

damage as indicated by the decreased expression of gamma-H2AX. 

2.2.8 - Lipoic Acid 

Lipoic acid was first shown to extend the lifespan of female and male D. 

melanogaster, by 12% and 4%, respectively118. Very recently, this effect on 

female flies was replicated even when started only at day 26 (mid-aged)119. The 

pro-longevity effect of lipoic acid are associated with the prevention of age-

associated functional decline and hyperproliferation of intestinal stem cells, 

through the activation of the endocytosis-autophagy network119. 
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The literature in C. elegans reveals that lipoic acid administration results in an 

increase in the mean and maximum lifespan, with no effect on pharyngeal 

pumping rate, but with the enhancement of the chemotaxis indexa in aged 

worms. The lifespan-extending effect of lipoic acid on this model organism has 

been confirmed only in regard to mean lifespan, but not maximum120. 

Male rats fed an ad libitum diet supplemented with lipoic acid display similar 

survival profiles as the control animals121. 

2.2.9 - Lithium 

The first initial report of lithium as a lifespan-extending drug showed that this 

effect was independent of DR, FOXO/IIS or germline signaling pathways122. 

Additionally, it was observed a trade-off between longevity and fertility, as 

lithium treated animals produced less eggs, and most eggs that were laid 

subsequently failed to hatch. Due to the lithium status as an FDA-approved drug 

for the treatment of psychiatric disorders123 as a classic glycogen synthase 

kinase-3 (GSK-3) inhibitor, the authors conducted lifespan assays of lithium 

under different genetic interventions in the worm orthologue of this gene. 

Inhibition of GSK-3β is not sufficient for lifespan extension (mutants live 

shorter), and lifespan extension by lithium actually requires GSK-3β (because 

it further decreases the short lifespan of gsk3 mutants). 

The beneficial effects of lithium on the mean lifespan of worms were 

reproduced, and there were no changes seen in maximum lifespan. Although, 

 
a it measures the fraction of worms able to display goal-oriented motor responses from 

the transformation of specific sensory stimuli. 
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lithium treatment did not significantly slow the rate of aging as measured by 

mortality rate doubling time. The slower decline in locomotor phenotype at all 

ages, together with the previous mention studies, shows that lithium treatment 

in worms as a mixed effect on healthspan assays. Moreover, the authors create 

a dynamical model and supporting it by several lines of evidence conclude that 

lithium elicits a greater increase in autophagy than in mitochondrial biogenesis, 

and that this dictates the cellular respiratory capacity by influencing the ratio of 

functional and dysfunctional mitochondria. In sum, the increase in the ATP 

levels by lithium is due to a higher ratio of functional to dysfunctional 

mitochondria124. 

The lifespan-extending of lithium in C. elegans were reproduced in yet two 

other studies and with a similar dose-response curve125,126, giving rise to the 

view that lithium is a robust pro-longevity treatment. Lithium therapy as a 

biphasic dose-dependent effect on lifespan, seen at similar concentrations in in 

vitro127, worms and flies128. After a minimum threshold to elicit a therapeutic 

effect, lithium treatment eventually becomes toxic at higher concentrations122. 

On top of the biphasic lifespan extension effects being reproduced in flies, in 

this model organism these are independent from gender and genetic 

background128. Lithium is arguably even more benefic than in worms because 

it elicits a significant improvement and protection against age-related locomotor 

decline, but this time without compromising feeding behavior or fecundity. 

With relevancy for the translational potential of lithium as an anti-aging therapy, 

this work validated that lithium extends lifespan even when administration starts 

only in mid-life or just with a short-term treatment in the case of young flies. 

Like in worms, lithium extends the lifespan of DR flies, but it seems that it does 
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so by inhibiting the fly orthologue of GSK-3. Also, in opposition to what was 

suggested based on worm experiments, lithium does not induce or require 

autophagy to promote longevity in flies. These authors propose a model in 

which lithium inhibits GSK-3, which indirectly leads to the activation of the 

transcription factor nuclear factor erythroid 2-related factor (NRF-2)a. 

Very exciting form a translational point-of-view, are two studies showing 

correlation evidence that lithium concentration in drinking water is associated 

with reduced all-cause mortality, in distinct human populations, and with a 

similar dosage therapeutic window to the aforementioned pre-clinical 

results125,129. 

As discussed in the known drug synergies section (section X), lithium as a pro-

longevity treatment can be paired with rapamycin or trametinib for additional 

benefits, which can be even more powerful by combining all these drugs as a 

triple pharmaceutical treatment37. 

2.2.10 - N-acetyl-L-cysteine 

N-acetyl-L-cysteine (NAC) is a natural source of cysteine which in turn is used 

in the synthesis of glutathione, and as such, it is a potent antioxidant in vivo. It 

was initially discovered to increase the mean and maximum lifespan of flies by 

26.6%130. Albeit this effect seems to be only conserved in the male gender of 

genetically heterogenous mice, and it is marked by an accentuated weight loss, 

which might hint at the induction of a partially DR-like state131. 

 
a since GSK-3 is an NRF-2 inhibitor. 
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In C. elegans, it was first shown that liposomal delivery of NAC improves 

survival, in opposition with the lack of effect seen from its direct 

administration132. In contrast, it was later shown that direct NAC administration 

extended the mean and maximum lifespan, by up to 30.5% and 8 days, 

respectively. Furthermore, it was found that NAC increases the number of 

progeny, and resistance to radiation and heat shock stress133. These discrepant 

evidence can be conciliated by the recent results showing that NAC has a highly 

sensitive dose-response curve. NAC is a canonical antioxidant and as such its 

efficacy is slave to the inverted U-shaped dose-response relation between 

reactive oxygen species levels and lifespan38. 

2.2.11 - Metformin 

Metformin is a biguanide drug commonly used to treat type-2 diabetes. 

In worms it extends median lifespan134–137 and delays the age-related decay of 

mobility134,138[2,11]. The lifespan extension seems to be independent of the IIS 

pathway (DAF-16, DAF-2, and AGE-1). The lack of effect of metformin in eat-

2(ad1116) mutants coupled with the display of several phenotypes associated 

with DR (lower lipofuscin accumulation138, slimmer bodies, extended period of 

egg-laying) and the genetic requirement of SKN-1 and AAK-2 strongly 

suggests that metformin is a CR mimetic. Important from a translational 

perspective, metformin did not impaired feeding134. An alternative model for 

the mode of action of metformin is mitohormesis. Metformin increases reactive 

oxygen species production, metabolic heat production and respiration, and, 

crucial to our paradigm of combinatorial drug interventions, the antioxidant 
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NAC abolishes its benefits135a. These are the two main ones, but not the only 

models seeking to elucidate the mode of action of metformin137,138. 

In an attempt to confirm that metformin promotes longevity in an evolutionary 

conserved manner in flies, indeed it was observed a robust activation of AMPK 

and reduced body fat, but no lifespan extension in either gender. Moreover, 

metformin was toxic in some of the concentrations tested139. 

Metformin has also been tested in some less common animal models. In crickets 

metformin extends survivorship and maximal longevity86. Metformin 

significantly reduced growth rates and delayed maturation in crickets of both 

genders. The same authors also tried the aspirin plus metformin drug pair, but 

the lifespan-extension was less than in any of the single drugs. Furthermore, 

metformin prolongs the lifespan of in short-lived fish and delays several 

markers of aging, including lipofuscin, inflammagingb, cell senescence and 

cognitive decline140. 

Results in middle-aged male mice of two different strains are more 

encouraging141. Metformin improves general fitness and lifespan at a low 

dosagec, but it is significantly nephrotoxic (renal failure) at a higher one. 

Animals in the low-dose long-term metformin treatment are initially slimmer 

(even though they consumed more calories than the control animals, like in 

worms), but tended to preserve their bodyweight with advancing age. 

Intermittent treatment regimens of every-other week or two consecutive weeks 

 
a the requirement of AAk-2 would equally be justified under this alternative model. 
b the chronic low-grade inflammation that its characteristic of advanced age. 
c this dosage still corresponds to serum levels an order of magnitude higher than those 

used in the treatment diabetic human patients. 
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per month were tested, with the aim of bypassing the toxicity associated with 

high levels (relative to the human therapeutic dosages) of long-term metformin 

treatment. Unfortunately, neither extend mean or maximum lifespan in mice142. 

In rats, metformin supplementation replicates the reduced food intake and body 

weight seen in the caloric restricted group but did not extended lifespan at any 

quantile143. 

2.2.12 - Myricetin 

The two works with lifespan assays using the naturally occurring flavonol 

myricetin were conducted in worms. Their findings agree: on its pro-longevity 

effects (18%144 and 33%145 mean lifespan increase, 22% maximum lifespan 

increase144), on its anti-oxidant capacity and that it elicits the nuclear 

translocation of the daf-16 protein. They do diverge, however, in the effects of 

myricetin on the daf-16(mu86) genetic background. On one there is a pro-

longevity effect on this background144, while on the other this is completely 

abolished145. It is suggested that the differences might be consequence of the 

markedly different culturing conditions used, solid medium at 20ºC versus 

liquid medium at 25ºC, respectively. 

The great anti-oxidant potential of myricetin might explain its reduction on the 

accumulation of lipofuscin145, a biomarker of aging, if one takes into 

consideration that lipofuscin are highly oxidized crossed-linked proteins.  

Additionally, myricetin does not increase tolerance to heat-stress, pharyngeal 

pumping rate or body size, which are all evidence against a possible role as a 

caloric restriction mimetic145. 
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2.2.13 - Piceatannol 

In the sole research paper assessing piceatannol through lifespan assays in 

worms, it is shown that this natural stilbene increases median lifespan by 

18%146. Excitingly, piceatannol does so without signs of toxicity (no alteration 

of growth rate, worm size or progeny production), and with a wide range of 

positive effects on healthspan markers (delayed age-related decline of pumping 

rate and locomotive activity; and increase resistance to heat and oxidative 

stress). 

The fact that enhanced stress-resistance and lifespan-extension is lost in the daf-

16(mu86) mutants, coupled with fluorescent marker evidence of daf-16 protein 

nuclear translocation, and increase gene expression of its downstream targets, 

logically led to the suggestion that piceatannol acts via DAF-16. Through 

further lifespan assays additional genetic background requirements were 

discovered, including DAF-2, AGE-1 and EAT-2 but not CLK-1 (for which it 

extended median lifespan by 22%)146. 

2.2.14 - Psora-4 

Psora-4 is an inhibitor of the potassium channel Kv1.3. In the only time that it 

was assayed for longevity, besides the work from our group, Psora-4 prolonged 

C. elegans longevity by 42% - the second largest effect size present in the large-

scale screen on which it was initially identified as a lifespan-extending 

compound147. It was also shown to have no significant effect on survival under 

conditions of oxidative stress. 
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2.2.15 - Rapamycin 

Rapamycin is arguably the most famous anti-aging drug; therefore, this FDA-

approved immunosuppressant drug is vastly studied, with one of the major 

aging pathways being named after it - mammalian target of rapamycin (mTOR). 

A systematic review of rapamycin potential in biogerontology is outside the 

scope of this dissertation, and this section provides only the upmost relevant 

information. The curious reader is advised to read the cited body of work. 

In fruit flies, rapamycin slightly extends mean lifespan in a gender-independent 

manner, although at a significant fecundity cost148. Both these effects have been 

reproduced and shown to be modulated specifically through the complex 1 

branch of the TOR pathway (TORC1), including the downstream upregulation 

of autophagy149. Furthermore, it is accompanied by increase stress resistance 

and it is efficacious even on long/lived IIS mutant and DR flies. 

The literature in C. elegans shows that the lifespan extension from rapamycin 

treatment150–154 is dependent on SKN-1, but not on DAF-16155,156 or DAF-2157. 

Additionally it induces mitochondrial unfolded protein response and increases 

respiration158, and ameliorates the age-related decline of pharyngeal pumping 

rate156. The fact that rapamycin treatment does not extend lifespan of eat-2 

mutants and that it elicits a gene expression profile resembling that of a DR 

state, might suggest that it could be considered a calorie restriction 

mimetic156[6], although evidence in mice disputes this line of reasoning159[13]. 

Surprisingly, the majority of studies with rapamycin as an anti-aging 

intervention have been done on Mus musculus (e.g.159,160). 
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On the ITP, whether fed at 270 or 600 days of age, rapamycin extends median 

and maximal lifespan in both genders of genetically heterogenous mice161. In 

old mice, rapamycin restores the self-renewal and hematopoiesis of 

hematopoietic stem cells and boosts immune function162. 

Considering that mTOR is an evolutionary conserved aging pathway, in mice 

too, rapamycin administration reduces its activity, albeit not in all tissues163. 

Nonetheless, it is important to mention that muscle mass was maintained163. 

Interestingly, since rapamycin improves age-related phenotypes even in young 

mice, its lifespan-extension might be dissociated from the aging process 

itself164. 

Due to the side effects of inducing insulin resistance and immune suppression, 

several intermittent schemes of rapamycin have been attempted. A 2 weeks per 

month intermittent administration, is sufficient to increase lifespan, inhibit age-

related weight gain, and delay spontaneous cancer incidence in inbred female 

mice165. Moreover, a once every 5 days rapamycin treatment regimen was 

shown to have no impact on blood glucose, while it still resulted on lifespan 

extension in 20-months old female mice166. Although, such regiment was 

elsewhere shown to not completely negate neither the immunosuppressive 

effects of rapamycin, nor the associated decrease in testis weight167. Hopefully 

complementary to the intermittent regimens, a 3-months transient rapamycin 

treatment extends the median lifespan of middle-age mice by up to 60%168. 
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2.2.16 - Resveratrol 

Resveratrol is a natural polyphenol found in grapes and red wine, and it is the 

compound for which there are the most lifespan assays169. 

Resveratrol activates sirtuin genes and extends lifespan in yeast170–175, 

worm38,154,182,183,158,170,176–181, flies170,184, fish185–188 and bees189. When nutrients 

are restricted, this effect is abrogated which suggests that it is related with 

caloric restriction170,171. 

In worms the lifespan extension is fully dependent on SIR-2.1176,179,190 (at least 

sometimes177), AAK-2190 and autophagy178, but it is independent from DAF-

16176,190. In this model organism, resveratrol treatment also induces mitonuclear 

protein imbalance and  activates the mitochondrial unfolded protein response158. 

In Nothobranchius furzeri, a short-lived fish, it causes a 56% and 59% increase 

in median and maximum lifespan, respectively. Additionally, the treated group 

exhibits ameliorated decay of locomotor and cognitive function. The initial 

lower survival of the treated group for the first few weeks, led the authors to 

propose that resveratrol might be an hormetic compound185. In another 

vertebrate model, the fish Nothobranchius guentheri, the lifespan-extending 

effects and increased cognitive and locomotor function caused by resveratrol 

administration were conserved. Additionally, it was shown that there was less 

accumulation of lipofuscin and senescence (as measured by beta-galactosidase 

activity)186. In this species too, resveratrol decreases oxidative stress188. 

An additional mode of action to the hypothesis that resveratrol is a CR mimetic 

acting through activating sirtuins, namely because it was contested that 
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resveratrol can increase sirtuins in vivo in either worms or flies191a, is as an 

antioxidant188. For example, in worms resveratrol increased mean and 

maximum lifespan and also oxidative stress resistance183 (these effects have 

been reproduced elsewhere179), but also there is work showing that resveratrol 

does not have free-radical scavenging activity in vivo180 (albeit in this particular 

work it also did not extended lifespan). 

This antioxidant role it is not how resveratrol acts in bees, as the mean and 

maximum lifespan extension are abolished in hyperoxic stress and the honey 

bees ingest fewer quantities of food189. 

After the previous brief description of the lifespan-extending effects of 

resveratrol, it is also now crucial to underline the plethora of negative results. 

In the ITP and in the only lifespan assay in a mammal, resveratrol did not 

extended lifespan100. Also, in the model crustacean Daphnia, resveratrol has no 

effect or even significantly decreases lifespan192. Furthermore, even though 

resveratrol was tested in both genders of a tephritid fruit fly species and under 

24 different diets it still did not elicit any lifespan extension193. In D. 

melanogaster, using different strains, gender and diets, the pro-longevity effects 

of resveratrol were very variable, and eventually consider dubious177. Wang et 

al., reported that resveratrol has effect only on female D. melanogaster and 

depending on the diet in question184. Staas et al. that dietary resveratrol had 

absolutely no effect on male and female w1118 D. melanogaster in terms of 

 
a In yeast that is clearly not the case as resveratrol does increase SIRT1 12-fold172, and 

certainly there is evidence that allows a counter-argument to be made170,190. 
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lifespan, locomotor activity, body composition, stress response and longevity-

associated gene expression194. 

In sum, I consider that resveratrol achieves its pro-longevity effects through 

caloric restriction mimicry or antioxidant capacity, in a species-specific manner. 

Moreover, I consider it perhaps the most unclear anti-aging compound: the 

mode of action and efficacy are highly debated, but either way it is extremely 

sensitive to experiment conditions. The incredibly unreliability of resveratrol 

treatment can be predicted if its main mode of action is as an antioxidant or 

mitohormetic compound, as both of these are known to has an inverted U-

shaped dose-response on longevity38. 

2.2.17 - Rifampicin 

The FDA-approved antibiotic rifampicin (RIF) or rifampin extends the lifespan 

of C.elegans by almost 45%, even in heat-killed bacterial lawns, which clearly 

indicates that its pro-longevity effects are not due to its bactericidal 

properties195. The very same work showed that rifampicin acts as a potent 

glycation inhibitor in vivo, reducing the age-relate accumulation of advanced 

glycation end products. It is worth mentioning that rifampicin treatment 

extended lifespan even when initiated at only day 9 of adulthood. 

Besides its anti-glycation effects, rifampicin pro-longevity effects depend on 

the DAF-16 gene, as it was shown to activate daf-16 protein translocation into 

the nucleus, had no influence on the longevity of the daf-16(mgdf50) null 

mutant strain, and led to an increase in the expression of SOD-3 (which is a 

direct target of DAF-16). Although the targets downstream of DAF-16 
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modulated by rifampicin seem to be a separate subset from those regulated by 

the IIS pathway195. 

2.2.18 - Spermidine 

Spermidine is a polyamine naturally present in humans, and its intracellular 

levels are known to decline during the human aging process. Therapeutic 

quantities are hard to be obtain through diet alone, but its supplementation is 

regarded as safe196. 

Research of spermidine in murine models is compelling. Four-months old 

C57BL/6J wild-type female mice subjected to a lifelong supplementation of 

spermidine in their drinking water, have their median lifespan extended. Even 

more relevant from a translational medicine perspective, there is still a 10% 

increase of the median lifespan of a group of male and female mice when 

spermidine supplementation is started later in life, on the 18th month197. 

Spermidine caused no changes in food and water consumption, and on body 

weight and composition, so the possibility of CR-like state being in play can be 

rejected. Instead, spermidine delays the aging process (namely cardiac aging) 

by eliciting autophagy. The same authors also report an inverse correlation 

between dietary spermidine intake and human cardiovascular disease197. I note 

that the corresponding spermidine human dosage to the one used in this mice 

study would be too high to be achieved easily by diet198, which suggests that 

extra spermidine supplementation might have unexplored cardioprotective 

potential in humans. The pro-longevity effects of life-long intake of spermidine, 

at the same dosage, were replicated on a different wild-type mouse strain with 



51 

 

a median lifespan extension of up to 25%, and the autophagy-based mode of 

action was further substantiated199. In middle-aged Sprague-Dawley male rats 

spermidine supplementation fails to extend mean or maximum lifespan200, but 

the dosage given was only 72% of the converted mice dosage198. Nonetheless, 

it still extended healthspan (if only very slightly), as measured by improved 

kidney tubules, liver, and heart morphology; increased exploratory behavior; 

and diminished expression of neuroinflammatory markers (once again the 

autophagy process was enhanced)200. 

Regarding other model organisms, spermidine retards chronological aging and 

rejuvenates replicative old yeast cells, and enhances the lifespan in D. 

melanogaster, C. elegans and human peripheral blood mononuclear cells. In 

yeast, mice and human cells, this spermidine-induced longevity is correlated 

with hypoacetylation of histone H3. Furthermore, and in completely agreement 

with the rest of the literature, it is shown that spermidine induces autophagy, 

and that this process is required for its lifespan-extension effect in yeast, flies 

and worms201. 

2.2.19 - Thioflavin-T 

The intuition that compounds traditionally used in histopathology to stain 

amyloid in tissues might be candidate drugs for delaying the aging process 

comes from evidence that such compounds do bind and slow the aggregation of 

such protein aggregates in vitro202, and that loss of proteostasis is one of the 

main hallmarks of aging203. Thioflavin T is an amyloid-binding dye that was 

first explored under this rationale in C. elegans, with an impressive 70% median 
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lifespan extension and 43%-78% maximum lifespan extension204a. These are 

perhaps the largest drug-induced pro-longevity effects ever reported for an 

adult-onset monotherapy at the standard culturing conditions of 20ºC in solid 

medium15. The efficacy of thioflavin T requires HSF-1 and SKN-1, but it is 

partly independent of caloric restriction, as it prolongs lifespan (albeit not to the 

same degree) in nutrient-based models of CR and eat-2(ad1116) mutants. 

With this effect size on lifespan, it is not very surprising that thioflavin T was 

the most robust compound assayed in the CITP, showing significant media 

lifespan-extension in 5 of the 6 strains of Caenorhabditis tested83. Not only that, 

but it was also the most potent convincingly reproducing the initial result. The 

robustness and potency of thioflavin T suggest that its mode of action is well-

conserved and of major importance among aging processes, respectively. 

2.2.20 - Ursolic Acid 

Ursolic acid is a lipophilic pentacyclic triterpenoid of botanical origins that was 

first shown to increase the mean and maximum lifespan of treated worms by up 

to 30%, although these effects were relative to a control group that had a mean 

lifespan of less than 15 days205. Later, the same group, with equally relatively 

short-lived controls, replicated their initial results and complement them with 

healthspan assays206. These latter also showcase the anti-aging potential of 

ursolic acid including in delaying the accumulation of lipofuscin, protecting 

against heat-shock, achieving an healthier chemotaxis index, and improving 

motility. Regarding the mode of action, since there is similar lifespan extension 

 
a it also decreased age-specific mortality across all ages. 
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on the daf-16(mgDf50) and daf-2(e1370) genetic backgrounds, the mode of 

action is thought to be independent of the IIS pathway. Instead, the failure to be 

of benefit to a JNK-1 mutant strain and its predicted binding affinity with the 

jnk-1 protein supports that it is through the modulation of JNK-1 that ursolic 

acid exerts its pro-longevity effect205. Another additional mode of action is the 

initiation of a DR-like, supported by the observation that treated worms are 

slimmer and that there are no effects on the lifespan of eat-2(ad1116) animals206. 

