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Abstract

As a key macronutrient and source of essential macromolecules, dietary protein plays a significant 

role in health. For many years, protein-rich diets have been recommended as healthy due to the 

satiety-inducing and muscle-building effects of protein, as well as the ability of protein calories to 

displace allegedly unhealthy calories from fats and carbohydrates. However, clinical studies find 

that consumption of dietary protein is associated with an increased risk of multiple diseases, 

especially diabetes, while studies in rodents have demonstrated that protein restriction can promote 

metabolic health and even lifespan. Emerging evidence suggests that the effects of dietary protein 

on health and longevity are not mediated simply by protein quantity but are instead mediated by 

protein quality – the specific amino acid composition of the diet. Here, we discuss how dietary 

protein and specific amino acids including methionine, the branched chain amino acids (leucine, 

isoleucine, and valine), tryptophan and glycine regulate metabolic health, healthspan, and aging, 

with attention to the specific molecular mechanisms that may participate in these effects. Finally, 

we discuss the potential applicability of these findings to promoting healthy aging in humans.
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Introduction

We live in a rapidly graying society beset with an epidemic of obesity; over 70% of adults in 

US, and 30% (2.1 billion) of the world population are overweight or obese. Obesity is 

becoming increasingly prevalent for those over 65, and is a key risk factor for the 

development of diabetes, which affects 29.1 million Americans, with health care costs of 

over $176 billion per year in the US alone (1, 2). Obesity and diabetes are risk factors for 
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other serious diseases of aging, including cardiovascular diseases (CVD), cancer, and 

Alzheimer’s disease, amplifying the impact of obesity considerably (3–6).

While traditional dieting – essentially, reducing calorie intake – can reverse obesity, 

adherence to a low calorie diet is unsustainable for most. The three major macronutrients, 

compounds we ingest that are used as fuel, are carbohydrates, fats, and protein. While the 

prevailing view has long been that calories from one of these sources is equivalent to 

calories from another, recent studies have demonstrated that a calorie is “not just a calorie” – 

and that dietary macronutrients have metabolic impacts beyond their simple caloric value 

(7–9). Diets that alter the level of specific macronutrients, but which do not restrict calories, 

may therefore be able to promote metabolic health and leanness in a more sustainable way 

than traditional dieting (10).

Dietary protein is composed of amino acids, twenty of which – those directly encoded by the 

genome – are considered common. Amino acids are essential building blocks for proteins; 

but in addition to this function, amino acids also have roles as signaling molecules, and can 

be catabolized for use as fuel or as building blocks for a range of other macromolecules. 

Here, we summarize the current knowledge on how the level of protein in the diet, as well as 

protein quality – the precise amino acid composition of the protein – impacts both 

healthspan and longevity, with an emphasis on the role of specific dietary amino acids.

Dietary protein regulates the health and longevity of animals

Evidence for the effect of dietary protein on lifespan dates to the 1920’s, when McCay et al. 
found that trout fed a low protein diet lived longer (11). Following this finding, a series of 

systematic studies examined the effect of diets containing varying amounts of protein (10%

−26% of calories from protein) on growth and lifespan in rats, concluding that lower protein 

diets reduce growth but extend lifespan (12). In a later study, Sprague Dawley rats fed a 

7.8% protein diet were shown to live longer than ones fed on a 20.8% protein diet (13). 

Despite these intriguing findings, interest in protein restriction (PR) was limited by a number 

of studies that found dietary PR or supplementation did not affect rat lifespan (14–16). 

Based on what we know now, the variation in these results were likely due to the highly 

variable protein sources and quantities used, but the confusion engendered delayed serious 

consideration of the effects of dietary protein on aging.

Interest in dietary protein as a regulator of longevity re-emerged in this century, stimulated 

in part by studies in Drosophila which found that the level of dietary protein regulates 

lifespan (17). Subsequent research using a nutritional geometry approach to study how 

multiple different diets influence fitness and lifespan found that the ratio of protein to 

carbohydrate in the diet strongly influenced both the longevity and fecundity of flies. The 

lifespan of flies was maximized at a very low ratio (1:16) of dietary protein to carbohydrate 

(18). A similar nutritional geometry approach was undertaken in mice; mice were fed 25 

different diets with varying ratios of dietary macronutrients as well as energy density. In 

agreement with the results found in flies, mice fed a low protein diet, and in particular those 

animals fed a low protein: high carbohydrate diet, lived longer (19).
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Numerous beneficial effects of protein restricted (PR) diets on health in various target organs 

have now been identified in rodents (Fig. 1). PR has strong effects on the metabolic health of 

mice and rats, promoting glucose tolerance, insulin sensitivity, and energy expenditure (20–