In w1118 Drosophila melanogaster flies, ursolic acid is of benefit to males only. 

In this gender it increases the mean and maximum lifespan and healthspan (as 

measured by climbing ability and immune function), without any fertility trade-

off. However, it does not increase oxidative stress resistance or affect gut health. 

Interestingly, total body weight remains the same even though ursolic acid-fed 

male flies ate significantly more food than controls. This makes sense in light 

that removal of the microbiome negates the anti-aging effects of ursolic acid. 

Which to me suggests that the treated flies could be benefiting from a 

microbiome-derived metabolite that is produced from the extra calories and 

activated by ursolic acid. 

2.2.21 - Summary 

While doing the literature review in the previous sections of this sub-chapter, I 

kept track of the gene epistasis of each drug. In more detail, I annotated the 

genetic background (mutants or RNAi) and the effect of the drug regarding 

lifespan. Table 2.1 summarizes the result of this annotating procedure. It only 

displays genetic epistasis information regarding genetic backgrounds that were 
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used to test at least two drugs. This criterion is to display only genetic 

intervention that might have discriminatory power, as it was my intention to 

check if the drugs could be clustered based on this information only. In case of 

information available from multiple sources, the ternary classification scheme 

used in Table 2.1, only features values for which there was agreement between 

sources. Furthermore, I collapsed the data from multiple loss-of-function 

mutants for the same gene and RNAi knockdown together, because otherwise 

the table would be too large and sparse. 

 

Table 2.1 – Drugs genetic epistasis. 

Based on the literature mentioned in the review. Columns represent distinct genetic 

intervention backgrounds. 1 – drug extends lifespan on that genetic background. 0 – 

drug has no effect on the lifespan. -1 – drug shortens average lifespan. 

 

As it can be observed in Table 2.1, the drugs genetic epistasis information is 

overly sparse, not allowing a granular clustering of drugs.  

Additionally, it is evident from Table 2.1, the strong bias for favoring known 

genetic backgrounds, for example, an anti-aging drug is almost always tested 

on daf-16 genetic backgrounds. This is important to keep in mind in Chapter 4, 

where I annotate the RNA-Seq differentially expressed genes based on the 

Drug daf-16 eat-2 daf-2 sir-2.1 clk-1 age-1 aak-2 skn-1 isp-1 hsf-1 daf-7 pha-4 nuo-6 sbp-1 jkn-1 jkk-1 mev-1

Lithium 1 1 1 1 1

Ursolic acid 1 0 1 1 0 1 1 0 0

Metformin 1 0 1 1 0 0

aKG 1 0 1 1 0

Rapamycin 1 0 1 0 0

Psora 1 0 1 0 0

Thioflavin T 1 0 1 0 0

Resveratrol 1 0 -1 0 -1 -1

Curcumin 1 0 0 0 1

Allantoin 1 0

Piceatannol 0 1 0 0 1 0

Icariin 0 1 0 0 0 0

Rifampicin 0 1 1 1

Aspirin 0 0 1 1 0 0 0

EGCG 0 1 0 -1 1 0 0 0

Lipoic acid 0

Captopril -1 1 1 1 1 1 1

Myricetin 1
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available literature. The more popular pathways will keep being mentioned 

reflecting this bias. 

2.3 - C. elegans Culturing 

2.3.1 - Standard Conditions 

For this dissertation only the Bristol N2 wilt-type and GRU101 mutant strains 

were used. The N2 strain was initially obtained from the Caenorhabditis 

Genetics Center Populations and the GRU101 strain was created in our 

laboratory126. These strains were growth and maintained on nematode growth 

medium (NGM) agar plates, incubated at 20ºC, and using E. coli OP50-1 as 

bacterial food source. The integrity of the populated plates was checked weekly, 

and the population was transferred to new plates as needed (but at maximum 

every other week). 

In case of drug treatments, there was a standardization of the reagents, mediums 

and materials used, whenever possible. For example, in experiments, the NGM 

agar and bacterial food were sourced from the same batches. 

2.3.2 - Bacterial food source maintenance and preparation 

The E. coli strain OP50-1 was initially obtained from the Caenorhabditis 

Genetics Center, and subsequently stored in small aliquots at -80ºC. This is a 

streptomycin-resistant strain that was used to bacterial lawns that worms fed on. 

In other words, the maintenance of selective growth for this bacterial strain 

requires streptomycin. 
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I created my own stock of OP50-1 E. coli bacteria from the aliquoted frozen 

stock. Under sterile conditions, an aliquoted stock was thawed and streak into 

Luria-Bertani (LB) agar plates. The streaked plates were then incubated at 37º 

for 16h, and then stored at 25ºC. Plates older than a month were discarded and 

this procedure was repeated as needed. 

To create frozen stocks of OP50-1 E. coli bacteria, single colonies of E. coli 

OP50-1 were transferred to 15ml tubes containing 5ml of LB broth with 200 

mg/ml streptomycin., under sterile conditions. To generate starter cultures, 

incubate the tubes overnight at 37 ºC and 200 rpm. The starter cultures were 

then transferred to large flasks (between 1 L to 3 L of volume), that were filled 

up to 60% by LB broth with 200 mg/ml streptomycin. Then these flasks too 

were incubated overnight at 37 ºC and 200 rpm. In the following day, 

concentrated E. coli cells were collected by centrifugation at 5000 g, for 10 

minutes, at 4 ºC. The bacterial pellets were then resuspended in M9 buffer. After 

serial dilution the number of bacterial forming units was determined 

spectrophotometrically, at 600 nm wavelength. Using this estimation, the 

concentration of the solution of bacteria in M9 buffer was standardized to 1010 

cells per ml. The standardized solutions constitute my E. coli stock and were 

stored at -80 ºC until needed. 

2.3.3 - Buffers and Mediums preparation 

The LB broth was created by dissolving 10g of Bacto-tryptone, 5g of Bacto-

yeast and 5g of NaCl into 1L of pH neutral MiliQ water and sterilizing the 

solution by autoclaving. 
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To prepare the M9 buffer I mixed 3 g of KH2PO4, 6 g of Na2HPO4, 5 g of NaCl, 

1 ml of 1 molar MgSO4 into 1 L of MiliQ water. The final solution was 

immediately sterilized by autoclaving. 

2.3.4 - Preparation of LB agar plates 

I prepared fresh LB agar plates each time I wanted to culture OP50-1. This is 

required because streptomycin loses potency in aged LB agar plates. For each 

culture platea, I mixed 0.75 g of LB miller and 0.75 g of agar into 50 mL of pH 

neutral MiliQ water. The mixture was then sterilized by autoclaving. After 

moving to sterile conditions and allowing a slightly cooldown, 50 µL 

streptomycin was added to the liquid LB agar, at a concentration of 50 mg/ml. 

While still in liquid form, the mixture was poured into plates, that after 

solidification and cool-down were ready to be used. If needed, LB agar plates 

were stored at 4 ºC. Stored plates older than a month were discarded. 

2.3.5 - Preparation of NGM petri plates 

For each liter of NGM medium the following procedure was followed. In a 2 L 

clean, autoclaved and oven-dried flask 23 g of agar, 3 g of NaCl and 2.5 g of 

Bacto-peptone were mixed. To the mixture 1 L of pH neutral MiliQ water was 

added, and the flask was immediately submitted to autoclaving. 

As soon as the autoclaving strep finished, the flask was transferred to a water 

bath that has been pre-heat to 55 ºC. After the media cools down to 55 ºC, the 

flask was brought to a hood and the following ingredients were added to the 

 
a scale the numbers of the recipe by the intended number of LB agar plates. 
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warm solution: 1 ml of 1 M MgSO4, 1 ml of 1 M CaCl2, 1 ml of 5 mg/ml 

cholesterol, 25 ml of 1 M potassium phosphate buffer (pH 6) and, if required, 

250 µL of 50 mg/ml FUdR. The NGM medium as then poured into plates. After 

the NGM in the plates solidified, the plates were covered with a lid, wrapped 

with 3 layers of parafilm and incubated at 20 ºC for 24 h. 

On the following day, the plates were taken back to sterile conditions (hood) 

and seeded with OP50-1. Once the bacterial lawn dried and thicken, the plates 

were once again covered with their lid and wrapped in 3 layers of parafilm and 

incubated for a day at 20 ºC. 

After this procedure, the plates are ready to be populated with worms (the ideal 

scenario) or are stored at 4 ºC for later use. Stored NGM plates older than a 

month were discarded. 

2.3.6 - Maintaining age-synchronized worm populations 

All the C. elegans experiments required synchronous populations of worms. 

These were obtained from the eggs extracted from gravid worms by 

hypochlorite treatment207. Using M9 buffer I washed a population of gravid 

adult animals off my plates. I collected them in 15ml centrifuge tubes. When 

the resulting solution was not clear (due to the presence of bacterial food), the 

worms were given enough time to settle to the bottom and the top of the solution 

was then removed. New M9 was then added, and this procedure was repeated 

until a clear solution was achieved. To the final volume of 7ml of the clear M9 

buffer solution, I added 2ml of household bleach (5% sodium hypochlorite 

solution) and 1ml of 5N NaOH. The tubes with 10ml of the resulting solution 
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each, were incubated for up to 10 minutes at room temperature (20ºC). During 

this period, they were vortexed for 20s every 2 minutes until all the nematodes 

were lysed (this process usually took 4 to 5 minutes). This was followed by 

centrifugation at 1500g for 1 minute, at the same temperature. Before the 10 

minutes mark, the tubes were brought to a sterile environment, their liquid 

content discarded, and the solid pellet of concentrated eggs was resuspended 

with M9 buffer. The tubes were then taken to centrifuge as before, and this 

washing step was repeated 3 times. In the final resuspension the egg pellets were 

suspended in just 0.5ml to 1ml volume of M9 and dispersed into new NGM 

seeded plates. Unless otherwise specified, the eggs were allowed to hatch and 

the animals to grow. 

2.3.7 - Compound preparation 

Each compounds stock was kept into the specific conditions required for its 

stability. For example, resveratrol is light-sensitive and therefore was stored in 

the dark, covered by aluminum foil and locked inside a box. 

For each drug experimental condition, a compound working solution was 

prepared from the stock solutions at the desired concentration and with the 

solvent of choice. This working solution was then added to bacteria seeded 

NGM plates. After the addition of the experimental compound or compound 

combination, the plates were allowed to dry in the hood. As soon as drying was 

achieved, the plates were cover with the respective lids and wrapped in 3 layers 

of parafilm. They were then incubated for 24h at 20 ºC. After incubation the 

plates were either used or stored at 4 ºC. 
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2.3.8 - Specifications of 96-plates used in high-throughput screens 

After producing warm liquid NGM flasks as normally, the NGM medium was 

divided equally among pre-heat 50 ml centrifuge tubes set on a heat block, at 

55 ºC. According to each experimental condition’s specifications, a solution of 

drug or drugs was added to each of the 50 ml tubes, at the targeted final 

concentration. The tubes were shook to homogenize the solution, and then 

closed, only to be opened sequentially as needed. After use they were discarded. 

The NGM from the single open tube was transferred into each well of a 96-

wells plate, at a volume of 200 µL per well. This transferred was made by using 

a single channel micropipette. After all the wells have been filled with medium, 

the 96-well plate was left in the hood until the NGM solidified. After 

solidification had been achieved, the plates were covered with their lid, wrapped 

into 3 layers of parafilm. All the wells were checked for bubbles and unlevelled 

surface and marked for future censoring accordingly. After this step the plates 

were incubated at 20 ºC for 24 h. 

On the following day, the plates were returned to sterile conditions (hood) and 

seeded with OP50-1. The required total volume of OP50-1 bacteria was divided 

into 1.5 ml tubes. To each of these tubes, as required, a solution of drug or drugs 

was added, until the concentration of pharmaceuticals in the bacteria was 3 

timesa the concentration of pharmaceuticals in the NGM, for the respective 

conditions. 

 
a the three times more concentration is to account for the fact that in the next I would 

add 10 µL of worms in a water solution to the top of the wells. As I would not add 

drugs in that next step, I add to account for the extra total well volume cause by the 

worm transferring at the current step. 
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As before, manually, using a single channel micropipette, 5 µL of bacterial lawn 

were deposited in the middle of each well. Once the bacterial lawn dried and 

thicken, the plates were once again covered with their lid and wrapped in 3 

layers of parafilm and incubated for a day at 20 ºC. 

The next day, the plates were returned to a hood so that the young adult worms 

could populate the wells or discarded otherwise (no storing). 

Stock populations of GRU101 strain worms were grown to maturity and 

bleached to obtained synchronized eggs. The eggs were transferred to agar 

growth plates with OP51 bacteria as food. When most of the animals reached 

adulthood, they were transferred to previously prepared 96-well plates. 

The worms were washed from the plate with pH neutral MiliQ water and 

pipetted into 50 ml tubes. From the center of the filled part of the tubes, 10 µL 

of water with about half-a-dozen worms (estimated visually) was manually 

dropped in the center of each well. This liquid transfer was done by using a 

single channel micropipette. Care was taken to avoid piercing the solid medium. 

After drying the 96-wells plates were closed with their lid and sealed with 3 

layers of parafilm. These populated plates were then incubated at 20 ºC and only 

leaving the incubation for the daily imaging scanning. Regardless of the 

location, the plates were kept at no more than 21 ºC and protected from light. 

At every 10 days after being populated, 96-wells plates’ seal were checked for 

integrity, and extra layers of parafilm were added as needed. 
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2.4 - RNA-Seq data 

2.4.1 - Acquisition 

Stock populations of wild-type N2 were grown to maturity and bleached to 

obtained synchronized eggs. The eggs were transferred to fresh agar growth 

plates with OP51 bacteria as food. When the animals reached the L4 stage of 

development, they were transferred to new plates with added compounds, 

creating biological samples for each of the following experimental conditions: 

aspirin, curcumin, captopril, DMSO (the negative control), epigallocathecin, 

icariin, alpha-ketoglutarate, lipoic acid, lithium, myricetin, n-acetyl cysteine, 

piceatannol, resveratrol, spermidine, thioflavin-T and ursolic acid. Between 

three to five 15 cm plates were used per condition. FUdR was added to the NGM 

media to maintain synchronized populations. On day 2 of adulthood, the worms 

were washed off the plates into 15 ml tubes and the adults were isolated by 

floatation. The suspension with adult worms was then washed several times 

with fresh M9 buffer until a clear solution was obtained. Clean worm pellets 

were then frozen and later used for RNA extraction. Total RNA was isolated 

using the Qiagen RNAeasy micro kit (Qiagen, Hilden, Germany) following the 

manufacturer’s protocol and the resulting samples were sent for quality control, 

library preparation and sequencing. Quadruplicate samples for each condition 

were sent, and the three replicates with the highest QC scores were sequenced. 

There were 6 samples that although being among the respective three highest 

quality samples, did not meet the minimum quality standard and were excluded 

from sequencing. Due to high number of samples I had to do the above 

procedure in two batches. 
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Libraries were sequenced using the Illumina HiSeq4000 sequencing platform 

(Illumina, San Diego, CA, USA) in a paired-end read approach at a read length 

of 150 nucleotides. Each of the two batches of samples were sequenced in the 

three parallel lanes of the HiSeq4000. All the samples belonging to a given 

experimental condition were sequenced in the same batch but distributed across 

the three lanesa. There was the added consideration that each lane had a sample 

belonging to the control group, and no lane could have more than 9 samplesb. 

The final sequenced sample data was extracted and returned to me in FastQ 

format. 

2.4.2 - Quality-control and Alignment 

I started by doing a benchmark quality control check using the FastQC 

software208. 

The next step consisted in using the FastqPuri software54 for the removal of low-

quality reads from a given pair of pair-ended sequencing files. This filtering 

procedure was composed by several criteria. First it looks for low quality (below 

25) base callings at the beginning and at the end of the read, and iteratively trims 

them at both ends until the quality is above the threshold. Furthermore, the reads 

are discarded if there are more than 25% low-quality nucleotides. Additionally, 

 
a the distribution across different lanes is an experimental design decision with the goal 

of better accounting for lane-to-lane variation. Albeit two of the samples required 

additional sequencing, in a lane that it is not the original, and this created an additional 

source of nose. 
b The 9-sample limit was a recommendation from the manufacturer in order to 

guarantee enough reads per sample. 
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if a read is less than 31 nucleotides long, it is discardeda. The resulting quality 

filtered sequenced samples files were then used in the next step. 

For the alignment step, the reference transcriptome use was the C. elegans 

WBcel235 downloaded from the Ensembl release 100. 

As mentioned in the first chapter, the alignment software used was kallisto. The 

sequenced sample files were processed leveraging their pair-ended nature, with 

sequence-bias correction. The output of this step was bam format 

pseudoalignment files. 

The pseudoalignment bam format files were process by the picard software209 

in order to remove optical duplicates. In detail, the “MarkDuplicates” function 

was used with “OPTICAL_DUPLICATE_PIXEL_DISTANCE=2500” and 

“VALIDATION_STRINGENCY=LENIENT” settings, as recommended for 

data prevenient from Hiseq4000. 

As the output of picard is in the bam format, I then used the samtools software210 

to convert the deduplicated files for fastq format. 

Lastly, I realigned the deduplicated fastq data with kallisto, in the same way as 

before. The quality of the filtering, deduplication and alignment pipeline was 

assessed by quality checking, each sample file, using the FastQC software. All 

the treated files were of sufficient quality. 

 
a this specific length threshold is more conservative than the default, but I chose it 

because it is the maximum size of k-mer that the kallisto alignment software can make 

use of. In any case, it is worth reiterating that the HiSeq4000 generated reads 150 

nucleotides long, and, therefore, the length threshold parameter should not be of much 

importance. 



65 

 

2.4.3 - DEG Analysis 

In the R environment (v3.6.1), the biomaRt package (v2.40.0)211 was used for 

downloading identifiers of genes and specific genomic features (gene length and 

GC-content). 

The estimated counts produced by kallisto (see previous section) were imported 

to the R environment using the tximport package (v1.12.3)55, which summarized 

the transcript-level abundance estimates to gene-level values (and requires the 

gene mapping identifiers obtained using the biomaRt package). 

The EDASeq package (v2.18.0)60 was then used to generate the correction 

factors to correct for length- and GC-contenta bias that will be used by DESeq2 

for modelling differentially expressed genes. The bias plot of the raw gene 

counts always displayed a length-bias, with the short genes, comprising a few 

hundredths of nucleotides long counted less than the rest of the genome. After 

correction, samples that still displayed significant length-bias were excluded. 

As a byproduct of correcting for the length-bias using the EDASeq package, 

GC-bias was also corrected. 

The normalization factors were taken to be the DESeq2 package (v1.24.0)63 size 

factors. This was followed by dispersion estimation. 

On the last step, the DESeq2 package was then used to model the gene 

expression of experimental drugs, taking into consideration batch effects, in one 

of two ways. 

 
a this is why these genomic features annotated were downloaded using the biomRt 

package. 
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One of the pipeline variants was based on the Wald test for the significance of 

coefficients in a negative binomial generalized linear model. The two terms of 

the model were the experimental condition and the batch that each sample 

belonged to. After this modelling, the log foldchanges for each experimental 

condition were obtained by comparing with the control group using the adaptive 

t prior shrinkage estimator65. After obtaining the foldchanges of each 

experimental group versus the control, the list of DEGs was obtain based on a 

significance threshold 𝛼 less than the threshold calculated by applying the 

heuristic for controlling the optimal false discovery rate. This threshold takes 

the value of 2−𝑟, where 𝑟 is the number of replicates212. 

On the other pipeline variant, the likelihood ratio test (chi-square test) between 

generalized linear models was used instead. This is a statistical test for 

significance of change in deviance values between a full and reduced model. 

The full model used had two terms the experimental condition and batch, awhile 

the reduced model had batch as its single term. The null hypothesis is that there 

is no significant difference between the two models, i.e., the simpler model is 

sufficient to explain the variation in gene expression between the samples. After 

this modelling, the log foldchanges for each experimental condition were 

obtained by comparing with the control group using the adaptive t prior 

shrinkage estimator65. After obtaining the foldchanges of each experimental 

group versus the control, the list of DEGs was obtain based on a significance 

threshold 𝛼 < 0.005. 
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2.5 - Healthspan/Survival Analysis 

2.5.1 - Plotting 

Survival plots depict the relationship between the relative survival and time. 

That is the ratio of living individuals to the initial population for each time point. 

The survival plots present in this dissertation were generated using the first or 

second versions of the OASIS software. Both, OASIS213 and OASIS 2 (online 

application for survival analysis 2)214 are freely available as web applicationsa. 

The choice between the two is based on my personal judgment of which of them 

produces more easily discernable plots. I am using this software which outputs 

survival plots, but because I am measuring healthspan and not lifespan the 

survival plots are actually plotting the ratio of voluntarily moving animals (at a 

given time point) by the starting population of moving worms. 

2.5.2 - Statistical Testing 

As the reader will learn in the upcoming chapters the drug screen assay is based 

on healthspan (specifically, the presence of movement) and not lifespan. The 

longitudinal distribution of movement in a worm population as not, to my 

knowledge, being statistically parameterized. Since such effort is beyond the 

scope of my project, I will make use of metrics and tests used in survival 

analysis to characterize my results. This choice can be justified by the fact that 

 
a The first version available at https://sbi.postech.ac.kr/oasis/surv/ and the second at 

https://sbi.postech.ac.kr/oasis2/surv/ . 

https://sbi.postech.ac.kr/oasis/surv/
https://sbi.postech.ac.kr/oasis2/surv/
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the lifespan distribution is a bound on the healthspan distribution. That is being 

alive is a requirement to movement, and no dead animals are capable of moving. 

In more detail, I will use two metrics to judge my drug screen results: the 

restricted mean lifespan and the log-rank statistical test. 

The restricted mean lifespan 𝜇𝜏 was created by 215Irwin (and also described by 

Kaplan and Meier216) and is estimated with the following formula: 

𝜇𝜏 = ∫ 𝑆(𝑡)𝑑𝑡

𝜏

0

 

where 𝑆(𝑡) is the survival function, 𝑡 is time, 𝜏 is the largest observed time. The 

Kaplan-Meier method is used to estimate 𝑆(𝑡) and it can be calculated in the 

following way: 

𝑆(𝑡) = ∏ (1 −
𝑑𝑗

𝑛𝑗
)

𝑗:𝑡𝑗≤𝑡𝑖

 

where 𝑗 is a time interval, 𝑑 is the number of deaths and 𝑛 is the size of the 

population at risk. 

Based on the previously described rationale, I will use the value of the restricted 

mean as my mean healthspan. What I am doing is using a different definition of 

“population” and “death”. With my population being moving worms and deaths 

being the loss of moving worms. 

To complement the use of the restricted mean, I will use the log-rank test. This 

non-parametric test takes the whole time period into account and with equal 

weight to any time period. The null hypothesis is that the there is no difference 

in the probability of an event at any given time point for the two populations 
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being compared. In survival analysis, the notion of event corresponds to death, 

but in my case, it will mean animal immobility. In other words, the log-rank test 

will be used to compare the relative healthspan throughout experimental time, 

between two conditions. It is beyond the scope of my project, but the interested 

reader can consult the relevant literature for the computation and assumptions 

of the log-rank test217. 

2.5.3 - Definition of synergy 

There are several definitions of synergy available in the literature. I chose to 

define synergy by setting two necessary conditions. First, following the Higher 

Single Activity (HSA) model of synergy218a, I require that synergistic 

healthspan-extending drug pairs must elicit a mean healthspan larger than both 

of the constituent single drugs or observed in the respective negative controls. 

Second, all the log-rank tests for healthspan between the combined intervention 

and the monotherapies and controls conditions must return a p-value less than 

0.05. This enforces that the drug pair displays a unique hazard function, and it 

is inspired by the synergy definition used to describe non-linear interactions in 

dynamical systems219,220b. A more stringent definition of synergy requires that: 

“The whole be largest than the sum of its parts”. Following this definition, aging 

drug synergy can be defined more narrowly by requesting that the lifespan 

benefits of a pair of drugs should be statistically significantly larger than the 

 
a this model considers drug combinations synergistic if the effect under its treatment is 

statistically significantly greater than the effect of the more efficacious of the two 

individual drugs. 
b in this field, synergy can be defined as a beneficial interaction where the whole is 

different from the sum of its parts. 
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sum of lifespan benefits of the two constituent drugs. I will refer to cases where 

this is true explicitly but will in general use the less stringent definition above. 
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Chapter 3 - Automated high-throughput healthspan drug screening in C. 

elegans 

3.1 - Introduction 

After being faced with the limitations of current high-throughput screening 

(HTS) methods for longevity interventions in C. elegans (section 1.2.1), I 

decided that to eventually generate the scale of data needed to test my 

hypothesis, I had to create my own HTS method. 

There were certain criteria that dictated my initial design choices. I wanted a 

method of screening that used solid medium, to avoid the main drawback of the 

HTS microfluidics systems (section 1.2.1). Since, my goal is to create a system 

from the screening of drug combinations, I need to maximize the number of 

interventions. This is because even a small library of drugs can be used to 

generate hundredths of distinct combination pairs interventions (combinatorial 

explosion). Lifespan assays in petri dishes allow a sufficiently large population 

of worms to be assayed (which is crucial for statistical power) but cannot scale 

with the number of conditions. The alternative was to assay animals living in 

well plates. These allow more interventions while still being easy to manipulate. 

Of the available sizes, 96-well plates seemed to strike a balance between 

statistical power and scalability. Moreover, a 96-well plates solid medium HTS 

had just been published221. It did not feature automated scoring, so I could only 

use some of its specifications (e.g. volume of bacterial food per well) as a guide. 
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3.2 - Results 

3.2.1 - Validation of the GRU101 strain 

Automated lifespan studies at the scale required for this project involves large 

cohort sizes (typically several thousand animals). While commercially available 

systems for process automation, such as our automated plate pourer, robotic 

dissection microscope and computer controlled precision stages can be used to 

automate cohort generation and image acquisition, the analysis of the resulting 

images remains a rate-limiting step in automated lifespan studies, as well as a 

major source of error (see second class of systems described in section 1.2.1). 

Following initial protocol development, I realized that I needed to develop an 

image processing pipeline to automated scoring live and dead animals, ideally 

with minimal manual input. A typical lifespan study, in my case comprising 

approximately 1000 wells (repeats of experimental conditions), would require 

tracking upwards of 15,000 animals over approximately of 30 days. To analyze 

such an experiment therefore requires close to half a million life/dead decisions. 

Considering all available solutions (see section 1.2.1), I decided to take a 

different approach instead of using the standard N2 wild-type strain by taking 

advantage of a C. elegans strain carrying a transgenic fluorescence marker. The 

rationale was that by leveraging the GFP signal for tracking and survival 

scoring, it should be possible to improve signal-to-noise ratio in the detection 

of dead animals by the use of fluorescence microscopy imaging. I estimated this 

to be advantageous because it would allow better foreground/background 

discrimination and remove artefacts e.g. due to misidentification of inanimate 

features on the plate for worms. 
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To test my reasoning, I chose the GRU101 C. elegans strain. The GRU101 

strain is a vector-only control strain that was previously generated in our lab. 

The strain carries only a myo-2::yfp construct (a pharyngeal-specific yellow 

fluorescence marker) and is used routinely in the lab as non-transgenic vector 

control222. When imaged using fluorescence microscopy with an excitation 

wavelength tuned specifically to the excitation wavelength of yellow 

fluorescent protein (YFP) and using an emission filter suitable for GFP/YFP 

fluorescence, the pharynx of worms can be easily identified. This approach 

should improve foreground/background separation and allows better 

discrimination of worms from erroneous signals derived from plate 

contamination, bubbles or cracks in the plate and other optical artifacts. 

Previous evidence from out laboratory suggested that the YFP transgene 

expressed by the GRU101 strain did not impact lifespan, with GRU101 

consistently exhibiting a lifespan that was indistinguishable from that of 

WT222,223a. To further assess the healthspan of GRU101 strain, I took the results 

of an egg-laying assay224 and movement ABC scoring225. In the ABC scoring 

system: class A worms move spontaneously in a sinusoidal manner; class B 

worms only move upon prodding; class C only exhibit head or tail movement 

even after poking; and class D are dead. I considered the ratio of animals in 

class A or B (capable of movement, hence healthy) to those in class C 

(considerably restrained movement, therefore unhealthy but alive) as a proxy 

for the health of the population. 

 
a 16 to 18 days of median lifespan in standard conditions. 
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For the movement ABC scoring, I analyzed unpublished data from the lab 

(kindly provided by Dr. Ng Li Fang) and the two-sided two-sample 

Kolmogorov-Smirnov test did not reveal a statistical difference (p-value =

0.59) between the ratio of moving worms (classes A + B) to the total of worms 

in the plate, between N2 and GRU101 strains. Indicating that healthspan was 

indistinguishable between GRU101 and N2 WT animals under the conditions 

used in our laboratory. 

For the egg-laying assay, I generated the data myself. Briefly, two age-

synchronized populations, one for each strain, of N2 wild-type and GRU101, 

were bleached through hypochlorite bleaching and maintained on nematode 

growth medium (NGM) plates (section 2.3.6). On day 3 post-bleaching, young 

adult animalsa were picked and transferred, each to a new seeded NGM plate. 

Every 24 hours, I transferred the adult worms to new seeded NGM plates and 

then proceeded to count the number of eggs laid in the respective preceding 

plates. I did this until reproduction ceased in all the animals. 

 

Figure 3.1 – N2 and GRU101 egg-laying assay. 

Blue violin plots correspond to the GRU101 strain. Red violin plots correspond to the 

N2 strain. Each pair of box plots represent the distribution of eggs laid for a given day. 

 
a after censoring, there are 6 N2 animals, and 5 GRU101 worms assayed. 
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I compared the number of eggs laid at every assayed day of the assay. This is a 

highly granular statistical approach because it takes into consideration both the 

shape of the egg-laying curve across the reproductive span and the aggregate 

fecundity, thereby allowing detection of difference in absolute fecundity and 

peak fecundity as well as potential 

As observed in Figure 3.1, there is no statistical differences for any of the days 

according to the two-sample t-test. In other words, populations of N2 and 

GRU101 show similar developmental schedule and have comparable 

reproductive fitness under the conditions used in our lab, at least in terms of 

viable eggs produced on each day. 

These data are consistent with previous experiments in our group that similarly 

showed that during direct scramble competition between GRU101 and wild-

type N2, both strains have similar evolutionary fitness, with both genotypes 

persisting in direct competition at stable percentages over many generations. 

Having convinced myself that the GRU101 strain did not show abnormalities in 

lifespan, healthspan, life-history traits or evolutionary fitness that might 

confound its use for lifespan studies, I next set out to confirm that use of this 

fluorescent strain was indeed advantageous for use in automated lifespan assays 

in terms of facilitating the discrimination of live individuals from background. 

Two commonly encountered problems during lifespan studies is plate 

contamination (growth of fungi) and bubbles or cracks on the plate. Both 

problems can make it difficult to accurately quantify live worms on affected 

plates. To test if GRU101 might be used to overcome these challenges, I 

transferred GRU101 young adults to two solid medium 96-well plates. I then 
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deliberately exposed one of these plates to unfiltered room air, by leaving it 

unsealed overnight. In my experience, plates exposed in this way will inevitably 

get contaminated with fungal growth. Cracking of NGM is due to dehydration 

and occurs over time or when plates are left unsealed with filtered air (e.g. inside 

of a horizontal flow hood) cycling over the wells. I deliberately induced 

cracking in this way, allowing the NGM agar to dehydrate by until serious 

cracking was observable (Figure 3.2). I then used our robotic microscope to take 

images of these plates, with and without making use of the fluorescence settings. 

Visual inspection confirmed that, compared to counting worms under light 

microscopy alone, using fluorescence microscopy facilitated the detection of 

animals, reduced ambiguity and revealed missing animals, thereby confirming 

the usefulness of the GRU101 strain. Figure 3.2, displays examples of wells 

from this experiment, showing two plates subject to significant contamination 

and cracking. These images illustrate two facts: even if the agar is heavily 

contaminated, adult (and even L1 stage) animals can immediately be detected 

by visual inspectiona using the fluorescence signal. Furthermore, if by the end 

of an experiment, the agar gets considerably dry and cracks, burrowed animals 

can be hard to identify / track using ordinary microscopy, but such animals can 

still be identified using the fluorescence signal. While problems of this type are 

not ideal or desired experimental scenarios, they represent worst-case scenarios 

and cannot always be completely avoided, especially during large cohorts 

studies that, by necessity, run over several weeks. These data therefore serve as 

 
a which for now I will take as a proxy to the easiness of automated worm counting. 
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stress test to establish the robustness of worm detection by fluorescence 

microscopy. 

 

Figure 3.2 – Compromised wells under light versus fluorescence microscopy. 

The rows of “Before” and “after” pictures, show the same wells under light and 

fluorescence microscopy, respectively. The well from Plate A is contaminated, and the 

well from Plate B has a cracked solid medium. 

 

As described in detail in the next section the worm detection, and therefore 

scoring will be based on if the worm has moved in two consecutive plate scans. 

This means that I am actually using a metric of healthspan for drug screening. 

To assess how far this healthspan-based metric is from measuring lifespan 

(dead/alive), I killed a population of worms and quantify how long would it take 
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for the fluorescence marker to fade to baseline levels. In other words, for how 

long after a worm death can I still detect its cadaver through fluorescence 

microscopy. 

An age-synchronized population GRU101 animals, was bleached through 

hypochlorite bleaching and maintained on a nematode growth medium (NGM) 

plate (section 2.3.6). On day 5 post-bleaching, the plate populated by young 

adult animals was put under fluoresce microscopy. I measured the intensity of 

fluorescence detected (time point zero in Figure 3.3), and immediately poured 

70% ethanol solution to kill the worm population. After 7 minutes elapsed the 

entire population was death and the fluorescence intensity had already declined 

(second time point in figure). The worm cadavers lost fluorescence at an 

exponential rate, and after 6h were visually indistinguishable from the 

background. In other words, 6h after death worms will be undetectable based 

on fluorescence microscopy.  

 

Figure 3.3 – Fluorescence intensity decay after worms death. 

Ethanol was poured immediately after time point 0. The value 695 was taken 7 

minutes after and it is the time point of a totally dead population. Fluorescence 

intensity is in arbitrary units. 
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3.2.2- Automated high-throughput image acquisition and processing 

After, generating a population of L4/young adult GRU101 worms (see section 

2.3 for detailed protocol), I used liquid transfer to populate the wells of two 96-

well plates by suspending worms in M9 buffer (see section 2.3.8 for details). 

I generated standardized fluorescence (YFP) images from these plates by taking 

consecutive plate scans. I aligned these images using automatic labelling, 

generating paired consecutive frames of each well. These were foundational for 

my automated detection of actively moving animals. 

Essentially, the system determined pixel-flips (changes in location of objects 

emitting YFP fluorescence) between two images 3.5 minutes aparta. Next, I 

developed a filter able to identify objects with visual features (size, dimensions) 

consistent with moving worms. The first step that must be undertaken is to filter 

visual features by size / number of pixels that change (move). The approach I 

took for this is to define a bounding box. The dimensions of this bounding box 

must be suitable for capturing a single wormb. To accomplish this in a robust 

manner, I took 12 pictures of each of the 80 wells (of two 96-well plates) that I 

set up the previous day. These plates serve as ground truth, as I deliberately 

picked an exact number of worms for each well (and confirmed their survival 

on the imaging day), by loosely following the expected distribution expected 

throughout a lifespan screen (Figure 3.4). In more detail, a well starts with some 

worms and this number will longitudinally decrease until it reaches zero. 

 
a The plates were scanned continuously, but because the microscope mounted camera 

moved and took a single image well-by-well, frames of a given well were taken 3.5 

minutes apart. 
b not the whole body of a worm but only its fluorescent pharynx. 
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Moreover, even after being considered deprived of alive worms, a well will 

continue to be imaged, because the imaging is decided at the plate level, in other 

words, as long as there are any alive worms in the plate, the plate will be scanned 

in its totality. To increase robustness to experimental conditions and introduce 

more variability into the ground truth image set, between each scan, I introduced 

a small variation in focus of the microscope and slightly changed the 

illumination power. The resulting dataset was a set of 1920 pictures of wells, 

subject to realistic variation in image quality. 

The pictures corresponding to wells that had a single worm were used to find 

the bounding box dimensions. Bounding boxes are image regions that may 

contain an object of interest (worm). These are represented two center 

coordinates and height and width values. In my case, the centers were detected 

my thresholding and a bounding box of the chosen dimensions was established 

around it. 

 

Figure 3.4 – Histogram of wells based on their amount of worms. 

It depicts the distribution of the number of wells with a given amount of worms. 
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The single worms were detected by using the imager R packagea. In detail, after 

automatic intensity-based thresholding all imagesb, all possible pairs of tile 

scans of a given well were subtracted to remove static features, that is, assuming 

that worms are moving they will constitute the only differentially detected 

pixels (Figure 3.5). 

 

The obtained images were then cleaned and the rectangular dimensions of the 

bounding boxes that incapsulated each worm found. I defined my square 

bounding box based on the median area of these 1182 boxes, which corresponds 

to a worm size of approximately 35 pixels long. This size seems to work in 

practice, based on visual confirmation that regardless of the direction and 

 
a https://cran.r-project.org/package=imager 
b thresholding consists in setting all values below a threshold to 0, and all above it to 1. 

The auto thresholding used was adjusted by 2.0. 

A 

B 

C 

D 

E 

Figure 3.5 – Frames subtraction and thresholding. 

A and B are two subsequent frames of a well. The pixel intensity values of B are 

subtracted from A, to generate the frame C. After thresholding image C, frames D and 

E can be obtained displaying the moving worm and nothing else. 
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position of the worms, the full fluorescence marked body area (pharynx) is 

contained within the bounded area (Figure 3.6). 

Visual inspection suggested that using this traditional image processing 

algorithm, I was able to detect many of worms on most plates correctly. 

However, it was my hypothesis that the worm detection pipeline could benefit 

from a computer vision classification algorithm (deep learninga) on top of the 

filtering step. To test this each of the two plates were considered training and 

test plates. The filtering step, which I will delve deeper in the next paragraph, 

was applied to the plates and the produced 35x35 pixels images were put on the 

corresponding plate data subset and furthered split into “positive” and 

“negative” accordingly to if the filtering consider that the images were of alive 

worms or not, respectively. In this way I effectively generated a labelled training 

and testing set for the supervised deep learning step. 

The complete filtering procedure consists in thresholdingb and cleaning the tile 

scan images, much like before when I was choosing the bounding box 

dimensions, with the added steps of: transforming the differential pixels into 

pixel setsc; finding the center of each pixel set and considering it the center of a 

bounding box that will be a saved filtered image. This image is considered to 

 
a Deep learning algorithms in particular because they can even outperform humans in 

computer vision tasks similar to mine (e.g. [309]). 
b this time the threshold was set to the 99.87 percentile of pixel intensity based on an 

estimation that even if the image had 18 worms, all of them would be detected by this 

filtering: 
𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑚𝑠 × 𝑎𝑟𝑒𝑎 𝑜𝑓𝑤𝑜𝑟𝑚 𝑏𝑜𝑑𝑦

𝑤𝑒𝑙𝑙 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

=
35 × 35 × 18 ×

1
4

2024 × 2024
~99.87 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 

c pixels that are adjacent are considered connected and therefore part of the same pixel 

set. 
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have a worm (“positive”) if the pixel set on which it was centered is one of the 

largest 𝑛𝑡ℎ pixel sets, with 𝑛 being the true number of worms in the well; and it 

will be classified into the “negative” subset otherwise. 

 

Figure 3.6 - Samples of bounding boxes of single worms. 

Independently of the orientation or bend, the full pharynx of the worm fits in a 

bounding box of the used dimensions. 

 

The following subsets were automatically created: 2835 positive training 

samples; 346 negative training samples; 2669 positive testing samples; 674 

negative testing samples. To test the accuracy of this automated approach, and, 

therefore, the need further processing by a machine learning classifier, I 

manually curated the samples, checking each candidate to determine if it indeed 

showed a worm. Having manually curated these datasets, I was able to 

determine that using only the parameter based (traditional) image processing 

algorithm,  would result in the following error rate for the training set: 24% false 

negative (objects falsely rejected as worm) and 41% false positive (object 

falsely classified as worms). Similarly, for the testing set, I identified 15% false 

negative and 42% false positives. This means that, if the parameter-based 

filtering process was my only data analysis step, the pipeline accuracya would 

 
a 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
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be approximately 62%. That is, I would accurately classify bounding boxes has 

having a worm or not 62% of the times. 

For training and testing a deep learning algorithm, I imported the respective two 

datasets of images to the R environment. I then used the keras (v2.2.4.1.9001) 

R package226 to do data augmentation. The data augmentation was based on 

rotating the original images and flipped versions by right angles. In this way not 

only did my datasets increased 8 times in their number of images, training on 

the augmented dataset should provide some translational-invariance227. In other 

words, the classification of the algorithm will be unbiased to the orientation of 

the worms. I then trained a convolutional neural network228 for the binary 

classification task of detection if a given image has a worm or not. The final 

model achieved 0.93 accuracy on the augmented testing dataseta. 

After validating my automated lifespan assay and image processing pipeline, I 

next carried out a validation study using a drug with known lifespan effect. 

I tested two necessary criteria: (1) that under my experimental conditions (solid 

medium 96-well plates, fluorescence microscopy, automated scoring) a known 

lifespan-extending drug would extend lifespan compared to the control group; 

and (2) that survival curves resulting from automated scoring were  not 

statistically different from survival curves from manually counted scores. 

According to the protocol previously described, I prepared two 96-well plates 

with rapamycin (experimental condition) and DMSO (control condition). The 

rapamycin experimental condition is considered a positive control, as it has 

 
a Testing various models of deep learning is beyond the scope of this project, and it 

here deep learning was chosen because even an unoptimized algorithm already 

achieves sufficient performance. 
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worked in our hands before, and the DMSO is its respective negative control 

group. Already with the intention of in later screen having DMSO being the 

default organic solvent most often used in lifespan studies of drugs that are 

relatively insoluble in water, I manually scored the lifespan assay pictures of 

these two conditions. The image acquisition part was conducted as previously 

described, and I acquired two consecutive plate scans almosta daily from day 1 

of adulthood, to day 55. A short custom R script was created to iterate across all 

wells of each condition and on each day for which there was data available, 

display a picture of each of the two pictures (per time point) and ask how many 

worms I could observe. The survival curve was then obtained by aggregating 

all the wells across time. As seen in Figure 3.7, rapamycin can extend lifespan 

under my experimental conditions (log-rank test p-value= 0.0064). The 

magnitude of lifespan extension based on the restricted mean was 

approximately 18%. 

 
a My goal was to take daily scans, but due to the Covid-19 pandemic I was quarantine 

in the middle of the experiment. This is what produced the missing days in the survival 

curves. 
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Figure 3.7 – Survival plot of rapamycin and DMSO control. 

Rap = rapamycin. Rapamycin concentration at 0.1 mM. DMSO was standardized in 

both conditions to 0.1% v/v. Values inside [] indicate the sample size. 

 

To test the second criterion, I wrote an R script that queries a human operator 

for input on how many live worms there are present. This is done following the 

image processing step in which there is a subtraction of pixel intensity values 

of two consecutive plate scans, asking the human operator to evaluate the pixel 

flip mask and determine how many live worms are present. The obtained 

healthspan curves were not statistically different (log-rank test p-value=

0.8254) and the healthspan restricted mean difference was less than 9% (Figure 

3.8). This means that the final image processing pipeline fully agrees (to within 

statistical significance) with the human operator. 

I use the log-rank test because that is the standard statistical test for survival 

curve differences in lifespan assays, and, mainly, because “healthspan survival 

curves” have not been parameterized. In other words, it is not being derived the 
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statistical distribution of the population cumulative loss of healthspan (based on 

voluntary mobility) throughout C. elegans lifespan. 

 

Figure 3.8 – Survival plots of rapamycin scored automatically and manually. 

This intervention consisted in rapamycin concentrated at 0.1 mM and diluted in 0.1% 

DMSO. RAPauto = rapamycin intervention automatically scored. RAPmanual = 

rapamycin intervention manually scored. 

3.2.3- Preliminary drug screening 

After building and initial validating the lifespan system, workflow and image-

processing pipeline, I validated the overall approach by carrying out a small 

scale drug screen. For my initial screen, I focused on a set of diverse drugs, 

requiring different solvents, and also attempted to test some drug pairs. While 

in the context of my workflow this is a comparatively small-scale screen, this 

trial involves 23 experimental conditions overall. By comparison, our 

previously largest single experiment comprised fewer than 10 separate 
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conditions70, meaning that even the validation screen would certainly be 

considered a large-scale experiment if it had been conducted manually.  