23). A low protein diet prevents age related declines in motor coordination and cognition in 

female mice (24). In a mouse model of Alzheimer’s disease (AD), periodic protein 

restriction reduced cognitive deficits as well as phosphorylation of the tau protein (25). PR 

also decreases the production of reactive oxygen species by mitochondria, and reduced 

oxidative damage to lipids and endogenous DNA in the livers of rats (26); and in rodent 

cancer xenograft models, PR inhibits tumor growth (27).

Dietary protein is negatively associated with metabolic health and lifespan of humans

A number of popular diet plans are based on the widely-held idea that high protein, low 

carbohydrate diets promote weight loss (28). The efficacy of high protein diets in clinical 

studies have been mixed, with weight loss observed in some trials (29–31), particularly in 

highly compliant subjects (32). At least part of the success of high protein diets comes 

through promoting satiety (33), but one study suggested that high protein diets may also 

increase thermogenesis, thereby driving weight loss through increased energy expenditure 

(34). Dietary protein supplementation has also been pursued in the elderly as a means of 

treating or preventing sarcopenia (35, 36). A limitation to these studies is that they were 

generally short-term.

In stark contrast to these short-term results, long-term retrospective and prospective cohort 

several studies have found that high protein consumption is associated with increased insulin 

resistance, diabetes, cancer, and overall mortality (37, 38). A retrospective analysis of data 

from The National Health and Nutrition Examination Survey (NHANES III), found that 

dietary protein consumption was also correlated with mortality in individuals under the age 

of 65 (38). High protein, low carbohydrate diets were associated with cardiovascular 

mortality as well as overall mortality in a cohort of over 40,000 Swedish women followed 

for over a decade (39). In line with these results, a recent population-based study from 

Finland showed that higher protein intake was associated with an increased risk of heart 

failure in middle aged men (40) and an overall increase in mortality among those with a 

history of cancer, CVD, or diabetes (41).

Supporting the epidemiological link between dietary protein consumption and the risk of 

developing diabetes, a recent short-term randomized clinical trial of PR found that reducing 

dietary protein reduced weight, fat mass, fasting blood glucose levels, and lowered plasma 

triglycerides in overweight middle-aged males (21, 42). PR also alters biomarkers associated 

with insulin and leptin signaling in plasma extracellular vesicles (43). However, no long-

term clinical trial of PR has yet been undertaken.

Molecular mechanisms by which dietary protein impacts health and longevity

While the precise physiological and molecular mechanisms by which PR promotes 

metabolic health and longevity are unknown, there are several molecular pathways which 

likely play important roles in this response (Fig 2). Here we briefly discuss some of the key 
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pathways that likely mediate the beneficial effects of a PR diet, and on metabolic health and 

lifespan.

mTOR—The mechanistic target of Rapamycin (mTOR) is a serine/threonine protein kinase 

which regulates and coordinates numerous cellular processes by integrating nutrient sensing 

and growth factor signals. Highly conserved in eukaryotic cells as a major growth regulator, 

mTOR exerts its function through two different protein complexes mTOR complex 1 

(mTORC1) and complex 2 (mTORC2) which are composed of distinct protein subunits and 

phosphorylate different substrates. The defining components of mTORC1 are mTOR itself, 

Raptor (regulatory protein associated with mTOR), and mLST8 (mammalian lethal with 

Sec13 protein 8); while the defining components of mTORC2 are mTOR, Rictor, mLST8, 

and mSin1; but both complexes have been shown to associate with numerous other proteins 

in a variety of cell types (reviewed in (44)).

mTORC1 activity is directly regulated by the availability of nutrients, most notably amino 

acids but also including glucose and cholesterol and requires that growth factor signaling 

must be permissive for growth. Pharmacological or genetic inhibition of mTORC1 extends 

life span in numerous diverse species, ranging from yeast to mice (45–52). In contrast to 

mTORC1, which integrates information about many different environmental and hormonal 

cues, mTORC2 primarily acts as an effector of insulin/PI3K signaling. While mTORC2 

regulates lifespan in worms, flies, and mice (53–59), it does not appear to be key in the 

response to dietary protein, and thus we will not discuss it in detail.