Using the DrugAge database, I selected a set of drugs that had previously been 

reported to extend lifespan. I chose my set of test drugs from DrugAge, based 

on reported effect size, diversity of mode of action and solubility (with the aim 

of testing the robustness of my system relative to different solvent systems). 

Specifically, I selected: alpha-ketoglutarate (α-KG; section 2.2.2), aspirin87, N-

acetyl-L-cysteine (NAC; section 2.2.10), nicotinamide adenine dinucleotide 

(NAD)229, doxycycline158, ethosuximide230, lipoic acid (section 2.2.8), lithium 

chloride (section 2.2.9), oleanolic acid231, propyl gallate120, rapamycin 

(considered the positive control; section 2.2.15), resveratrol (section 2.2.16) and 

thioflavin-T (section 2.2.19). For each drug, I used the specific solvent for 

which the largest lifespan extension had been reported in the literature. I tested 

three differ solvents commonly used in the literature – water, ethanol and 

dimethyl sulfoxide (DMSO). For each solvent I standardized concentration and 

included a solvent-only negative control in my screen. Because the eventual 

goal was to validate a system for the identification of drug interactions, I also 

tested a selected number of candidate drug combinations. In addition, I tested 

the following set of novel combinations for potential beneficial interactions: α-

KG and lithium; NAC and lithium; NAC and NAD; RAP and lithium; RAP and 

NAC; resveratrol and NAC; resveratrol and RAP. These pairs were selected 

randomly. 

The experimental setup was as previously described, with the drug treatments 

were applied from the onset of adulthood onwards. The plates were scanned 

until 55 days have passed since the transfer of worms. 
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Regarding lifespan-extending drugs which were applied as an aqueous solution, 

all were detected to extend healthspan, when considering a multi-hypothesis 

adjusted log-rank test significance threshold of less than 0.05 (Figure 3.9). In 

more detail and taking into consideration the log-rank test between experimental 

conditions too, the drugs can be separated into 3 classes according to their effect 

in healthspan: alpha-ketoglutarate (1 mM), doxycycline (30 µg/ml) and NAC (5 

mM) extend healthspan slightly by approximately 14%, 11% and 9%, 

respectively; NAD (0.1 mM) displays larger effect and extends the healthspan 

restricted mean by approximately 26%; lithium (10 mM) is the drug that among 

these extends healthspan the most, by approximately 35%. 

 

Figure 3.9 – Healthspan of water-soluble drugs. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. 

alpha-KG = alpha-ketoglutarate. Values inside [] indicate the sample size. 
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For the drugs that were dissolved in ethanol, I surprisingly found that none 

elicited a statistically significant lifespan effect (Figure 3.10). This was despite 

the fact that the control group (only ethanol at 100 mM) did not display an 

abnormally high restricted mean healthspan (approximately 16 days), so this 

cannot be the reason for the lack of reproducibility of these drugs. It might be 

the case that these drugs extend lifespan without a concomitant increase in 

healthspan. 

 

Figure 3.10 – Healthspan of ethanol-soluble drugs. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. The 

following final drug concentrations were used: aspirin at 0.5 mM, ethosuximide at 4 

mg/ml, lipoic acid at 0.024 mM, and propyl gallate at 1.3 mM. Values inside [] indicate 

the sample size. 

 

Finally, regarding the subset of my drug library for which the solvent was 0.1% 

DMSO (Figure 3.11), rapamycin (0.1 mM) and oleanolic acid (0.3 mM) 

extended the restricted mean healthspan slightly by approximately 16% and 

14%. The approximately 5% healthspan extension by resveratrol (0.05 mM) did 
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not reach statistical significance after adjusting the p-value of the log-rank test 

for multiple hypothesisa. Too much surprise, thioflavin-T (0.05 mM) treatment 

displayed a decreased “healthspan survival curve” relative to the DMSO 

negative control group. The restricted mean healthspan was shortened by 

approximately 26%. This is notable considering that thioflavin-T was the most 

robust drug assayed in the Caenorhabditis Intervention Testing Program 

(CITP)83. After examined the raw pictures and their processed counterparts, I 

found that this effect was due to erroneous automated scoring, that originates 

from the fact that thioflavin-T emits fluorescence on its own under my 

experimental conditions. In other words, the separation of worm pharynxes 

from the background was compromised because the entire surface of the 

medium was being mapped by high intensity pixel values. I solved this issue in 

my next (and final) screen by adjusting the intensity of the light emitting source, 

as a lower light intensity leads to more selective fluorescence by my 

fluorescence marker protein (see sub-chapter 5.2). 

 
a The lack of healthspan effect of resveratrol treatment will be reproduced in my final 

screen. 
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Figure 3.11 – Healthspan of DMSO-soluble drugs. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. RAP 

= rapamycin. Values inside [] indicate the sample size. 

 

After contemplating the results of the single drug interventions present in this 

small-scale validation trial, and all the previous evidence, I consider my 

methodology capable of detecting meaningful changes in healthspan and, 

therefore, successfully validated. 

As mentioned above, I took advantage of the easily scalable nature of my 

screening methodology to, even in this preliminary trial, screen some drug pairs. 

The selection of drug combinations was taken lightly and based on my 

knowledge of the literature. If my drug screening methodology works, then the 

results regarding the frequency of synergistic healthspan-extending drug pairs 

found, can be taken as the relative expectation of synergistic pairs in a human 
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biased and non-exhaustive drug screena. For example, I suspected that lithium 

would be one of the best performing drugs, based on its reported healthspan-

extending effect (in an Alzheimer’s disease worm strain)126 and therefore paired 

it several times. 

The addition of alpha-ketoglutarate to lithium was toxic relatively to lithium 

monotherapy (Figure 3.12), in a statistically significant manner, with multi-

comparison adjusted log-rank p-value= 0.0229. The combination intervention 

group displayed a healthspan restricted mean extension of approximately 27% 

relative to the control group. This effect is of intermediate magnitude to the ones 

exhibited by the single drug conditions. 

 

Figure 3.12 – Healthspan of alpha-ketoglutarate and/or lithium. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. 

alpha-KG = alpha-ketoglutarate. Values inside [] indicate the sample size. 

 
a The reader has not to worry about what would be the frequency in a screen with a 

deeply curated drug selection and that assays drug combinations exhaustively, because 

those results will be revealed in an upcoming chapter. 
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The combination of lithium and NAC is also toxic compared to the lithium-only 

condition (Figure 3.13), in a statistically significant manner, with multi-

comparison adjusted log-rank p-value= 0.0001. The combination intervention 

group displayed a healthspan restricted mean extension of approximately 19% 

relative to the control group. This effect is of intermediate magnitude to the ones 

exhibited by the single drug conditions. 

 

Figure 3.13 – Healthspan of NAC and/or lithium. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. 

Values inside [] indicate the sample size. 

 

The final water-soluble drug pair that I assayed was NAD and NAC. The 

combination of these drugs results in a therapy with intermediate efficacy 

compared to the single drug interventions (Figure 3.14). The NAC and NAD 

statistically significantly extended the restricted mean healthspan by 
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approximately 10% compared to the water control group and was not 

significantly different from any of the single drug interventions (as quantified 

by the adjusted p-value of the log-rank test between these conditions). 

 

Figure 3.14 – Healthspan of NAC and/or NAD. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. 

Values inside [] indicate the sample size. 

 

Another drug that I paired with lithium was rapamycin. In this case, the 

combination therapy is not statistically distinct from any of the monotherapies, 

neither are the monotherapies among themselves (Figure 3.15). The magnitude 

of extension of the mean healthspan versus the DMSO treatment is 

approximately 16%, 24% and 18%; by the rapamycin, lithium, and combination 

(rapamycin and lithium) experimental groups, respectivelya. The healthspan 

 
a Please notice that lithium was dissolved in water. It is being compared to the DMSO 

group only because the rapamycin and lithium condition was dissolved in this solvent. 
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extension of these 3 groups is statistically significant even after adjusting for 

multiple comparison (see appendix for the precise values). 

 

Figure 3.15 – Healthspan of Rapamycin and/or lithium. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. RAP 

= rapamycin. Values inside [] indicate the sample size. 

 

Finally, I also tested all the possible pairings of resveratrol, NAC and 

rapamycin. Although, NAC is water-soluble, due to being paired with DMSO-

soluble drugsa, the drug pairs were dissolved in DMSO. Figure 3.16 depicts the 

results of all these conditionsb. Of the combination interventions, only 

rapamycin plus resveratrol extend healthspan (adjusted log-rank p-value=

7 × 10−6) compared to the DMSO control group. The healthspan restricted 

 
a more precisely with drugs that were reported to achieve their maximum lifespan 

extension when diluted in DMSO. 
b Figure 3.16 is stylishly dissimilar to the previous survival curve plots because, due to 

the elevated number of conditions being depicted simultaneously, I used the first 

version of the OASIS graphing software213, which is freely available at 

https://sbi.postech.ac.kr/oasis/surv/ . 

https://sbi.postech.ac.kr/oasis/surv/
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mean for the rapamycin plus resveratrol intervention group, versus the DMSO-

treated worms, is approximately 22%. This is larger than the approximately 

16% increase elicited by rapamycin (which is the best of this two drugs), but 

the log-rank test between the pair and rapamycin only conditions does not reveal 

a statistically significant difference. 

 

Figure 3.16 – Healthspan of RAP, NAC, resveratrol, and their pairs. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. RAP 

= rapamycin. Values inside [] indicate the sample size. 

 

3.3 - Discussion 

In this chapter, I created and validated a healthspan-based drug screen that is 

easily scalable and largely automated. Even though I ended up conducting a 

preliminary small-scale screen for validation purposes, this already constitutes, 

to the best of my knowledge, the second largest combinatorial anti-aging drug 

screen in C. elegans. The largest belongs to our previously published work70, 

but it was highly laborious. If considering healthspan as being the main measure 

of interest, then this is indeed the largest screen in the literature. 
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If one considers this screen, with all its limitations, to represent the frequency 

of drug synergies that extend healthspan; then the estimation could not be 

farther from some authors’ expectation37. Namely, among the 7 drug pairs tested 

I found no drug synergies. It is important to reiterate that I am effectively 

measuring healthspan, so there is a possibility that things could be different 

regarding lifespan. 
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Chapter 4 - Transcriptomics Data Analysis 

4.1 - Introduction 

To test my hypothesis that pairings of dissimilar drugs are more likely to be 

synergistic I would need to know the mode of action of each drug in my library. 

Almost all the drugs have several proposed mechanisms of action (subchapter 

2.2) and do not seem to be comparable based on their known genetic 

dependencies (Table 2.1). Therefore, I undertook the hypothesis-free and 

systematic identification of their differentially expressed genes (DEGs). 

Filtering the resulting DEGs for known aging-genes, it is also a way to test the 

linearity assumption (see section 1.5.2). 

4.2 - Results 

4.2.1 - RNA-Seq Data Analysis 

Worm cohorts were treated with drugs from young adult stage (3 days after 

hatching) before harvesting on day 5 of life (day 2 of adulthood)a. Following 

RNA extraction, reverse transcription, sequencing (see section 2.4.1), quality 

control / filtering (QC) and alignment (see section 2.4.2), abundance data for 40 

samples were imported to the R language environment. Seven samples had to 

be rejected either during the initial pre-sequencing QC stage or during the RNA-

Seq data analysis step (due to severe gene-length bias). Overall, I obtained gene 

 
a This choice was made also in our previous work, and it was repeated here to minimize 

protocol differences. This is crucial, as later (Chapter 6) I will be joining these two 

RNA-Seq datasets together. 
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expression data for 20 drug treatment conditions plus the control conditions, 

with an average of 2.86 repeats per condition.  

The differential expressed gene (DEG) analysis followed the protocol 

established in section 2.4.3. In this specific analysis I used the variant of the 

protocol that is based on the Wald test for the significance of coefficients in a 

negative binomial generalized linear model. The control condition was 0.1% 

DMSO solvent, and all the drug conditions were standardized to this. After 

obtaining the foldchanges of each experimental group (treatment condition) 

versus the control, the list of DEGs was obtain based on a significance threshold 

of 𝛼 < 0.138. This unusual significance value is based on the heuristic by 

Lamarre, S. et al. for controlling the optimal false discovery rate of 2−𝑟, where 

𝑟 is the number of replicates212. 

4.2.2- Enrichment Analysis on GenAge 

After identifying the DEGs, I was faced with the challenge of how to extract 

biological insights from this information. A major challenge in this context is 

dimensionality reduction. Approximately half of my drugs resulted in gene 

expression changes to more than 1000 genes (they have over 1000 DEGs – see 

Table 4.1). This is expected for three reasons. Aging is a systemic, multifactorial 

process, and by pre-selecting drugs that are known to influence aging, I am 

implicitly selecting for drugs likely to have a broad effect on the transcriptome. 

Secondly, in pharmacological interventions, as opposed to genetic interventions 

that target a specific gene or gene-regulatory network, off-target effects tend to 
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be more pervasive. Thirdly, previous experimental evidence also shows that the 

most efficacious drugs often change several thousands of genes232. 

When extracting and prioritizing biological knowledge from a large list of 

DEGs in a data-driven way, an initial approach is typically gene set enrichment 

analysis (GSEA). Gene Set Enrichment Analysis was actually the name given 

to the first of such methods233, but its modern usage refers to the category of 

methods that search a set of genes (e.g. DEGs) for significantly over-represented 

subsets or categories of genes. The important concept is the subset of genes, 

rather than individual genes, being the unit of interest. The rationale of changing 

the level of analysis is that there should be a dimensionality reduction and that 

gene sets are more interpretable than individual genes. The sets of genes are 

annotated in databases, and group gene sets that belong to the same biological 

pathway (available from databases such as KEGG234 and Reactome235), 

molecular function or cellular structure (compiled in the Gene Ontology236). 

Depending on the nature of the gene annotations available and the goal of the 

scientific inquiry, different methods can be useda. As there are no detailed 

aging-specific annotations and most C. elegans genes are automatically curated 

by extrapolation from human and mice data, I employed a different 

methodology. 

I reduced my large number of DEGs to the lifespan-extending C. elegans genes 

present in the GenAge database237 of ageing-related genes. This filtering 

process has the advantage that for each gene in GenAge, there is published data 

showing that the gene is causally involved in aging and lifespan determination. 

 
a for an up-to-date comparison see [310]. 
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GenAge contains experimental data regarding pro- and anti- longevity effects 

observed following genetic interventions (knock down, mutations, over-

expression) targeting each gene. The GenAge filtering scheme allows sorting of 

observed gene expression changes into those predicted to increase lifespan and 

those predicted to shorten lifespan, and this can be used to further classify DEGs 

with respect to their predicted overall lifespan effects.  

In more detail, GenAge classifies the lifespan-extending genes in two 

categories: genes that have their gene expression level correlated with their 

lifespan effect are referred to as pro-longevity genes; genes that display a 

negative correlation between their transcriptional abundance and elicited 

longevity are called anti-longevity genes. Pro-longevity genes must be 

overexpressed to be lifespan-extending, and, in opposition, anti-longevity genes 

must be down-regulated. 

Theoretically, consideration of direction of the fold changes is an improvement 

over the standard GSEA approaches. The GenAge approach is a more nuanced, 

because knowing only if a gene is present in a gene set of interest is not 

sufficient to predict functional impact. A toy example: if DAF-2 was the most 

significant DEG in one of my lifespan-extending drug conditions, it would be 

present in GenAge and likely be considered the strongest candidate for the mode 

of action of that drug. But it could be the case that the drug led to a large 

overexpression of DAF-2, which would convey the exactly opposite biological 

insight. DAF-2 cannot be the mode of action of my drug because DAF-2, being 

an anti-longevity gene, only leads to lifespan-extension if its expression is 

down-regulated. Since it is over-expressed in this drug, and this drug extends 

lifespan, DAF-2 modulation cannot be the direct mode of action of my drug. 
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As a result of the filtering process, I collected all the GenAge lifespan-extending 

DEGs likely to directly contribute to the mode of action for each of my drugs. 

Henceforth, throughout this dissertation, I will refer to the set of lifespan-

extending DEGs that are overexpressed and pro-longevity or down-regulated 

and anti-longevity as DEGs in the “correct direction” or “correctly 

modulated”. The number of correctly modulated DEGs for each of my drugs is 

shown in the “GenAge DEGs” column of Table 4.1. 

 

Table 4.1 – Number of DEGs and Dominance-based classification of drugs. 

Total DEGs indicate the total number of DEGs for a drug intervention. GenAge DEGs 

are the total correctly modulated GenAge DEGs. Unique GenAge DEGs are 

specifically target by a drug intervention. Drug Classification corresponds to the class 

of drug according to the dominance framework (section 4.2.4). 

4.2.3 - Common Lifespan-extending Drug Targets 

Of all the candidate lifespan-extending GenAge genes, only two are common to 

more than 5 drugs. These are the stress-induced chaperone hsp-16.48 and hsp-

16.49. Surprisingly, these two genes up-regulated by 14 of the 15 drugs I tested, 

with only myricetin failing to do so. Furthermore, these two genes are the entire 

Drug Total DEGs GenAge DEGs Unique GenAge DEGs Drug Classification

Thioflavin-T 10188 181 100 unique

alpha-Ketoglutarate 6888 105 11 unique

NAC 6248 89 13 unique

Lithium 3630 82 13 unique

EGCG 3188 75 20 unique

Spermidine 1240 24 13 unique

Captopril 1315 24 1 unique

Icariin 196 8 2 unique

Myricetin 78 3 0 group-dominated

Lipoic acid 26 3 0 dominated

Piceatannol 13 3 0 dominated

Ursolic acid 57 2 0 dominated

Resveratrol 30 2 0 dominated

Aspirin 23 2 0 dominated

Curcumin 17 2 0 dominated
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set of lifespan-extending GenAge DEGs correctly modulated by four of the 

drugs I tested (aspirin, curcumin, resveratrol and ursolic acid). 

4.2.4- Drug Dominance 

The fact that the two of the genes are present in the DEGs set of 14 drugs out of 

15 drugs and constitute the full set of 4 of them led me formulate the concept of 

“drug dominance”. In decision theory, a random variable is said to be state-

wise dominant over another random variable if it gives at least as gooda a result 

in every state, and a strictly better result in at least one state238. I imported this 

notion into my methodology in the following way: Drug A is said to be 

dominant over drug B, if the set of GenAge lifespan-extending DEGs correctly 

modulated by drug B is a strict subset of the ones correctly modulated by drug 

A. Putting into a more practically way, drug A is dominant over drug B, if it 

targets all of drug B’s known (correct) lifespan-extending genes, plus at least 

one more.  

The concept of drug dominance is useful as an heuristic by which to categorize 

candidate drugs (if drug A is dominant over drug B, it might be useful to 

prioritize it over drug B, because it has more therapeutic potential) and to design 

drug combinations (assuming equal side-effects, if drug A is dominant over B, 

it can replace drug B in any combination, with additional therapeutic potentialb). 

We can already infer that aspirin, curcumin, resveratrol and ursolic acid are 

dominated drugs. It is worth notice that due to the restricted set of candidate 

 
a “good” is context specific. For example, in a gamble it could be defined as a larger 

expected reward. 
b that is, it makes drug B obsolete. 
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genes and the simplification of not considering the magnitude of gene 

expression changes, my classification approach does not perfectly categorize 

drugs. Case in point, theses 4 drugs all have the same lifespan-extending 

GenAge DEGs in the correct direction, but while resveratrol and ursolic acid 

did not extend healthspan in my high-throughput assay (see sub-chapter 

1275.2), aspirin and captopril prolonged healthspan significantly by the same 

magnitude (23%), suggesting that either the latter have additional modes of 

action (benefit) that are not captured in GenAge or that the former are subject 

to detrimental changes offsetting beneficial ones.  

In addition to the two mentioned genes, lipoic acid correctly targets one 

additional GenAge gene (Y54G9A.7) but is dominated by lithium. Piceatannol 

also targets one more gene (lys-10), and it is dominated by alpha-ketoglutarate 

and captopril. 

Myricetin treatment only regulates 3 lifespan extending GenAge DEGs in the 

correct direction, and although none of them are unique to it, it is unique in that 

no other drug modulates all three of these genes. Therefore, by the previous 

definition, it cannot be dominated by any other of my drugs. Assuming linear 

superposition (see section 1.5.2), a drug combination that together targets all 

three of the genes correctly changed by myricetin can be designeda and at the 

treatment level it would dominate the myricetin treatment. As consequence, 

myricetin is a case of what I coin “group-dominated”. The gene set modulated 

by myricetin cannot be jointly modulated by any other drug in the set, but there 

 
a conditional to the assumption that the gene expression changes elicit by a drug 

combination is a linear combination of the gene expression changes elicited by its 

constituent drugs. 
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are other drugs in the set that can modulate each of them independently. This 

additional definition, of group-dominated drug is important because it reveals 

that drugs in this class leverage common pathways in a unique way. From an 

information theoretic perspective, drugs in this class might help to detect high-

level gene-gene interactions because they allow to model the therapeutic 

potential from a common set of genes that it is jointly unique. In my case, 

myricetin treatment extended healthspan by 25%, so it might be the case that 

myricetin’s 3 DEGs hits act synergistically. 

Finally, from a therapeutic perspective, it might be better to not replace a group-

dominated drug by a set of drugs that jointly dominates it, because multiple 

drugs might increase the risk of off-target and side-effects, or at the very least, 

increase the possibility of interacting in unpredictable, non-linear ways.  

In an increasing order of correctly modulated lifespan extending GenAge DEGs 

set size, after mentioning all the drugs with 2 and 3 DEG hits, the next drug is 

icariin, with 8 hits. Of the 5 additional DEG hits, 2 G proteina alpha subunits 

(gpa-5 and gpa-6) are modulated exclusively by icariin. This makes icariin a 

“unique drug”. This was the last of the three classes of drugs according to 

group dominance, and the classification of my entire drug library is displayed 

in Table 4.1. 

With a total of 24, both captopril and spermidine belong to the category of 

unique drugs. Captopril has a single exclusive DEG hit (B0250.5) and 

spermidine has 13. Continuing, EGCG correctly modulates 72 GenAge genes, 

 
a G proteins are a family of guanine nucleotide-binding proteins and hydrolyze 

guanosine triphosphate (GTP) to guanosine diphosphate (GDP). 
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of which 20 are uniquely targeted by this compound. Another unique drug is 

lithium, which has 13 exclusive DEGs among its 82 hits. With 13 unique DEGs 

out of 89 total hits, NAC is also a unique drug. Alpha-ketoglutarate correctly 

modulates 105 lifespan-extending GenAge genes, and of these 11 are specific 

to this drug. 

The drug with the most targets both in general and in my gene set of interest is 

thioflavin-T. It correctly modulates 181 lifespan-extending GenAge genes, and 

its profile is unique because there is a subset of 100 DEG genes that are not 

influenced by any of the other drugs. 

 

Figure 4.1 – UpSet plot of lifespan-extending GenAge DEGs. 

The red box refers to the example mentioned in the text. On the bottom left it is depicted 

the correctly-modulate GenAge DEGs set size for each drug. On the bottom graph it is 

represented the number genes in the subset that it is exclusively shared by the drugs 

marked with a dark circle and none others. 

 

Using Venn diagrams to convey the unique and shared genes among such a high 

number of drugs would be very confusing. Therefore, I used the UpSetR239 
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Shiny Appa to create an UpSet plot (Figure 4.1). This plot displays on the bottom 

left the set sizes of the correctly modulated DEGs for each of the drugs, in an 

ordered manner. The bottom right part exhibits an existing gene membership 

profile, and it is aligned with the top frequency bar plot showing the number of 

correctly modulated DEGs displaying it. This way of displaying the data makes 

it noticeably clear that (as previously mentioned) there are 2 DEGs that are 

correctly modulated by all of the drugs except myricetin (see red box in Figure 

4.1). Such plots also allow quick identification of unique drugs, as they result 

in rows with unconnected circles. 

A complementary way of displaying the DEGs correctly modulated by the drugs 

is called a Bertin plot. Using the seriation R package (version 1.2-8)240 I ordered 

the correctly modulated hits of each of the drugs (Figure 4.2). The Bertin plot 

complements the previous plot because it makes the amount of correctly 

modulated DEGs by each drug and the drug-wise overlap even more explicit. 

 

Figure 4.2 – Bertin plot of lifespan-extending GenAge DEGs. 

Only correctly modulated DEGs are considered. Each column pertains to a specific 

GenAge gene, and it is a DEGs for the drugs that name the rows with black cells. 

 
a Freely available online at https://gehlenborglab.shinyapps.io/upsetr/ . 

https://gehlenborglab.shinyapps.io/upsetr/
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Analysis of transcriptional effects of drugs based on this drug dominance 

framework, allows to understand how drugs relate among themselves (assess 

similarity and differences). Again, assuming linearity of addition (see section 

1.5.2) a combination of EGCG, NAC, lithium, alpha-ketoglutarate, captopril, 

icariin, spermidine, and thioflavin-T, would targeta all the DEGs targeted by my 

entire drug library. That is, I can greatly reduce my drug library from 15 to 8 

drugs without abdicating targeting any of the GenAge lifespan-extending genes. 

In addition to assuming that gene-expression changes would add linearly, the 

group dominance framework has further limitations in that I only considered the 

binary case, that is a gene is correctly modulated or not, regardless of their 

relative magnitude of gene expression changes. However, this framework might 

be of value conceptually as it allows classification of drugs by similarity and 

overlap in terms of likely mode of action. 

4.3 - Manual interpretation of mode of action based on DEG data 

Next, I attempted to relate significant transcriptional changes to biological 

effects on lifespan and putative mode of action. To do so, I read the bibliography 

referenced by GenAge for each of the genes, and attempted to relate the findings 

between a gene manipulation and: the phenotypic effects of my drugs (assuming 

that if a single gene is the main mode of action of one of my drugs, then they 

should have similar phenotypes); the gene epistasis therapeutic dependency of 

a drug treatment (based on Table 2.1); and the magnitude of transcriptional 

changes elicit by my drug (based on the simplification that strongly drug-

 
a assuming solely additive effects, with no possibility for non-linear interactions. 
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modulated genes are more likely to be constitute the drug mode of action). 

Additionally, after reading the literature regarding the correctly modulated 

DEGs for a given drug, I tried to find commonalities between genes and 

conceptually cluster thema. 

Besides the assumptions touched in the last paragraph, the disadvantage of this 

procedure is that it is biased towards explanations that are more popular in the 

literatureb. This can be evident, for example, by the information in Table 2.1, 

which shows that almost all my drugs have been assay in DAF-16 mutants, 

while less than half have been examined on AGE-1 mutants. The advantage is 

that I manually curated each of my results, assuring a higher quality then 

automatically extrapolated gene setsc. 

Apart from myricetin, all the drugs activate the classical heat-shock protein 16 

(HSP-16) stress response. I can make four remarks regarding this result. 

First, extra-copies of the hsp-16 gene have been shown to increase lifespan241, 

and its down-regulation by RNAi shortens lifespan242. This causal and 

positively correlated relationship with longevity is nonetheless of small 

magnituded and therefore might only explains partially the pro-longevity effects 

of the more powerful of these drugs. 

Second, it might just be that most of the drugs stress the organism to some extent 

and this pathway is being activated indirectly. It is a well-established result that 

a mild heat-shock stimulus extends lifespan in young worms and this response 

 
a the gene sets annotated in databases are nothing more than clusters of genes. 
b I omitted the time requirements of manual curation as a disadvantage. 
c obviously, the manually curation also allowed me to acquire significantly more 

knowledge regarding aging-related pathways. 
d approximately from −11% to +11% of lifespan difference. 
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requires the HSP-16 pathway243. This leads to the hypothesis that most of my 

anti-aging drugs act partially through hormesis112, which in the specific case of 

HSP-16 leads to up-regulation of mechanisms preventing protein aggregation244 

(an hallmark of aging245). 

Third, the fact that aspirin, curcumin, resveratrol and ursolic acid have this 

pathway as their only hit from my methodology based on GenAge is an 

interesting result. Aspirin and curcumin extended mean healthspan by around 

28%, while resveratrol and ursolic acid failed to have an effect. I checked if 

there is a correlation between the activation strength (gene expression fold 

changes) of said genes and the magnitude of healthspan-extension, but the result 

was insignificant. This could have been a possible explanation for the two drug 

pairs difference in their therapeutic potential. An alternative explanation is that 

there are more DEGs, outside the set of GenAge, that are involved in this 

biological mechanism and dictate the therapeutic effect of activating the HSP 

response pathway. Some support for this explanation comes from the 

observation that for the pair of healthspan-extending drugs (aspirin and 

curcumin) the HSP response has been implied in their mode-of-action, in 

contrast with the pair of drugs of no therapeutic benefit (resveratrol and ursolic 

acid). In worms, aspirin increases resistance to heat-shock87 and reduces the 

formation of aging-associated protein aggregates88 (which are phenotypic 

responses typical of HSP activation). In flies, the effect size of curcumin 

treatment is larger, at higher environmental temperature (heat stress), and it is 

concomitant with the increase in the expression of heat-shock proteins108. To 

best of my knowledge, the effect of ursolic acid on HSP-60 has never been 

studied before, however an increase in heat-shock resistance206 has been 
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reported in worms treated with ursolic acid. In the case of resveratrol, my 

findings, seem to initially contradict existing literature which showed that 

juglone-induced HSP-60 protein expression is ameliorated by resveratrol in a 

dose-dependent manner246. Albeit it might be the case that HSP-60 is increased 

in response to juglone-induced reactive oxygen species damage and that 

resveratrol protects from this stress, therefore leading to a decrease in the HSP-

60 levels, as there will be less stress. 

Fourth, myricetin seems to be a unique drug in this regard. My literature review 

did reveal that myricetin-fed worms have been reported not to be more 

resistance to heat-stress than untreated controls145, which supports the 

transcriptomics results that show lack of heat-shock protein response. 

Inspired by the concept of stochastic dominance from decision theory, I created 

a simple framework to categorize drugs based on their gene expression profiles 

in the subset of DEGs of therapeutic relevance. I further shown that under this 

categorizationa, a set of 8 drugs is sufficient to target the totality of the lifespan-

extending GenAge DEGs modulated by the entire drug library. 

The categorization procedure under the drug dominance framework is not 

without limitations. Its binary nature, in which genes are either targeted or not 

is the maximum simplification of the continuous nature of gene expression 

modulation. Surprisingly, binarization of gene expression activation was proven 

to generate a more accurate transcriptomic aging clock than using continuous 

values247. The other limitation of this framework is that it completely disregards 

 
a which makes assumptions, including being limited to binary variables (a DEG is or is 

not being targeted). 
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the hierarchical nature of gene regulatory networks (down-stream and up-

stream gene relationships). 

In the following sections, I will individually discuss the most relevant unique 

genes of this set of 8 drugs, because by definition (under the same simplifying 

assumptions) they will be responsible for the added therapeutic potential 

specific to the addition of each drug to the set of the remaining 7 unique drugs. 

4.3.1 - Captopril 

The only lifespan-extending gene specifically modulated by captopril is the 

probable mitochondrial 3-hydroxyisobutyrate dehydrogenase B0250.5 (-14% 

expression). It encodes an aggregation-prone protein, and its knockdown causes 

lifespan extension, which the authors imply might be due to reduced protein 

aggregation248. 

4.3.2 - Icariin 

The two genes that are exclusively induced by icariin correspond to two 

subunits alpha of the G protein. After analyzing the cited source reference249, I 

noticed that there is a mistake in the GenAge database, the gpa-6(pk480) 

mutants do not live longer as reported in GenAgea. As a result, the only lifespan-

extending GenAge correctly modulated by icariin treatment is gpa-5 (0.5% 

decrease in gene expression). This gene is involved in olfaction, and its 

expression level is negatively correlated with lifespan249. 

 
a their lifespan is actually less than the control group, although this result is not 

statistically significant. 
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4.3.3 - Alpha-ketoglutarate 

Like icariin, alpha-ketoglutarate also modulates a sub-unit alpha of the G 

protein involved in olfaction. With the difference that the expression of the gpa-

2 gene (+47% gene expression changes) is positively correlated with 

longevity249. 

It has previously been reported that alpha-ketoglutarate is able to further extend 

the lifespan of long-lived daf-2(e1370) mutants78. One of the exclusively alpha-

ketoglutarate upregulated DEGs which might be involved in this effect is the 

jnk-1 (c-Jun N-terminal kinase) gene (38% more expression). The double 

mutant of a JNK overexpression line (lpIn1) with daf-2(e1370), lives much 

longer (an additional 21%) than the DAF-2 control mutants250. The JNK 

pathway is a classical aging pathway, and the observation that alpha-

ketoglutarate is a JNK activator is an interesting starting point for further 

studies. Nonetheless, I expect that the JNK pathway might at best only explain 

part of the alpha-ketoglutarate pro-longevity effects, because alpha-

ketoglutarate also extends the lifespan of daf-16 knockout mutants (although 

only by a small magnitude)78, but the pro-longevity effects of JNK activation 

are known to be abolished in this genetic background250. 

4.3.4 - Spermidine 

Of the 15 drugs in my drug library, spermidine is the least understood regarding 

its genetic epistasis of lifespan effects in worms. Consequently, I will delve 

deeper in my findings, as they are all new. 



115 

 

The pro-longevity effects of spermidine in an SKN-1a genetic background 

should be examined. My suggestion originates from the fact that both 

spermidine and skn-1 RNAib down-regulate the anti-longevity lys-6 (lysozyme) 

and cyp-13B1 (cytochrome P450 subfamily) genes251, by 28% and 9%, 

respectively. 

Furthermore, analysis suggests that the effect of spermidine can be expected to 

be DAF-1-dependent. Out of the 13 DEGs solely affected by spermidine, 3 have 

been reported to be dependent on or downstream of DAF-16. These are the egl-

27 (a GATA transcription factor252c), dod-19 (“downstream of daf-16”89) and 

sams-1 (S-adenosyl methionine synthetase253) genes; 20%, -38% and -61% 

expression changes, respectively. Interestingly, the latter has been reported to 

be involved in DR253d, and since it is implied in two of the major aging-

associated pathways it would by itself be interesting to investigate the joint 

effect of spermidine and sams-1 RNAi. In more detail regarding the role of 

sams-1 in DR, sams-1 RNAi treated animals resemble DR animals in their 

slightly reduced brood size, marginally delayed reproductive timing, and 

slenderness. Furthermore, eat-2 mutants display a 3-fold reduction in sams-1 

mRNA levels253. 

 
a orthologous to the mammalian Nrf (Nuclear factor-erythroid-related factor) 

transcription factor and its overexpression increases lifespan311. 
b the transcription factor skn-1 has a complex effect on the longevity of worms because, 

on another hand, the decrease of its expression by RNAi or loss-of-function mutations 

leads to a shortened lifespan311,312. 
c it belongs to the family of transcription factors characterized by their affinity to bind 

with “GATA” parts of the DNA313. 
d more precisely, sams-1 RNAi failed to further extend the long lifespan of the eat-

2(ad1116) mutant worms. 
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In addition of sams-1, two more lifespan-extending GenAge DEGs correctly 

modulated only by spermidine have been previously associated with DR. nhx-2 

is a Na+/H+ exchanger expressed exclusively at the intestinal epithelium that 

spermidine inhibits by 27%. It has been reported that nhx-2 RNAi treated worms 

display a CR-like phenotype, including fat loss and 40% increased lifespan254. 

The other gene is the ATP synthase active-subunit of the respiratory complex V 

– atp-2 (-21% expression change). Post-developmental atp-2 RNAi, results in 

an impressive 43% lifespan extension255. Contrary to nhx-2254, atp-2 knockout 

mutants do display reduced pharyngeal pumping rates256 (therefore this might 

be a discriminant healthspan assay to try257). It is important to keep in mind that 

atp-2 encodes an aggregation prone protein, and it might just be less 

accumulation of its aggregates that results in lifespan extension248. 

If spermidine manages to extend the lifespan of both DR and daf-16 knockout 

models, it might be the case that it is acting by downregulating the kynu-1 gene 

(-24% gene expression). This gene encodes what is thought to be an ortholog of 

the human kynureninase enzyme. Decreasing its gene expression by kynu-1 

RNAi is known to increase lifespan, largely independent from the previously 

mentioned pair of pathways258. 

In addition to the complex V, Spermidine treatment also targets the complex 1 

of the respiratory chain. It does so by being the only one of my drugs capable 

of modulating the C18E9.4 gene (NADH CoQ oxidoreductase B12 subunit). 

This DEG could be of interest because its RNAi leads to a 60% mean lifespan 

extension259 and it has been replicated260. Unfortunately, spermidine only 

decreases its expression by 9%. 
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The bcat-1 (branched-chain amino acid transferase-1) gene is an evolutionary 

conserved lifespan and healthspan-extending gene261 that is downregulated by 

spermidine treatment (-44% abundance). 

4.3.5 - NAC 

NAC is another drug for which the genetic underpinnings of its action in worms 

remain unknown. From the only 13 lifespan-extending GenAge DEGs correctly 

modulated by NAC, it is very surprisingly that two of them are the classical 

aging-associated genes daf-2 and glp-1. NAC-treated worms display 37% and 

24% gene expression reduction, of daf-2 and glp-1, respectively. I have touched 

on the DAF-2 pathway before, and the glp-1 gene encodes the receptor for a 

germ-line proliferation signal that is produced by the somatic gonad cells262. 

The effect of both anti-longevity genes, which NAC treatment downregulates, 

have been widely replicated. Another commonality between these pair of genes 

is that even their post-developmental RNAi increases lifespan255. 

Besides the previously mentioned two canonical aging-related genes, there are 

several more DAF-16 dependent DEGs unique to NAC treatment. The hrp-1 

gene encodes a human HnRNP A1 homolog, and its post-developmental RNAi 

leads to a lifespan-extension of approximately 25% (which is in-between the 

magnitudes caused by post-developmental daf-2 and glp-1 RNAi)255. The spe-

6 gene, when silenced, specifically affects the development of viable 

spermatids263,264. The multi-PDZ domain-containing proteina, encoded by the 

mpz-1 gene, is thought to act downstream of DAF-2 and upstream of DAF-16265. 

 
a the PDZ domain is a common evolutionary conserved protein domain. 
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The expression of an anti-longevity DEG encoding a lipid binding protein, lbp-

7, is also down-regulated in DAF-2 (mutants and RNAi) and up-regulated in 

daf-16;daf-2 double mutants89. This indicates that expression of the lbp-7 gene 

is elicited by insulin-like growth factor signaling. Lastly, the pbs-5 gene 

encodes a catalytic 20S subunit orthologue of the human core proteasome beta-

5 subunit. It acts upstream of DAF-16, and its pro-longevity effects also depend 

on the SKN-1 and HSF-1 pathways266. Furthermore, it is related to the first two 

mentioned DEGs, in that it is upregulated in glp-1 mutants and its 

overexpression further extends the lifespan of daf-2(e1370) mutants. The 

lifespan-extension resulting from activation of the pbs-5 gene is accompanied 

by increased resistance to polyglutamine and A-beta proteotoxicitya, as 

expected from the elevated capacity of preserving proteostasis266. 

In regards to DEGs related to the DAF-2 pathway (and not confirmed to be daf-

16 dependent), the transcription elongation encoding gene hmg-4 is thought to 

directly interact with DAF-2267, and the gst-10 is partially-required for DAF-2 

lifespan extension. It encodes a glutathione transferase that interacts with 

products of lipid peroxidation, that when overexpressed further increases anti-

oxidant defenses of the organism, culminating in lifespan-extension268,269. 

The specific up-regulation of the alh-6 aldehyde dehydrogenase gene 

expression observed in NAC treatment extends lifespan depending on the 

specific bacteria food source270, so it might not be a robust mechanism for 

lifespan extension. 

 
a the authors tested on disease model strains. 
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4.3.6 - Lithium 

Of the 13 lifespan-extending GenAge DEGs that among my drugs are uniquely 

modulated by lithium, I will focus on only on those for which I found more 

information. 

As mentioned in the literature review (section 2.2.9), lithium is an FDA-

approved GSK-3 inhibitor. Contrary to this hypothesis that lithium’s pro-

longevity mode of action is inhibition of GSK-337, there are several DEGs 

associated with the mTOR pathway. For example, the pdk-1 gene (PDK-class 

protein kinase 1) is conserved in humans and it is down-regulated by 21% in 

lithium-treated animals271. Another, perhaps even more fundamental mTOR 

lifespan-extending GenAge DEG modulated by lithium is the conserved Rag 

GTPases coding gene raga-1. Moreover, down-regulation of raga-1 increases 

healthspan as measured by locomotion, just like lithium treatment272. 

Furthermore, identical to lithium treatment124, inhibition of raga-1 gene 

expression also leads to a redistribution of lgg-1:GFP from diffused to punctate 

foci272. The GFP-fused vacuolar protein LGG-1 marks autophagic vesicles273, 

and induction of autophagy is one of the ways by which the inhibition of the 

mTOR prolongs longevity274. In sum, this is another line of evidence supporting 

lithium as an mTOR inhibitor. This mode of action would agree with the results 

of my healthspan high-throughput screen. In my combinatorial drug trial, 

lithium synergized with rifampicin but not psora-4; and this is the same profile 

displayed by rapamycin in our previous work70. In other words, there is some 

support to the hypothesis that rapamycin and lithium share the same mode of 
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action, because it showcases that lithium treatment by itself already down-

regulates the TORC1 sub-pathwaya. 

Curiously, raga-1 RNAi increases the lifespan of the already long-lived glp-1 

knockout mutants; and glp-1 was a unique DEG down-regulated by NAC (see 

the previous section). This leads me to suggest that a combined lithium plus 

NAC treatment might be even more beneficial than any of the individual drugs. 

Not supporting all of the above, is the fact that the magnitude of raga-1 

expression inhibition (-13% expression) by lithium treatment is small. 

The ifta-2 gene encodes the intraflagellar transport associated protein 2, which 

is homologous to the mammalian Rab-like 5 protein. Lithium treatment 

inhibited its transcripts abundance by 25%. Modulation of ifta-2 expression has 

been shown to extend lifespan in a DAF-16 dependent manner275. Lithium pro-

longevity effects have no such restriction (see literature section X), and 

therefore this is unlikely to be the main mode of action. 

Taking the known genetic epistasis of lithium in C. elegans, I found only one 

gene that when it is targeted by RNAi, elicits lifespan-extension in a comparable 

manner: the tars-1 threonyl amino-acyl tRNA synthetase gene. Like lithium 

treatment, knockdown of tars-1 expression further prolongs the longevity of 

daf-2 and eat-2 knockout mutants and is independent of the DAF-16 pathway276. 

Worms treated with tars-1 RNAi also displayed reduced fertility. Unfortunately 

the magnitude of tars-1 inhibition caused by lithium treatment is small (16% 

reduction). 

 
a and rapamycin is a canonical mTOR inhibitor. 
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4.3.7 - EGCG 

The atf-6 gene is modulated (-25% expression) by EGCG, in the same way first 

assigned (and thought to be unique) to astragalus polysaccharidea treated-

worms277. It would be interesting to find the drug dominance relationship 

between these two compounds. Furthermore, EGCG down-regulates the 

expression of che-3 (-66%), che-11 (-78%) and daf-10 (-62%), which are the 

known genes for which their knockout mutants are long-lived278 and have 

reduced or irregular ciliab. The fact that all 3 of them are targets of EGCG makes 

it more likely that this cluster of genes is involved in the increased lifespan-

extension elicited by EGCG. 

Lifespan extension by EGCG is DAF-16 dependent. Consistently, several of its 

targets DEGs are gene knowns to be regulated by DAF-16. The genes ttr-5279 

(transthyretin-related family domain) and ammonia permease amt-2279 belong 

to this category, and are down-regulated by EGCG by 25% and 81%, 

respectively. Furthermore, both DEGs sca-1 (sarco-endoplasmic reticulum 

ATPase)280 and par-5 (abnormal embryonic partitioning of cytoplasm)281 are 

direct targets of DAF-16. While the expression of the first is decreased by 

EGCG (-35%), the latter is up-regulated by EGCG (55% increase in 

expression). Another DAF-16 dependent DEG modulated by EGCG is odr-3 

(odorant response abnormal). EGCG treatment reduced odr-3 expression by 

32%. This is of interest because decreasing the expression of this gene has been 

shown to prolong the lifespan of DAF-2 mutants249, and it is known that EGCG 

 
a is a traditional Chinese medicine obtained from the herb Astragalus membranaceus314. 
b cilia function as sensory receptors. 
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also further extended DAF-2 knockout mutants lifespan. There is another DEG, 

that among my drugs it is uniquely modulated by EGCG, tax-6 (abnormal 

chemotaxis), that reproducibly extends the lifespan of DAF-2 mutants157,282. 