Over the last decade, major advances have been made in understanding the regulation of 

mTORC1 by amino acids, which occurs at the lysosomal surface; as this has been 

thoroughly reviewed elsewhere (60), we will only touch upon it briefly. Amino acid sensing 

by mTORC1 is controlled by the Rag family of GTPases, which recruits mTORC1 to the 

lysosomal surface in the presence of amino acids (61). Amino acids regulate the GTP/GDP-

bound status of the Rag GTPases through controlling the activity of the Ragulator complex, 

which has guanine nucleotide exchange factor (GEF) activity for two of the Rag proteins, 

RagA and RagB; the GATOR1 complex, which has GTPase-activating protein (GAP) 

activity and is controlled in turn by the GATOR2 complex; and a folliculin (FLCN) and 

folliculin-interacting proteins 1 and 2 (FNIP1/2) complex that acts as a GAP for Rag C and 

Rag D heterodimers (61–65). Sensing of specific amino acids occurs via specific sensors, 

including Sestrin2, CASTOR1, and SAMTOR, which modulate the activity of GATOR 1/2 

upon binding to leucine, arginine, and SAM, respectively (66–69). Additional sensing of 

amino acid availability is mediated by Ragulator via SLC38A9, a lysosomal arginine sensor, 

as well as a mechanism that requires the vacuolar ATPase (70–72).

After localizing to the lysosome, mTORC1 needs to interact with Rheb-GTP, which binds to 

mTORC1 allosterically and realigns active-site residues (73). In the absence of insulin/

IGF-1 or other growth factor signaling, Rheb is found bound to GDP due to the action of the 

tuberous sclerosis complex (TSC), which acts as a GAP for Rheb (74). In the presence of 

insulin/IGF-1 signaling, Akt phosphorylates TSC which leads to its departure from the 

lysosome, allowing Rheb-GTP to bind to and activate mTORC1 (75).
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As amino acids, which function as the building blocks of protein, are known to stimulate 

mTORC1 activity, it is logical to assume that a low protein diet results in reduced mTORC1 

activity. Drosophila fed a high sugar low protein diet have decreased TOR signaling (76). In 

mice, as the protein: carbohydrate ratio decreased, there was a decrease in hepatic mTOR 

activation (19). Similarly, tumor-bearing mice fed a PR diet have decreased mTORC1 

activity relative to ad libitum fed controls in multiple somatic tissues (77), as well as in 

mouse models of obesity (78), and mTORC1 is repressed by in a mouse model of ischemia 

reperfusion injury (79). Given the profound beneficial effects of reduced mTORC1 signaling 

on healthspan and longevity, decreased mTORC1 activity likely contributes to or mediates 

the ability of PR to promote health and longevity.

Gcn2-ATF4-FGF21—A second major evolutionarily conserved amino acid sensitive 

kinase is general control nonderepressible 2 (GCN2), one of four kinases that can activate 

the integrated stress response pathway (ISR). GCN2 is canonically activated by binding to 

uncharged transfer ribonucleic acids (tRNAs); following activation, GCN2 phosphorylates 

eukaryotic initiation factor 2-α (eIF2α), leading to the inhibition of protein translation (80). 

More recently, it has been recognized that ribosome stalling can also lead to GCN2 

activation independently of an increase in uncharged tRNAs; this may be one of the 

principle mechanism of GCN2 activation under many physiological conditions (81, 82).

Phosphorylation of eIF2α leads to a global decrease in translation, but increases translation 

of specific stress-responsive transcripts. One of the best characterized of these and a key 

effector of the ISR is activating transcription factor 4 (ATF4) (83–86). ATF4 is a basic 

leucine zipper (bZIP) transcription factor that plays a key role in both basal metabolism and 

stress response, binding to amino acid response elements (AARE), primarily activating as a 

transcriptional activator, and upregulating transcription of genes involved in amino acid 

uptake and biosynthesis among other stress response genes (reviewed in (87)). Interestingly, 

ATF4 is a key factor in coordinating GCN2 and mTORC1 activity; ATF4 induces expression 

of Sestrin2, and indeed GCN2 and phosphorylation of eIF2α are required to prevent 

mTORC1 activation by depletion of specific amino acids (88, 89).