EGCG reduces tax-6 transcript abundance by 36%. Unfortunately, the longevity 

effect of tax-6 expression inhibition is only partially independent (smaller 

magnitude of effect) on DAF-16 (it increases the longevity of DAF-16 knockout 

mutants), which does not match the genetic epistasis of EGCG treatment, which 

is of no benefit to the longevity of DAF-16 mutants (see Table 2.1). 

Nonetheless, EGCG treatment still has commonalities with DAF-2 knockout 

mutants. For example, the gcy-18 (guanylyl cyclase)89 gene is only modulated 

by EGCG. Its expression is reduced by 65% due to EGCG and it is also known 

to be down-regulated in DAF-2 mutants. 

Interestingly, there are 3 egg-laying defective DEGs among the ones uniquely 

modulated by EGCG egl-8, elg-30, and elg-9; their expression is reduced by 

36%, 30% and 41%, respectively. The results showing the first to be an anti-

longevity lifespan-extending gene283 has been reproduced284. The elg-30 gene 

activates egl-8. Interesting, decreasing the expression of either of this genes has 

opposite effects on the lifespan of DAF-16 mutants; knockdown of the former 

extends it, while the latter shortens it283. 

The EGL-9 protein hydroxylates HIF-1, which is then ubiquitinated and 

targeted for proteosome degradation. HIF-1 is a hypoxia inducible transcription 

factor that has a complex role in lifespan with both its over-expression285 and 

deficiency286 have previously been shown to extend lifespan. The down-

regulation of the egl-9 by EGCG, might lead to a more powerful hypoxic 
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response (due to accumulation of HIF-1), and constitute a pro-longevity 

pathway that is independent of dietary restriction and the IIS pathway. 

Moreover, egl-9 RNAi confers resistance to amyloid beta toxicity287. 

4.3.8 - Thioflavin-T 

In the literature review section of this drug (section X), I stated that it has the 

largest effect size of any known adult-onset pharmacological intervention in C. 

elegans and attributed its robustness in the Caenorhabditis Intervention Testing 

Program (CITP) to this. Now that I have transcriptomics data of worms treated 

with thioflavin-T This provides me with the observation that can just as well 

explain the robustness of thioflavin-T treatment. Thioflavin-T it is not only the 

drug with the most DEGs, but more importantly, that is my drug with the larger 

set of correctly modulate lifespan-extending GenAge DEGs (by an order of 

magnitude higher than any of my drugs). 

Among the 100 lifespan-extending GenAge DEGs correctly modulated by 

thioflavin-T, at least 12 of them encode aggregation-prone proteins248 and are 

down-regulated by this drug. This could imply a remarkable complementary 

role for thioflavin-T in the maintenance of proteostasis: not only it binds to the 

amyloid directlya202, it also acts indirectly by reducing the expression of 12 

genes that encode proteins that form aggregates (see Table 4.2). 

 
a recall that thioflavin-T is used as an amyloid-binding dye (see section 2.2.19). 
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Table 4.2 – DEG coding aggregation-prone proteins unique to thioflavin-T. 

The left column displays the gene symbol, and the left the relative expression of 

transcript abundance relative to the DMSO negative control group. 

 

The dozen mentioned genes are248: cct-1 (chaperin containing T-complex 

protein 1 subunit alpha), cpn-3 (calponin), dlat-1 (dihydrolipoyllysine-residue 

acetyltransferase component of pyruvate dehydrogenase complex), F01G6.4 

(mitochondrial phosphate carrier protein), gdh-1 (glutamate dehydrogenase), 

pab-1 (polyA binding protein)288; rpl-10289, rpl-17 and rpl-31 (60S ribosomal 

large subunit proteins); rps-5264 and rps-23264 (two ribosomal small subunit 

proteins); tbb-2 (tubulin beta-2 chain). Moreover, most of these genes have 

orthologs in humans. 

Thioflavin-T pro-longevity has been shown to be DAF-16 independent, and 

partially overlapping with DR. From the lifespan-extending DEGs unique to 

thioflavin-T for which there is lifespan data in C. elegans, I will now discuss 

the ones that are neither totally or partially dependent on DAF-16, nor on its 

downstream targets. Two of them253, ril-1 and ril-2 (RNAi-induced longevity) 

encode genes that have no obvious homologue, so might not be the most 

Gene symbol Relative expression (%)

rps-23 -52

rps-5 -40

dlat-1 -38

cct-1 -31

tbb-2 -26

pab-1 -21

rpl-17 -19

cpn-3 -17

rpl-10 -17

F01G6.4 -15

gdh-1 -9

rpl-31 -6
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applicable in mammals. I found an additional 12 DAF-16 independent DEGs264: 

F13B6.1, F49C12.9, mrpl-12; mrps-9 and mrps-33 (two mitochondrial 

ribosomal proteins); T28D6.4, tba-7 (alpha tubulin), ZK809.3, Y56A3A.19255, 

rec-8290, qars-1 (glutaminyl(Q) tRNA synthetase), lpd-5 (lipid depleted)276, cyc-

1 (cytochrome c1)253,259. The last three also extend lifespan in DAF-2 mutants. 

 

Table 4.3 – The 12 DAF-16 independent DEGs unique to thioflavin-T. 

The left column displays the gene symbol, and the left the relative expression of 

transcript abundance relative to the DMSO negative control group. 

 

Another alternative processes that I found to be caused by DEGs unique to 

thioflavin-T are mitonuclear protein imbalance151 and mitochondrial unfolded 

protein response291. 

Under a different paradigm, but equally interesting would be to explore if the 

progeny of thioflavin-T treated worms has a longer lifespan. This might actually 

be the case because thioflavin-T correctly modulates two DEGs that are both 

capable of this292,293. 

Gene symbol Relative expression (%)

tba-7 -42

Y56A3A.19 -40

F13B6.1 -39

rec-8 -34

qars-1 -34

lpd-5 -30

T28D6.4 -29

ril-2 -25

F49C12.9 -24

cyc-1 -24

mrps-9 -21

mrpl-12 -18

mrps-33 -15

ZK809.3 -10

ril-1 -5
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The previously mentioned pathways are highly distinct, and this may explain 

the robustness of thioflavin-T in the CITP. But there is an even stronger 

possibility: thioflavin-T is an incredibly robust intervention because it has 

among its uniquely modulated DEGs 5 of the canonical aging-genes: sir-2.1 

(35% expression increases), daf-7 (-23% expression change), skn-1 (29% 

expression increase), hsf-1 (52% expression increase) and clk-1 (-9% expression 

change). 
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Chapter 5 – Larger combinatorial healthspan drug screen 

5.1 - Introduction 

In - Automated high-throughput healthspan drug screening in C. 

elegansChapter 3, I validated all the steps of my proposed methodology in 

isolation and integrated. In Chapter 4, I confirmed that the selected drug library 

features drugs which target a diverse set of known lifespan-extending genes. 

Therefore, I will now apply the drug screen methodology to my drug library. 

As mentioned before, the selection of drugs was based on previously described 

criteria (see sub-chapter 2.1), and an up-to-date literature review regarding each 

of the drugs in the drug library is provided in sub-chapter 2.2. 

5.2 - Monotherapy results 

Even for conditions testing only water-soluble drugs, DMSO was added to a 

final concentration of 0.1%. This was done so that the concentration of DMSO 

was identical in each well (apart from psora-4 which required a higher DMSO 

concentration, see below), allowing direct comparison of efficacy of drug 

combinations with each other and with single drug and untreated controls.  

I included rapamycin amongst the drugs for which I investigated interactions, 

but I am not including these results here because of an unexpected problem with 

solubility that was consistently observed across all rapamycin conditions of this 

screen. I observed that wells containing rapamycin showed visible precipitates 

(crystals). In agreement with this observation, indicating a problem with 

rapamycin solubility, rapamycin treated cohorts in this trial were 

indistinguishable in terms of lifespan from controls and, for each drug tested 

together with rapamycin, the observed effects were identical to treatment with 
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that single drug alone. This failure of rapamycin to elicit any lifespan benefits, 

either alone or in combination with other drugs stands in direct contradiction to 

my previous results which, in fact, successfully used rapamycin as the positive 

control. The cause of this might be because I used an older stock, but I did not 

have time to fully investigate the cause of this failure. 

Drugs 
Restricted Mean 

(days) 
Magnitude % Bonferroni p-value 

alpha-KG 21 5 1 

Aspirin 25 23 0.00003 

Captopril 25 24 1.20E-07 

Curcumin 25 23 0.0008 

EGCG 19 -5 1 

Icariin 22 8 0.0695 

Lipoic acid 23 13 0.471 

Lithium 22 8 1 

Myricetin 25 25 <1E-10 

NAC 26 28 <1E-10 

Piceatannol 24 22 <1E-10 

Psora-4 23 11 0.0087* 

Resveratrol 20 0 1 

Rifampicin 22 8 0.041 

Spermidine 23 17 0.0078 

Thioflavin T 22 8 1 

Ursolic acid 22 8 1 

Drugs and their used concentrations are reported in the first column. “Mean 

healthspan” is quantified by the restricted mean (sub-chapter 2.5). The third column 

indicates the magnitude of mean healthspan changes relative to the negative control 

group. 

*due its solubility psora-4 was diluted in 1% DMSO and the values reported are relative 

to the 1% DMSO concentration.  

 

I separated the above conditions, except for psora-4, into two survival separate 

plots, one for water soluble and the other for water insoluble (DMSO) drugs. 

This separation is somewhat arbitrary because even the water soluble 

compounds were tested in the presence of DMSO to allow more direct 
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comparison. For consistent visual inferences, I included the same negative 

(0.1% DMSO) and positive (rifampicin) control conditions in each plots. The 

rifampicin positive control did extend mean healthspan in statistically  

significant manner by about 8%a. 

 

 

Figure 5.1 – Survival plot of water-soluble single drug interventions. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. RIF = 

rifampicin. 

 

 
a this is especially acceptable if one considers that the mean healthspan of the 0.1% 

DMSO negative control group was 20 days. 
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Figure 5.2 – Survival plot of DMSO-soluble single drug interventions. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. RIF = 

rifampicin. 

 

5.3 - Combinatorial healthspan interventions 

The key objective of this screen was to systematically test every single drug in 

my drug library when combined with rapamycin, rifampicin, or psora-4 (3 

pairing of each drug). I chose this design as an extension of our previous work, 

identifying two synergies involving rapamycin, rifampicin and psora-470. By 

investigating all possible pairs of drugs involving one of these three compounds, 

I aimed to answer the question how common synergistic interactions between 

drugs are. The intention was for the two known synergistic pairs (rifampicin 

with psora-4 and rifampicin with rapamycin) also served as positive controls for 

synergy while the (non-synergistic) rapamycin and psora-4 combination would 

serve as the negative control. Unfortunately, as mention in the previous section 

for the monotherapy, there was a problem with rapamycin solubility in this trial, 

and the there was no difference between each single drug and their 
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corresponding pairs with rapamycin a. Due to the failure of rapamycin in this 

trial, only the single combination (rifampicin with psora-4) was used as positive 

control.  

5.3.1 - Rifampicin Pairs 

As in the previous section, Figure 5.3 and Figure 5.4 show all rifampicin drug 

pairs with drugs that are either water or DMSO soluble, respectively. For the 

sake of comparison, I included the negative (0.1% DMSO) and positive 

(rifampicin only) control conditions in both plots. 

 

Figure 5.3 – Survival plot of rifampicin paired with water-soluble drugs. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. RIF = 

rifampicin. 

 

 
a This suggests that the results regarding the monotherapies are robust, which is in itself 

evidence for the validity of my pipeline. 
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Figure 5.4 – Survival plot of rifampicin paired with DMSO-soluble drugs. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. RIF = 

rifampicin. 

 

For a better systematic comparison, the healthspan results of each rifampicin 

pair is depicted in Table 5.1. The combinatorial interventions are named in the 

first column and each row’s data belong to the named combinations. The second 

column presents the mean healthspan (measured as explained in section 

672.5.2) in days, rounded to unit (nearest day). The rows of the table are sorted 

in decreasing order. The values that are in bold signify that the restricted mean 

healthspan achieved by the respective combination is larger than the reference 

restricted mean healthspan of the synergy control pair rifampicin and psora-4 of 

approximately 27 days. The left 3 columns contrast the relative difference 

between the restricted mean healthspan of the drug pair intervention versus 

0.1% DMSO, rifampicin and the monotherapy of the drug that is being paired 

with rifampicin in the combination, respectively. Therefore, positive values 

indicate an extension of mean healthspan relative to the 0.1% DMSO control 
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group. Finally, bold values correspond to comparisons for which the log-rank 

test shows statistical significance (for an alpha significance threshold level of 

0.05), meaning that the drug combination has a different healthspan relative to 

the group named in the column (see section 2.5.3). Positive bold values indicate 

that healthspan is statistically significantly larger than the respective column 

reference group, and vice-versa for negative bold values. There are three bold 

drug pair to indicate that these interventions achieve statistical significance 

across all the table comparisons. They are colored green because they are cases 

of positive synergy. Notice that in this case the comparisons between each drug 

pair with the respective monotherapies interventions is precise, because all the 

conditions involved were assayed simultaneously, at a standard DMSO 

concentration of 0.1%. 

Interestingly, there were no drugs that when paired with rifampicin decrease the 

mean healthspan relative to the DMSO only control group (no directly toxic 

interactions). However, Rifampicin combined with alpha-ketoglutarate, 

piceatannol, lipoic acid, aspirin, ursolic acid and resveratrol did not extend 

healthspan compared to the DMSO control condition. Although there are no 

toxic drug interactions compared to the negative control group, there are 

negative drug interactions when compared to the mean healthspan of the 

treatment using the best of the two single drugs in each pair. Adding rifampicin 

to aspirin significantly decreases mean healthspan (by 15%) relative to aspirin 

alone, also adding resveratrol to rifampicin significantly decreases the mean 

healthspan relative to rifampicin monotherapy (by 7%). 
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Drug Pairs [ N ] 
Mean Healthspan 

(days) 

Relative mean healthspan extension (%) 

vs 0.1% DMSO 
vs 
RIF 

vs Monotherapy 

 RIF and Curcumin [ 131 ] 29 45 34 17 

 RIF and Lithium [ 146 ] 28 37 27 28 

 RIF and Myricetin [ 95 ] 26 32 22 6 

 RIF and Thioflavin T [ 133 ] 25 25 16 16 

 RIF and EGCG [ 133 ] 24 20 11 27 

 RIF and Captopril [ 132 ] 23 14 6 -8 

 RIF and Spermidine [ 124 ] 23 14 5 -3 

 RIF and NAC [ 114 ] 23 13 4 -12 

 RIF and Icariin [ 159 ] 22 11 2 2 

 RIF and alpha-KG [ 138 ] 22 10 2 5 

 RIF and Piceatannol [ 64 ] 22 10 2 -10 

 RIF and Lipoic Acid [ 90 ] 21 5 -3 -7 

 RIF and Aspirin [ 125 ] 21 5 -3 -15 

 RIF and Ursolic Acid [ 126 ] 20 2 -6 -5 

 RIF and Resveratrol [ 135 ] 20 0 -7 0 

Table 5.1 – Summary of the longevity effects of rifampicin drug pair 

combinations. 

The first column identifies the drug pair and sample size (value inside []). Green bold 

drug pairs are cases of positive synergies. The last three column display the magnitude 

of healthspan extension relative to the DMSO, rifampicin and paired drug 

interventions, respectively. Bold values represent a statistically significant log-rank 

test. RIF = rifampicin. 

 

Overall, out of the total 15 rifampicin pairs tested, I found nine drug pairs that 

significantly extended mean healthspan relative to the 0.1% DMSO group. 

When rifampicin was combined with spermidine, NAC and icariin, the effect of 

the joint interventions was not different from the effect of the better of the two 

single interventions that comprised it. In the cases of rifampicin paired with 

curcumin, myricetin and captopril, there was a statistically significant increase 

of the mean healthspan relative to the rifampicin only group. But for these drug 

pairs the effect does not reach statistical significance when compared to the 

other drug of the pair (curcumin, myricetin and captopril, respectively). Another 

way to summarize the results for these 6 pairs is to say that, there was no benefit 
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to combining compounds in these cases. That is, applying the best of the 

monotherapies would suffice to elicit the same healthspan extension as the 

combination treatment.  

However, among the rifampicin-based pair interventions are three examples 

where combination treatment significantly extended mean healthspan compared 

to the 0.1% DMSO negative control group. One of these pairs even extends 

healthspan, in a statistical significantly manner, when compared to the 

rifampicin group and the respective monotherapy condition. These 3 cases of 

drug synergy are achieved when rifampicin is paired with lithium, thioflavin-T 

and EGCG. I will refer to these three pairs as “synergistic”, following the 

definition introduced in section 2.5.3. 

Of the 3 synergistic rifampicin-based pairs, rifampicin, and lithium (Figure 5.5) 

is the only intervention that displays a mean healthspan that is significantly 

larger than the sum of the benefits of the two constituent drugs (Table 5.1). As 

it can be seen in Figure 5.5, combining rifampicin and lithium resulted in an 

intervention that robustly extended lifespan at all time points. Rifampicin 

combined with lithium is therefore the only combination that is synergistic in 

the most stringent sense – namely that the whole is significantly larger than the 

sum of its parts.  
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Figure 5.5 – Healthspan of rifampicin and/or lithium. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. RIF = 

rifampicin. 

 

By contrast, the combination of rifampicin and thioflavin-T resulted in a 

survival curve with distinct hazard ratios depending on the lifespan stage 

(Figure 5.6). This intervention reduced the early decline of healthspan at the 

population level until about day 15. From then until about day 30, it is like the 

rifampicin monotherapy. Interestingly, from this point on, the 20% surviving 

population display almost no loss of healthspan (and therefore also no mortality) 

for over 20 additional days, suggesting that a small subset of the population 

benefited disproportionally from this treatment combination. Moreover, I know 

that this is not some artifact (false positives) of automatizing the scoring because 

while I was blinded and for several days, I took note of the observation that a 

subset of wells had a surprisingly substantial number of worms still alive. I later 

found out, that these wells belonged mainly to the rifampicin with thioflavin-T 

paired intervention. 
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Figure 5.6 – Healthspan of rifampicin and/or thioflavin-T. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. RIF 

= rifampicin. 

 

Combining rifampicin and EGCG results in an intervention that matches the 

rifampicin monotherapy until about 30% of the population has stopped moving. 

From there until about day 35 (when 90% of the population has stopped 

moving), the pair intervention significantly extends healthspan. This is an 

interesting case of synergy because EGCG monotherapy does not extend 

healthspan relative to the negative control group (Table 5.1). 
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Figure 5.7 – Healthspan of rifampicin and/or EGCG. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. RIF 

= rifampicin. 

 

5.3.2 - Psora-4 pairs 

Due to psora-4 requiring a final DMSO concentration of 1% only now, that I 

am analyzing the drug pairs that have 1% DMSO, do I display its “healthspan” 

survival curve (Figure 5.8). Psora-4 was my other positive control condition and 

it was valid as such because it increased mean healthspan by 11% compared to 

the 1% DMSO control. What in rifampicin was a somewhat arbitrary bipartition 

of drug pairs into water-soluble and DMSO-soluble drugs, is more significant 

when analyzing pairs based on psora-4. The reason is that when paired with 

water-soluble drugs (Figure 5.8) the final DMSO concentration was the same as 

for psora-4 by itself (1% DMSO). But when paired with other DMSO-only 

soluble drugs, the final concentration reached 1.1% DMSO, and, accordingly, I 

created a 1.1% DMSO negative control group (Figure 5.9). 
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Figure 5.8 – Survival plot of psora-4 paired with water-soluble drug. 

Numbers inside square brackets indicate the sample size. Percent survival represents 

the percentage of moving worms per time point relative to the starting population. 

 

The positive (known synergy) control (psora-4, rifampicin) is among the psora-

4 pairs with DMSO soluble drugs and this condition indeed shows synergistic 

benefits (Figure 5.9). The high-throughput automated screen was, therefore, 

able to clearly identify this synergy as a statistically significant increase of mean 

healthspan of 21% over the 0.1% DMSO negative control group. 



140 

 

 

Figure 5.9 – Survival plot of psora-4 paired with DMSO-soluble drug. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. RIF = 

rifampicin. 

 

Following the same conventions established for Table 5.1 in the previous 

section, Table 5.2 summarizes the results of the psora-4 drug pairs with some 

additional considerations. The results of the comparison with the negative 

group, in column “vs DMSO”, are values obtained using the respective DMSO 

control concentration (1% or 1.1%). It is also important to be mindful that psora-

4 was assayed at 1% DMSO and, therefore, effects observed for psora-4 and its 

pairs are not fully comparable with drug pairs that were tested at 0.1% DMSO 

(see previous section). Similarly, comparisons between each drug pairs and 

respective monotherapy of the drug being paired with psora-4 (column “vs 

Monotherapy”), are not standardized for final DMSO concentration, as all the 

monotherapies were assayed at the lower concentration of 0.1% DMSO 

(matching the final concentration of DMSO used in the rifampicin drug pairs). 

Finally, there are now three conditions with red-colored names. These represent 

truly toxic interventions. That is interventions that decrease healthspan relative 
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to the DMSO (what % - given that we are now considering 0.1, 1 and 1.1.% ;)) 

control group. Adding NAC, icariin or lipoic acid to psora-4 resulted in 

intervention that were healthspan decreasing relative to untreated control 

(DMSO only). These conditions are therefore directly toxic to animals, even 

though each of the individual compounds has beneficial effects on healthspan.  

Drug Pairs [ N ] 
Mean Healthspan 

(days) 

Relative mean healthspan extension (%) 

vs DMSO vs PSORA vs Monotherapy 

 PSORA and Thioflavin T [ 11 ] 33 48 44 51 

 PSORA and Curcumin [ 25 ] 29 32 27 17 

 PSORA and EGCG [ 116 ] 26 18 14 36 

 PSORA and Myricetin [ 79 ] 25 14 10 0 

 PSORA and Aspirin [ 81 ] 25 13 9 0 

 PSORA and Ursolic Acid [ 67 ] 24 10 6 12 

 PSORA and Resveratrol [ 85 ] 22 0 -4 9 

 PSORA and alpha-KG [ 61 ] 21 -3 -7 1 

 PSORA and Piceatannol [ 113 ] 21 4 -7 -14 

 PSORA and Captopril [ 85 ] 21 2 -8 -16 

 PSORA and Lithium [ 99 ] 20 -3 -13 -8 

 PSORA and Spermidine [ 111 ] 19 -8 -17 -20 

 PSORA and NAC [ 104 ] 18 -11 -20 -29 

 PSORA and Icariin [ 87 ] 18 -14 -23 -19 

 PSORA and Lipoic Acid [ 84 ] 17 -21 -23 -23 

Table 5.2 - Summary of the longevity effects of psora-4 drug pair combinations. 

The first column identifies the drug pair and sample size (value inside []). Green 

bold drug pairs are cases of positive synergies. Red bold drug pair names are 

toxic interactions. The last three column display the magnitude of healthspan 

extension relative to the DMSO, rifampicin and paired drug interventions, 

respectively. Bold values represent a statistically significant log-rank test. RIF 

= rifampicin. 

 

When piceatannol, captopril, lithium or spermidine were added to psora-4, 

healthspan benefits resulting from exposure to each of the single drugs were 

lost, resulting in cohort healthspans that were not statistically significantly 

different from the respective (1% or 1.1%) DMSO control group (Table 5.2). In 

other words, in the case of these drug pairs, the effects of the individual drugs 

appear to cancel each other. 
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As it happened with the examined rifampicin drug pairs, there is a subset of 

psora-4 pairs that do not extend healthspan beyond the best of the single drugs 

that composes it (Table 5.2). Interventions in which psora-4 is being combined 

with myricetin, aspirin, ursolic acid, resveratrol, and alpha-ketoglutarate, do not 

elicit healthspan benefits that exceed those of the individual. 

More encouraging, 3 drugs resulted in significant additional benefits when 

paired with psora-4. These combinations increase mean healthspan, in a 

statistically significant manner, relative to negative control (DMSO only) and 

when compared to either of the two monotherapies (Table 5.2). 

Thioflavin-T and psora-4 were one such synergistic healthspan-extending pair. 

However, for reasons that are not clear, sample size for this condition was 

unusually small, with lifespan data for only 11 individual nematodes being 

recorded. Nonetheless, the healthspan extension achieved is of such magnitude 

(larger than the sum of the two individual drug interventions) and longitudinal 

consistency (Figure 5.10) that it is one of the most exciting results. It is worth 

to bear in mind that, albeit allowing quite granular survival data, the nature of 

the purposed high-throughput screen is as an initial screen to reliable detect 

promising healthspan-extending interventions. The successful candidate 

combinations ought to be subsequentially assayed in standard conditions294. 
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Figure 5.10 – Healthspan of psora-4 and/or thioflavin-T. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. 

 

Another synergistic drug combination was the combination of psora-4 with 

curcumin. This is the other rare case of small sample size (Figure 5.11). The 

combination of psora-4 and curcumin elicits no apparent healthspan-extension 

until about 40% of the population stopped moving (day 20). From then onwards, 

the healthy survivors saw their remaining healthspan extended significantly. 

This intervention too, exhibits a mean healthspan extension larger than the 

positive control synergy of rifampicin and psora-4. 
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Figure 5.11 – Healthspan of psora-4 and/or curcumin. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. 

 

The final new drug synergy that I discovered was psora-4 with EGCG. The 

survival curve of this synergy indicates that at in the early time points, up to day 

15, this combination achieves about as much healthspan-extension as the best 

of its single drug interventions (psora-4). From then until day 50, the group on 

this synergistic pair of drugs displays significantly better healthspan than any 

other drug in this trail (Figure 5.12). Notice that EGCG, when by itself, was 

ineffective in extending healthspan under these conditions. This, therefore, is 

another example of a combination that was synergistic under the most stringent 

definition that the combination treatment results in benefits that were larger than 

the sum of the individual benefits.  
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Figure 5.12 – Healthspan of psora-4 and/or EGCG. 

Numbers inside square brackets indicate the sample size. Percent survival represent the 

percentage of moving worms per time point relative to the starting population. 

 

5.4 - Discussion 

This chapter exemplifies the capabilities of my methodology and data-

processing pipeline. Overall, I tested 69 different conditions, including testing 

18 single drugs, 48 drug combinations and 3 distinct negative control 

conditions. The total number of animals for which I obtained lifespan data was 

approximately 5985 (this number does not include the dropped conditions that 

featured rapamycin), while a typical manual lifespan experiment rarely exceeds 

400 animals. Leveraging the system I developed, I was able to conduct what to 

the best of my knowledge is the largest combinatorial anti-aging drug screen to 

date. In this single screen, I exhaustively crossed all my compounds with the 3 

compounds previously known to be involved in synergistic combinations70.  

I discovered 6 novel anti-aging drug synergies. Prior to this screen, there were 

only a handful of know synergistic interaction.  
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The scalability capabilities of the proposed screen allow a greater 

standardization among the experimental conditions. In other words, these drugs 

were assayed simultaneously and with specifically designed control groups if 

necessary. This allowed me for example to confidently use the log-rank test 

between single and dual drug interventions (namely in the rifampicin-based 

drug pairs) to obtain a more formal definition of synergya. 

The statistical power of the proposed methodology is enhanced in two ways. 

First, the for a high-throughput screen the proposed methodology matches the 

temporal granularity (daily measures) used in the standard manual lifespan 

assays295. This has only been achieve recently27, with a few measurements still 

being the norm in C. elegans drug screens (e.g.[221]). The second characteristic 

that increases statistical power is the considerable number of individuals per 

experimental condition. Indeed, the average sample size in this screen is 

characteristic of manual lifespan assays. Case in point, it is even slightly larger 

than our previously manual-based screen70. In total, the screens presented here 

generated almost 200000 frames, tracking 1632 individual plate wells for over 

60 days. These advances were only possible due to the use of automated image 

processing and lifespan scoring. 

Regarding our previous work, among the discovered synergistic lifespan-

extending drug pairs there was the rifampicin and psora-4 combination. I used 

this known synergy as a positive control for synergistic interactions, and as a 

byproduct, obtained its healthspan. Our work reported a mean lifespan between 

 
a I considered synergistic a drug pair that exhibited larger restricted mean healthspan 

larger and statistically significant log-rank test p-value that the respective control and 

monotherapies interventions. 
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28 to 31 days for this intervention, and my current work reveals a mean 

healthspan of about 27 days. This are encouraging results, suggesting that the 

almost the totality of the lifespan of worms treated with these pairs of drugs was 

spent in good health. This is consistent with our previous results on healthspan 

effects of synergistic drug combinations, both in models of 

neurodegeneration126 and in wild-type animals70. The magnitude of healthspan-

extension is comparable to that reported in the ABC scoring healthspan assays 

that we have previously reported in our triple synergistic combinations70. 

Among the discovered new anti-aging drug synergies some of them display 

impressive effect size. For example, the combination of rifampicin and lithium 

extends mean healthspan by 37%, compared to untreated control group. This 

mean locomotion-based healthspan of 28 days is at least as large as the one 

observed in 4 canonical long-lived mutant strains296. Another example, the new 

candidate drug synergy of rifampicin and thioflavin-T displays a 90th percentile 

of healthspan (the healthspan-based analogous to the 90th percentile of lifespan 

usually defining maximum lifespan) of approximately 58 days. This sets this 

the drug pair intervention with the largest maximum lifespan (because the 

measured healthspan implies a lifespan at least as large) ever reported in C. 

elegans, being surpassed only by our previously discovered triple drug 

combinations70. However, these results need to be confirmed using more 

traditional, manual lifespan assays. 

Furthermore, it is worth noting that beneficial synergies, in particular synergies 

in the strictest sense (with combination treatment resulting in healthspan 

benefits that exceed the sum of the benefits from the two individual drugs) are 

rare. Of the 30 new pairs tested, only 5 showed (strict) synergistic benefits and 
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only one was narrowly synergistic. By contrast, in 21 cases combining two 

compounds resulted in diminished or null benefits and 3 drug pairs resulted in 

toxicity. This is an important observation as it suggests that simply combining 

compounds, drugs and supplements that are beneficial individually is unlikely 

to result in beneficial combinations and may result in diminishing returns or 

toxic interactions.  
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Chapter 6 – Transcriptomics and Synergistic Potential 

6.1 – Introduction 

Throughout my attempts of rationalizing, explaining, and predicting drug-drug 

interactions (additive or detrimental interactions, drug-drug synergies), I only 

make use on information about the transcriptional effects or published mode of 

action of the single compounds. This is because, due to the problem of 

combinatorial explosion in search space, systematically generating DEG 

epistasis data on drug combinations is as infeasible (at least given current 

technological limitations) as generating lifespan data for every possible drug 

pair. Tools for prediction of drug-drug interactions, therefore, by necessity 

attempt to infer interactions between drugs based on information derived from 

known effects of single drugs (on transcription, dependence on key pathways). 

This implicitly or explicitly requires the assumption that, at least to first 

approximation, perturbations involving a pair of drugs can be modelled as linear 

super-position of the individual drug effects. For example, considering two 

drugs (Drug A and Drug B) with vectors of DEGs (A and B), I will assume that 

the DEG for the drug pair (AB) can be approximated by: 

𝐴𝐵 ~ 𝛼 ∗ 𝐴 +  𝛽 ∗ 𝐵 

Where alpha and beta are real-valued factors allowing for linear interactions 

between genes (e.g. saturation effects or changes in effective in vivo drug 

concentration due to global effects on drug detoxification and transport 

pathways). This linearity assumption is a strong simplification of how complex 

biological system works. In fact, we know that in many specific cases, 

especially where pathways intersect, the assumption is explicitly violated. 
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However, a more complete analysis of drug-drug interaction would require 

construction of an explicit gene-regulatory network (GRN) of aging genes, 

which is well beyond the scope of this study. It is therefore worth exploring to 

what extent, if any, drug-drug interactions can be understood and/or predicted 

without the ability to explicitly model the GRN determining aging. At the very 

least, this will allow me to evaluate to what extend non-linear interactions drive 

drug synergies. Our previous work shows that drugs that are separated in a 

transcriptional PCA space were more likely to interact synergistic70. This 

observation led us to the assumption that compounds that are dissimilar in terms 

of their mode of action may be more likely to interact additively or 

synergistically. However, given the small size of all previous screens (typically 

less than 10 drug pairs) and the limited number of known drug-drug synergies 

affecting aging (9 if one defines synergy as more than the best of the single 

drugs)37,38,70, none of these observations could be supported statistically, 

making them hypotheses based on anecdotal evidence, at best.  

Interestingly, these observations were based on simple PCAs, and PCA by 

design, is a linear technique (see sub-chapter 0), that is unable to model non-

linear effects. This reasoning suggested that the linearity assumption of drug-

drug interaction effects might preserve some predicative power and further 

encouraged me to explore simple gene-set based metrics.  

Taking into consideration all of the above, in this chapter I will jointly analyze 

my RNA-Seq dataset (for single drugs) with the one generated in our previous 

work (which contains a limited number of examples where we collected data on 

both the single drugs (A and B) and their interactions (AB)70. I will complement 

that information with the healthspan results obtained in my high-throughput 
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assay (Chapter 5) as well as some of the available literature data (e.g. 70) to 

explore the nature of synergy from a transcriptomic perspective. 

6.2 – GenAge genes expression and healthspan 

First, I combined the RNA-Seq samples that I generated with the samples from 

our previous work70. In other words, my working dataset for this chapter 

comprises the aligned samples (FastQ format) of section 4.2.1 plus the aligned 

samplesa of our previous work. As a result, from the initial transcriptome of 

21923 genes, I found that 13862 genes pass the significance threshold, and can 

be considered what I call “druggable genes” by our drug library. I am using the 

term “druggable”, in the context of my experiment, to refer to genes for which 

there are significant transcriptional changes for at least one condition (and that 

cannot be explained by batch effect). In other words, I consider genes 

“druggable” if I have evidence that they can be impacted transcriptionally by at 

least one drug intervention. I then mapped my druggable genes to the GenAge 

(see section 1.3.4) gene for C. elegans. After converting IDs and data cleaning, 

this procedure resulted in a final gene set of 407 druggable aging genes, that is, 

genes that are impacted by at least one of my drugs and that are experimentally 

validated to be involved in lifespan determination in C. elegans. 

I hypothesised that the expression changes of GenAge genes should be 

correlated with the mean healthspan changes for a given drug intervention. To 

 
a to minimize inconsistence between datasets, I realigned the raw (FastQ) 

samples from our previous work using my custom-made pipeline (see section 

2.4.2). 
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test this, I built several ways to count gene and score expression changes within 

GenAge genes. I will describe one of the more complex ones in detail and 

summarize observations for the complete set. 

To determine predicted lifespan benefits of “correct” GenAge DEGs (see 

section 4.2.2), I extracted all DEGs of GenAge genes that significantly change 

in the correct direction (expected to extend lifespan). I consider these correct 

changes positive (+1). Depending on the exact scoring approach, I weighted 

these correct genes by their fold-change (emphasizing numerically larger 

changes in the right direction) and/or by their known max effect size 

(emphasizing genes with larger impact on lifespan – e.g. upon knockout). In a 

way analogous to the definition of correctly modulated DEGs, I will also 

account for the lifespan-decreasing DEGs, scoring changes within GenAge that 

were known to shorten lifespan. Finally, DEGs that belong to GenAge but went 

into the opposite direction predicted to influence lifespan were set to zero. The 

subset of lifespan-decreasing GenAge DEGs includes anti-longevity lifespan-

decreasing genes with increased expression upon drug treatment and pro-

longevity lifespan-decreasing genes that are down-regulated. My goal in 

constructing this scoring function was to compute a sum of all the lifespan-

extending and lifespan-decreasing DEGs (either unweighted, or weighted by 

fold change and/or known effect size) for each of the single drugs. By relating 

this GenAge score to the observed lifespan effects for each of the 

monotherapies, I was hoping to identify a scoring function that might then be 

explored further in the prediction of drug-drug interactions. The importance of 

being able to do a weighted sum based on known effect size can be made 

evident, for example, by the fact that there are anti-longevity genes that when 
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knockout increase lifespan by only 10% while others increase lifespan by up to 

100%. Conceptually, I am adding the potential lifespan-extending effects of a 

drugs and subtracting its potential lifespan-decreasing effects: 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒 = ∑ 𝑙𝑖𝑓𝑒𝐸𝑥𝑡𝐺𝑒𝑛𝑒𝑠 − ∑ 𝑙𝑖𝑓𝑒𝐷𝑒𝑐𝑟𝐺𝑒𝑛𝑒𝑠 

For this more complex example (among the literally tenths testeda), I weight the 

log2 foldchanges of a gene with the respective genetic intervention effect size 

reported in GenAge. Additionally, I calibrated and scaled the effect size by 

considering -1 log2 foldchange to be equivalent of a RNAi knockdowns 

condition while I considered a -2.5 log2 foldchanges as knockouts and assumed 

that genetic overexpression experiments would result at minimum in 2 log2 

foldchanges. I also capped these values so that at ±2.5 log2 foldchanges, the 

maximum effect size was achieved. 

As is evident in Figure 6.1, there was no correlation between the DEG based 

single-drug GenAge score and the observed lifespan effects for this scoring 

function. It might be argued that this could be because this particular score is 

calculated as the difference between to scores (the sums over beneficial and 

detrimental impacts). Since both scores are subject to significant error, it could 

be argued that the difference between them, being, by design smaller than either 

factor but subject to the sum of both error terms, loses predictive power. 

However, I exhaustively explored variations on this theme, for example only 

considering beneficial effects, reducing the score to binary counts (ignoring fold 

 
a For example, I tried all the combinations: with or without weighing gene effect sizes; 

instead of a sum using the ratio between lifespan-extending and lifespan-decreasing 

genes; instead of the total sum use robust measures like the median value; disregard the 

magnitude of fold changes and considered just if it is relevant (binary); etc. 
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changes and/or known effect sizes) and even testing an “impact score” by 

counted all changes to GenAge genes as signs of effects on aging, even if 

changes were “incorrect” (predicted to shorten lifespan). Disappointingly, none 

of the scoring function displayed any significant correlation with mean 

healthspan changes as observed experimentally. In other words, regardless of 

the scoring function used, the number, degree, or identity of GenAge genes 

affected was not predictive of observed lifespan effects. Drugs that affected 

more GenAge genes, affected them more severely or more correctly (or were 

free of detrimental penalties) were not more likely to robustly extend lifespan 

than drugs that resulted in less pronounced or less “correct” changes to GenAge 

genes. This, of course, poses a significant challenge to any attempt to use similar 

scoring functions for the prediction of drug-drug interactions. Given that even 

single drugs, for which DEGs are accurately reflect transcriptional effects of 

each intervention, cannot be predicted by any of the scoring function 

quantifying impact on the GenAge set, attempts to predict drug-drug 

interactions, that would have to be based on a linear (additive) approximation 

of their combined transcriptional effect would have to be based on a different 

rational. 
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Figure 6.1 – Linear correlation plot between the GenAge Score and relative 

healthspan extension. 

The healthspan extension is in relation to the DMSO negative control condition. 

The correlation is not statistically significant. 

6.2.1 - Drug similarity in GenAge does not predict drug synergy 

To test this intuition, I revisited the score based on the modulation of lifespan-

extending and lifespan-decreasing GenAge genes (sub-chapter 6.2), but, as 

expected, found that the same approaches that failed to predict individual drug 

effects was also unable to predict drug synergistic interactions (for an example 

see Figure 6.2). 
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Figure 6.2 - Linear correlation plot between the Synergy Score and relative 

healthspan extension. 

The synergy score is larger the stronger the modulation of lifespan-extending 

GenAge DEGs and the weaker the targeting of lifespan-decreasing GenAge 

DEGs. The two clear clusters of aligned points correspond to combinations in 

which psora-4 and rifampicin were much stronger than the paired drugs in 

modulating GenAge genes. The “Synergy Score” is uncorrelated with the 

magnitude of mean healthspan extension of the drug combinations relative to 

the negative control group. 

6.2.2– Monotherapies transcriptional similarity 

Considering this lack of predictive power of the GenAge gene set, I next 

explored if our previous hypothesis, that more dissimilar drugs are more likely 

to interact beneficially, could be confirmed quantitatively in my dataset. I 

previously mentioned the fact that there is a significant bias in the literature, 

regarding evidence on epistasis of lifespan effects, with most anti-aging drugs 

assayed under hypothesis connected to a limited number of popular aging-

related genes and pathways (see section 2.2.21). This means that these data are 

of limited use for the characterization of mode action because there is only an 

exceedingly small number of genes for which epistasis information is available 
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for more than a few drugs in my dataset (see Table 2.1). I therefore decided that 

it would be valuable to conduct the analysis in a hypothesis-free fashion. To this 

end, I constructed two different drug similarity scores, intended to compare the 

degree of similarity between the mode of action of drugs based on the impact 

on the transcriptome.  

The most obvious way to compare mode of action, as pertaining to aging, might 

be to compare the set of GenAge genes impacted by each drug. I counted the 

amount of GenAge DEGsa in common between each two drug transcriptional 

profiles of my screened drug combinations. Then I correlated this amount to the 

mean healthspan extension displayed by the respective drug pair interventions. 

The rationale is that if dissimilar drugs are more likely to be synergistic, then 

drugs with more shared genes target the known aging-related genes in a similar 

fashion and therefore will tend to not be synergistic. Figure 6.3 displays the 

results of this approach. The correlation between this measure of drug-drug 

similarity and effect size of drug pairs was not significant. 

 
a I used the DEGs specific to each drug, from the RNA-Seq pipeline explained in detail 

in section 6.2.3. 
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Figure 6.3 - Linear correlation plot between the number of shared GenAge DEGs 

and relative healthspan extension. 

The healthspan extension is in relation to the DMSO negative control condition. 

The correlation is not statistically significant. 

 

Given the failure of the GenAge based impacted scores to predict single drug 

lifespan benefits, it is not self-evident that the GenAge gene set is the complete 

or sufficient to explain aging-related effects in general. I therefore next 

constructed considered using if an alternative aging-related gene set66 or even 

not filtering by gene set would be better. 

6.2.3– PCA-based decomposition of transcriptional profiles 

Following the failure of similarity comparison bases on simple gene-set analysis 

(within GenAge) to predict beneficial interactions, I next attempted to construct 

a more informative way to classify similarity and differences in mode of action 

between drugs. For this purpose, I constructed an algorithm based on using 
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principal component analysis (PCA) to express my drug transcriptional profiles 

in a much lower number of dimensions (see sub-chapter 0).  

Intrinsically, I am modelling a very noisy gene expression dataset due to the 

lack of a more stringent pre-filtering. This is a fair observation, as I had pre-

filtered based on the results of the likelihood ratio test. This test defined as DEG, 

any gene that changes in at least one condition more than what can be attributed 

to the batch effect. Since I am comparing drug profiles, I needed to move to an 

approach that considers DEG at the drug level (instead of at the drug set level), 

and identifies which genes are differentially expressed by each specific drug. 

This required a change of the RNA-Seq analysis workflow. More precisely, I 

will still use the same samples as before (where I combined the single drugs 

samples of our previous work70 and my dataset) and analyze it in the same way, 

up to the point of testing for DEGs. The change happens in this step, as I will 

use the Wald test for the GLM coefficients instead. This is the same test used in 

a previous chapter (section 4.2.1) to obtain the drug-specific DEGs to 

characterize the drugs in my dataset. Since I have 60 samples over 21 

conditions, based on the heuristic by Lamarre, S. et al.[212], I set the 

significance threshold of the adjusted p-value at approximately 0.138a. For each 

set of drugs considered in the analysis that follow, I kept only the gene 

expression values of DEG genes, and the remaining values were set to zero. 

Principal Component Analysis (PCA) can be used to explore the similarity 

between drug profiles in a hypothesis-free way (see section 1.4.1). The 

foldchanges of druggable genes from the drug conditions were used to build a 

 
a Precisely, it was set at 2−60 21⁄ . 
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PCA. This allowed me to reduce the dimensionality of the dataset to a 𝑛-

dimensional space, with 𝑛 corresponding to the number of drugs gene 

expression profiles. Furthermore, the linear combination of gene expressions 

that constitute each of the PCs was used to quantify the novelty of a new drug 

expression signature. In more detail, these PCs were used as the input of a linear 

regression model to predict the gene expression signature of a drug that was not 

part of the 𝑛 initial drugs. I used as proxy for the novelty of the unseen drug 

gene expression profile the amount of variance explained by the linear 

regression as quantified by R-squareda. 

From a biological standpoint, I am assuming that there are only a finite number 

of independent ways in which healthspan can be extended by known 

pharmaceutical interventions and that a drug working through a completely new 

mode of action would result in a gene expression profile which would remain 

largely unexplained by the known linear combination of existing modes. 

I formalized the concept of the “least informative drug” – for a set of 𝑛 drug 

gene expression signatures, the least informative 𝑑𝑟𝑢𝑔𝑖in the set is the drug with 

index 𝑖, which maximizes the R-squared value of explained variance of the 

linear regression: 

𝑑𝑟𝑢𝑔𝑖 = ∑ 𝑃𝐶𝑠

𝑛−1

 

with 𝑃𝐶𝑠 representing the principal components resulting from the 𝑛 − 1 drugs 

gene expression signatures PCA. I then calculated the least informative drug 

using a backward pass procedure starting from the all the possible sets of 𝑛 − 1 

 
a I did not use the adjusted R-squared because it can take negative values. 
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cardinality. At each iteration in the backward pass the least informative drug of 

the initial set was removed, and the next least informative drug was identified. 

I called “PCA saturation plot”, to the plot that displays the results of my 

procedure. Assuming a minimum set size of 2 (the required minimum to apply 

the PCA technique), the PCA saturation plot displays on the x-axis the number 

of terms used in the PCs linear regression, and on the y-axis the explained 

variance (on the scale from 0 to 1) of the least informative drug found for the 

drug gene set of that size. 

 

Figure 6.4 – PCA saturation plot for the joint set of 20 drug transcriptional 

signatures. 

The horizontal axis displays the drug set size with the added unseen drug. The 

vertical axis displays the relative amount of variance of the new drug’s gene 

expression changes that can be decomposed by as linear combination of the 

existing drug transcriptional signatures. The red line is the line with the best 

linear. 
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Then the REAT package (v3.0.2)297 was used to check if the type of relationship 

between drug set size and explained variance of the least informative drug. The 

best curve fit was of linear naturea with an adjusted R-squared of 0.93. 

Essentially, this approach attempts to express the transcriptional changes of 

every new drug (in terms of the sequence with which they are added to the set) 

as linear combinations of the DEG vectors of “known” drugs (drugs already part 

of the set). 

Since the maximum combined explanation power of the existing set of drug 

transcriptomic signature to explain an unseen drug expression only reaches 87% 

(Figure 6.1), I modeled this relationship as a linear regression and calculated 

that for a 26-dimensional gene expression backward pass the least informative 

drug would be totally explained by the rest of the drugs, that is, the PCA gene 

expression drug space would reach saturation. 

Because I do not have more drugs, I cannot create a saturated reduced-space to 

work with by adding extra transcriptomic drug profiles. Therefore, I took the 

approach of further reducing the transcriptomic drug space to a smaller gene set 

relevant to my paradigm and repeat the backward pass procedure. I used two 

aging-related gene sets, the gene set of C. elegans present in GenAge237, and the 

MetaWorm66 gene set. The results were robust to gene set choice (both PCPA 

plots reach saturation), so for brevity I will explain the procedure using just 

GenAge data. 

From GenAge (build 20) GenAge237, I imported 872 unique genes. Among 

these 13 genes had evidence of being both anti-aging and pro-aging genes. I 

 
a compared with power, logistic, and exponential growth fits. 
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removed these 13 “controversial” genes from the gene set, and after further 

cleaning the dataset, I ended up with 754 genes (85% of the initial GenAge 

worm genes). 

In contrast to the use of the entire transcriptome or all the DEGs, for the GenAge 

DEG gene set the gene expression space is practically saturated, with the first 

least informative drug of the backward pass having 99.9% of its variance 

explained by the PCs resulting from the gene signatures of the other drugs. 

 

Figure 6.5 - PCA saturation plot for the joint set of 20 drug transcriptional 

signatures in the GenAge gene set. 

The horizontal axis displays the drug set size with the added unseen drug. The 

vertical axis displays the relative amount of variance of the new drug’s gene 

expression changes that can be decomposed by as linear combination of the 

existing drug transcriptional signatures.  

 

Proceeding in the same as before, the best curve fit was of linear nature with an 

adjusted R-squared of 0.98. Furthermore, the linear modelling of this 

relationship predicts that indeed such as in my case a drug gene expression set 

of 19 drugs are sufficient to saturate the reduced-dimension transcriptional 

space. This means that for gene expression changes impacting only GenAge 
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genes, there is only a limited subset of genes that are impacted, and this 

subspace can be completely constructed using fewer drugs as base than are in 

the entire dataset. In other words, DEGs of the last drug can be almost 

completely expressed as linear combination of all previous drugs. This is true 

although the total set of GenAge genes impacted by the set of drugs is composed 

by 652 genes, which is substantially larger than the number of drugs (20) in the 

set. One way to interpret this observation is that there is only a limited number 

of mechanisms explored collectively by the drug set as a whole. 

6.2.4 – Hierarchical clustering of drugs transcriptional profile 

In the previous chapter, I showed that, restricted to the gene set of GenAge 

DEGs and given enough drug profiles (which I did obtain), the transcriptomic 

signature of a pharmaceutical intervention can be modelled by a linear 

combination of other pharmaceutical interventions. This suggests the notion of 

a drug-drug similarity. The set of 𝑛 vectors spanning the transcriptional space 

explored collectively by all 𝑛 drugs in the set can be considered a base system 

for the effect of each drug. Each individual drug then has coordinates within 

that base set. Below is one way to illustrate this idea (Figure 6.6). Drugs more 

similar in mode of action are closer to each other in this highly reduced (18 

dimensional) space. 

To display the relatedness between all the drugs in my dataset, I reduced the 

previous sparse matrix to the drugs that I assayed in my healthspan screen and 

built a PCA. Then I took the coordinates of each drug in the PCA 
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transcriptional-space and used the optCluster R package (v1.3.0) to build the an 

heatmap based on optimala hierarchical clustering. 

 

Figure 6.6 – Heatmap and hierarchical clustering of drugs based on their PC 

coordinates. 

The columns represent the principal components of the PCA of drugs DEGs. 

Each row corresponds to a drug. The dendrogram on the left is the result of 

optimal aggregated clustering and it separates the drugs into 6 clusters (one of 

each color). 

 

After testing all the available methods and for 2 to 8 possible number of existing 

clusters, the highest quality clustering separated by PCA transcriptional space 

into 6 parts. Rapamycin, myricetin and icariin are unique, and then 3 clusters of 

drugs can be observed. 

Once each drug effect has been mapped into this 19 dimensional space, their 

similarities can be evaluated using a simple clustering algorithm. Interestingly 

 
a The optCluster package uses different hierarchical clustering algorithms and tries a 

range of values for the number of clusters, and then choses the optimal clustering based 

on the rank aggregation performance across several clustering metrics. 
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Icariin 
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Rifampicin 
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Lipoic acid 

Curcumin 

Piceatannol 

Ursolic acid 

Resveratrol 

Aspirin 

Spermidine 

Lithium 

Captopril 

EGCG 

NAC 

α-KG 
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As can be seen, rapamycin almost completely defines the mode of action along 

dimension 6 (Figure 6.6). Interestingly, no other drug has a significant weight 

(coordinate) along this axis. Another interesting observation is that several 

polyphenols and antioxidants cluster closely with each other, suggesting that the 

base system indeed captures some of the relevant biology. 

6.2.5– PCA-based independence does not predict synergy 

My PCA-based approach was able to cluster drugs by similarity in terms of 

transcriptional impact, using a system that appeared to capture key aspects of 

mode of action. Since my working hypothesis was that drugs with distinct mode 

of action might be more likely to interact synergistically, I next used this PCA-

based approach to systematically evaluate pairwise similarity and tested this 

score as an alternative synergy prediction criterion. 

Under my paradigm, the notion of drug independence is analogous to compute 

the cosine similarity between drug gene expression profiles in the PCA-derived 

space. While this vector space in my case is 19 Dimensional, the concept of 

cosine similarity is analogous to the case of vectors in ordinary 2D or 3D space. 

Two very similar drugs have coordinate vectors that are nearly parallel in this 

space, resulting a small angle between the coordinate vectors and therefore 

returning a cosine value of close to 1. Two vectors (gene expression profiles) 

that are orthogonal (completely independent from each other) return a cosine 

similarity of zeroa. The cosine similarity therefore varies between 1 (identical 

 
a The cosine similarity is directly applicable to very high-dimensional spaces although 

it is not the best metric (and improvements have been suggested e.g.[315]). In my case, 

the coordinates vector is created based on PCA, and therefore, I am not in a high-

dimensional setting. 
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gene expression profile) and -1 (opposite gene expression profile); with a value 

of 0 indicating that the drugs profiles are orthogonal or decorrelated 

(independent). 

Using this definition, the cosine similarity between a drug 𝐴 and drug 𝐵, is given 

by: 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 √∑ 𝐵𝑖
2𝑛

𝑖=1

  

where 𝑖 denotes the features of each drug profile. In our case, these might 

represent gene expression abundance values or PC coordinates. 

The cosine similarity is a special case of a weighted cosine similarity in which 

all the features 𝑖 (coordinate axis/principal components) are equally weighteda. 

It is often useful to weight features according to their relevancy to the task in 

hand, and in this case the weighted cosine similarity simply adds a feature-wise 

weight 𝑤𝑖, that represents percentage of variance explained by 𝑃𝐶𝑖, as follows: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ 𝑤𝑖𝐴𝑖𝐵𝑖

𝑛
𝑖=1

√∑ 𝑤𝑖𝐴𝑖
2𝑛

𝑖=1 √∑ 𝑤𝑖𝐵𝑖
2𝑛

𝑖=1

  

In my case, for standardization purposes and before computing a weighted 

cosine similarity, I will always normalize the 𝑤𝑖 vector so that its elements add 

up to oneb. 

 
a weighting scheme based on the one in the widely used SciPy316. 
b The total explained variance by the 𝑛 principal components of a set of 𝑛 drugs 

transcriptional profiles would add to 1, unless due to floating point imprecision. 
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There will be times that I am interested in the statistical testing of orthogonalitya. 

I will feature engineerb the cosine similarities previously mentioned into a 

decorrelation score using the formula: 

𝑑𝑒𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 = 1 − 𝑎𝑏𝑠(𝑥) 

with 𝑥 being a cosine similarity value and 𝑎𝑏𝑠 representing the absolute value 

function. The decorrelation score achieves its minimum of 0 when the cosine 

similarity is 1 or -1, as these values are the farthest away from being orthogonal.  

Using the low-dimensional gene expression space of the GenAge set of 

druggable genes I attempted the creation of a synergistic drug-drug interaction 

measure or metric. The choice to restrict my analysis to an aging-related gene 

set is consequence of aging being an extraordinarily complex process without a 

well-defined module. In other words, in praxis, the GenAge set of druggable 

genes represents my disease modulec. 

As a benchmark, I calculated the cosine similarity and decorrelation score 

directly from the gene expression values between all possible drug pairs for 

which I have the healthspan effects (obtained from my high-throughput screen 

in Chapter 5). Subsequently, I tested the linear correlation between the cosine 

similarity or decorrelation score and two measures of the magnitude of 

healthspan. The magnitude of healthspan effects can be calculated relative to 

the control group or relative to the best effect among the two single drugs. The 

later corresponds to the higher single activity model298 definition of synergy that 

 
a I can promptly test if a correlation is statistically significant, what is not available is 

a test to detect statistical orthogonality or decorrelation. 
b this is just a heuristic, and I claim no statistical properties. 
c with the previous chapter showing how it was found to be the best candidate for this 

role. 
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used in our previous work232, and I should henceforth refer to it as the “synergy 

score”. When referring to the former I will simply call it “healthspan score”. 

I proceeded by repeating the DEG pre-filtering procedure, based on the Wald 

test variant of my pipelinea, on the set of 17 drugs for which I have healthspan 

measuresb, and restricted to the GenAge set of genes. Unfortunately, the pre-

filtering step, I that not all drugs had DEGs in the 859 genes constituting of the 

GenAge set. Therefore, aspirin, curcumin, lipoic acid, piceatannol and 

resveratrol were removed from my drug profiles set. 

I continued by computing the cosine similarity and decorrelation score on the 

PC coordinates of the remaining 12 drug DEG profiles and testing if it is 

correlated with the two measure of healthspan. None of the relationships were 

found to be statistically significant. 

Furthermore, I need to take into consideration the direction of the modulation 

of the gene expression. This more stringent and biological precise filtering 

procedure still keeps all the 12 drug profiles, meaning that my all the drugs in 

this set have at least one possible lifespan-extending GenAge gene which can 

explain their therapeutic effects. Computing the cosine similarity based on the 

gene expression of this sparse DEG matrix or the weighted cosine similarity 

based on its PC coordinates have no statistically significant linear correlation 

with either measures of healthspan. Neither does their respective decorrelation 

score. This means that drugs with a mode of action more alike (as evaluated 

 
a Although, the results are robust to the pipeline variant choice. 
b I restricted myself to use these 17 drugs, because later in this chapter I will have the 

possibility to make use of the healthspan information. Furthermore, it allows a fairer 

comparison between the results originating from this and the previous RNA-Seq 

workflows. 
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using my PCA based decomposition of transcriptional change) are no more 

likely than drugs that are less alike to interact beneficially when combined. 

6.3 – Drug-drug interactions are predominantly non-linear 

Throughout my analysis, a significant potential confounder for predicting drug-

drug interactions was the fact that in most cases we do not have information 

regarding the transcriptional changes elicited by pairs of drugs. In constructing 

scoring functions, I therefore often assumed implicitly or explicitly that 

transcriptional changes of pairs of drugs could be approximated as linear 

combination of the changes of individual drugs. To explicitly evaluate the 

degree to which this assumption is incorrect, I took advantage of a small number 

of drug-drug pairs for which we had previously determined transcriptional 

changes of both individual drugs and drug pairs70. Taking advantage of this 

dataset, I first filtered each list of DEGs by applying an adjusted p-value 

threshold of α less than 0.05. This information was compiled into a matrix with 

the 14524 rows representing the union gene set of significant DEGs from all  

drugs and drug-pairs in this set. Lastly, I used linear regression to construct the 

transcriptional profile of each drug combination, based on the linear 

combination of the transcriptional signatures of the single drugs involved (see 

sub-chapter 6.1). 

My results are displayed in Table 6.1. Modelling by linear regression is the 

formal way to test the linearity assumption. The multiple R-square value the 

regressions was use as the metric of the explanatory power of the linearity 

assumption, as it measures the explained variance of the drug combination 

transcriptional profile. 
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Table 6.1 – Summary of linear modelling of composite drug interventions. 

Allan = allantoin. Met = metformin. Psora = psora-4. Rap = rapamycin. Rif = 

rifampicin. 

 

As shown in Table 6.1, limiting the modelling of drug combinations to linear 

combinations of their composing drugs can explain less than half of the 

experimentally observed transcriptional profiles following exposure with the 

pair of drugs. In other word, most of the gene expression changes observed 

when combining two drugs cannot be re-created by linearly combining the gene 

expression changes of the constituent drugs. Additional evidence for the 

presence of significant non-linearity is the fact that some of the single drug 

profiles required a negative coefficient to maximize the quality of the fit. 

Conceptually, this is equivalent to adding less than zero of one of the two drugs. 

It would be expected that all the drug profiles present a positive coefficient, as 

negative values are non-sensical from a biological context (what does it mean 

to be exposed to less than zero allantoin ?).  

In sum, a linear combination of drug transcriptional profiles can only explain 

the minority of the transcriptional changes of their combined intervention, 

emphasizing the fact that a more biologically realistic, although much harder to 

Drug A Coefficient A Drug B Coefficient B Drug C Coefficient C Explained Variance

Rap 0,313 Rif 0,762 0,49

Allan -0,028 Rif 0,889 0,408

Allan -0,38 Rap 0,263 Rif 0,586 0,401

Allan -0,204 Psora 1,209 0,366

Psora 0,204 Rif 0,468 0,275

Allan 0,132 Rap 0,836 0,22

Allan -0,351 Psora -0,003 Rif 0,348 0,155

Psora -0,03 Rap 0,261 Rif 0,374 0,149

Psora 0,275 Rap 0,084 0,116

Met 0,954 Rap 0,596 0,114
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generate, network-level model of the aging GRN is most likely needed to fully 

predict drug-drug interactions.  

6.4 – Conclusion 

In this chapter, using two related approaches, I demonstrated that dissimilar 

drugs are not more likely to be synergistic. One class of methods was to use 

scoring functions based on the current best knowledge of genes involved in 

lifespan determination in C. elegans. The other method was hypothesis-free and 

based on constructing a low-dimensional transcriptional space suitable for 

clustering drugs by similarity in terms of transcriptional effects. My results 

contradict our previous hypothesis that broadly dissimilar drugs are more likely 

to interact synergistically than drugs that overlap in their target gene set and 

mode of action. However, both of these approaches assume that comparing 

transcriptional effects of single drugs allows prediction of their interaction 

without knowledge of a detailed model of the GRN governing aging (both 

assume that linear effects dominate or at least play a significant role).  I tested 

this assumption and showed that gene expression changes of drug combinations 

are substantially different from the best linear combination of individual effects. 

Statistically, less than half of all changes can be explained by linear 

combination. Looking into some of the unexplained changes in detail, further 

reveals evidence for new/different pathways being recruited when exposing 

organism to pairs of drugs but also for pathways targeted by individual drugs 

being, less intuitively, lost from the mode of action of pairs70.  

This implies that a regulatory gene network description of aging is needed to 

model the non-linearity of anti-aging drug interactions.  
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Chapter 7 Conclusion 

7.1 Discussion 

I designed, assemble, validated and finally used a novel, fully automated  high-

throughput lifespan screening system (Chapter 3). I also carefully selected my 

drug library (see through and up-to-date literature review in sub-chapter 2.2) in 

order to guarantee significant effect size, diversity of modes of action (which I 

hypothesized to lead to drug synergies) and effect size, among other factors 

(sub-chapter 2.1). Using the system in conjunction with the library, I validated 

each of these drugs for healthspan effects and then carried out a drug-drug 

interaction screen. During the screen, I discovered 6 novel drug pairs that 

interact synergistically to extend healthspan in C. elegans. Moreover, by using 

these drugs, I was able to extend mean healthspan by approx. 30% or more, even 

thought drugs were administered strictly in adulthood (Chapter 5). This is 

contrast to 28% healthspan extension for the “best” single drug (curcumin).  

While I was working on this project another high-throughput system (HTS) was 

published – the WormBot299. The WormBot is an open-source robotic platform 

capable of taking time-lapse bright field images and real-time video 

micrographs of up to 144 parallel C. elegans experiments. Like my system, it 

also used solid agar medium and well-tissue plates. It solves the same issues 

that my system does (see section for the previous systems limitation and 

drawbacks). Nonetheless, my HTS should be more scalable regarding the 

number of conditions, especially in terms of volume of medium (and drug 

stocks) required. For this fact one can envision that for an even larger 

combinatorial genetic or drug screen, an ideal procedure might be to conduct a 

two-step screening: the first step using my system to score a large number of 
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interventions; followed by a second step consisting in the validation of 

successful hits using the WormBot. 

To be able to understand the effects of my drug library in worms, I generated  

RNA-Seq data for each of the lifespan-extending drugs I tested (Chapter 4). 

Together, these datasets are the largest systematic set of transcriptomics data for 

drugs with associated standardized (in a single experiment) healthspan 

information. I then used this data to test several of my hypotheses regarding 

drug-drug interactions. 

It has been suggested previously that drugs that target known aging genes or 

pathways can be combined to target a larger set of these genes or pathways 

(section 1.2.3). It is therefore logical that drugs that modulate more of these 

genes and/or by a larger amount should elicit larger effect sizes. I implemented 

several scoring functions to test this assumption, and, surprisingly, there was no 

correlation between individual drugs ability to modulate known aging genes and 

the magnitude of their healthspan extension efficacy (Figure 6.1). 

Attempting to further explore this conundrum, I developed a hypothesis-free 

scoring function based on principal component analysis of the full transcriptome 

changes. This function does not explicitly attempt to predict effect size by based 

on transcriptional changes but functions as a similarity score, allowing 

comparison of drugs by mode of action.  

This classifier successfully separated drugs into different classes (clusters) that 

are broadly consistent with their likely mode of action. Using my classifier, as 

well as a simpler binary gene-by-gene (Venn diagram) comparison of GenAge 

genes impacted, I then tested the assumption that differences in terms of mode 
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of action would increase the probability of synergistic interactions. However, 

this similarity assumption also failed to correlate with the likelihood of drug 

pairs being synergistic.  

The lack of synergy predictability based on drug similarity lead me to further 

reflect on my hypothesis that a drug combination can be explained by the sum 

of the effects of the drugs that constitutes (linearity assumption). I revisited data 

that I had analyzed as part of a previous manuscript that reported lifespan and 

transcriptomic data for 5 lifespan-extending drugs and most of their 

corresponding paired interventions70. I revisited this data to test the linearity 

assumption. I found that it is false. In more detail, when drugs are combined the 

transcriptional profile of their joint intervention cannot usefully be modelled as 

linear combination of the profiles of its single drugs interventions (Table 6.1). 

It is surprising that despite having thorough knowledge of all the gene 

expression changes of lifespan determining genes (GenAge), I was unable to 

predict synergies or explain individual drug effects. This suggests that I am 

working under the wrong paradigm. In other words, it seems that the capacity 

to predict synergistic drug combinations will only be achieved when we obtain 

an aging gene-regulatory network capable of informing the modelling of non-

linear interactions. This is consistent with the observation that all known drug 

synergies were either found by screening or constructed in a hypothesis driven 

fashion (see section 1.2.3). 

However, conceptionally, another important insight is that synergies are 

relatively rare. Out of the 48 pairs tested in the final combinatorial screen only 

6 were convincingly synergistic. By contrast 39 either showed no additional or 



177 

 

diminishing benefits and 3 were even toxic. This is a critical point in the context 

of translation as supplements and even some drugs are commonly combined 

into “stacks” under the assumption that “more-helps-more”. This is another 

example of an implicit assumption of linearity, namely that benefits of several 

drugs or supplements will be at least partially additive. My results suggest that 

diminishing or zero effects are the norm and that negative drug interactions 

(including pure toxicity and drugs that nullify each other’s pro-longevity 

effects) appear more frequently than beneficial synergies.  

7.2 Future Work 

I will leave as open avenues of investigation the following suggestions. 

Besides my proposed HTS being extendable to video tracking it might also be 

able to directly measure lifespan (and bypass the need for pre-filtering the 

images) by using more refined deep learning algorithms (e.g.[300]). 

Furthermore, the use of strains that have a fluorescence marker that is related to 

the aging process might provide additional mode of action insights, on top of 

being used for tracking purposes. An example would be hsp-16.1301, for which 

levels of fluorescence intensity would be related to aging whether being 

larger241 or smaller242 than wild-type. 

Some of my newly discovered synergistic drug pairs mainly extended mean 

healthspan, while others worked incredibly well only when most of the 

population had already perished (see sub-chapter 5.3). This suggests the 

interesting possibility that shifting drug interventions according to the period of 

life might maximize effect size. 
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