Another key gene regulated by ATF4 is fibroblast growth factor 21 (FGF21), a peptide 

hormone which plays an important role in adaptive responses to starvation (90). FGF21 can 

be produced by multiple tissues, including the liver, muscle, white adipose tissue, and 

pancreas (91, 92). FGF21 can be induced by a variety of stresses including PR, which 

increases levels of FGF21 in both rodents and humans (21, 22). FGF21 is believed to be a 

critical regulator of many of the effects of a PR diet, as experiments using mice lacking 

Fgf21 have found that FGF21 is required for PR-mediated changes in food intake, energy 

expenditure, body weight, and glucose tolerance (21, 22, 93, 94). Loss of Gcn2 does not 

entirely block the ability of a PR diet to induce Fgf21 transcription, but it does delay it by 

about 2 weeks (95), highlighting a key role for GCN2 in the response to PR.

In mice, FGF21 induces hepatic insulin sensitivity, in part via inhibition of mTORC1 

activity (96). However, the most robust mechanism by which FGF21 promotes metabolic 

health is by activating UCP1 in white and brown adipose tissue, promoting energy 

expenditure as well as food intake (93). This physiological response involves signaling 
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through the brain to the adipose tissue, as mice lacking a brain FGF21 receptor are unable to 

respond to low protein diets (94). Thus, it seems likely that the GCN2-FGF21-UCP1 axis is 

a key mediator in the response to low protein diets; and as transgenic expression of FGF21 

increases the lifespan of mice (97), this hormone may also play a role in the ability of a low 

protein diet to extend lifespan.

Protein quality impacts health and longevity

For many years, there has been interest in understanding if protein source plays a role in 

health, with the greatest focus on understanding if there is a difference between the effect of 

plant protein and animal protein. Several studies have suggested that plant-based protein is 

healthier. One study found that consumption of a plant-based vegan diet decreased all-cause 

mortality, coronary heart disease and a decrease in risk of developing obesity in humans 

(98); a more recent study showed that a plant based diet significantly lowered the incidence 

of cardiovascular disease (CVD), CVD mortality, and all-cause mortality in a cohort of 

middle-aged adults (99). Vegan diets have also been implicated in reducing the risk of 

developing metabolic syndrome, lowering triglycerides, blood pressure, glucose, waist 

circumference and body mass index (100), and decreasing fat mass and insulin resistance 

(101).

One possibility that has been advanced to explain the beneficial effects of plant protein is 

that there is a difference in protein quality – the specific amino acid composition of the 

protein. Plant-based diets have a reduced level of methionine as compared to animal sources, 

and humans consuming a vegan diet have reduced plasma levels of methionine compared to 

humans who eat animal proteins (102, 103). As discussed below, significant data now 

suggests that the level of methionine – as well as of several other dietary amino acids – has a 

profound effect on health and longevity, not only in rodents, but also in humans. An 

overview of recent studies is provided in Table 1 and Table 2).

Methionine—Orentreich and colleagues first tested the hypothesis that a methionine 

restricted (MR) diet could extend lifespan in the 1990’s using Fischer 344 rats, finding that 

MR extended lifespan by about 30% (106). This effect was not strain specific, with a MR 

diet also able to extend the lifespan of Brown Norway, Sprague Dawley and Wistar rats 

(108). Subsequent research has demonstrated that restricting dietary methionine can extend 

the lifespan of many diverse species, including yeast, flies, and mice (104, 129–134).

In addition to these beneficial effects on lifespan, MR has many beneficial effects on 

metabolic health. Rodents fed a MR diet are leaner, with reduced adiposity; have 

improvements in glucose homeostasis with lower blood glucose and insulin levels and 

improved glucose tolerance and insulin sensitivity, and have decreased serum and hepatic 

triglyceride levels (121, 135–137). These metabolic benefits have led to the idea that MR 

diets might be effective in the treatment of diabetes and obesity, and indeed MR and 

methionine depleted dietary regimens promote weight loss and reduced adiposity in obese 

mice, decreases or reverses liver lipid accumulation, and normalizes glucose homeostasis 

(119, 138, 139). Beneficial metabolic effects, in particular increased fat oxidation, have also 

been seen in humans during a clinical trial of MR (122).
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MR promotes metabolic health and longevity via multiple pathways and molecular 

mechanisms (Fig 2). As highlighted in Fig 2., decreased GH/IGF-1 signaling can suppress 

mTORC1 activity by activating glycine-N-methyl transferase (GNMT) (140, 141), which 

reduces levels of the key methionine metabolite S-Adenosyl methionine (SAM), which 

normally activates mTORC1 via binding to SAMTOR (68). In yeast, MR extends 

chronological lifespan through an autophagy/mitophagy dependent pathway that involves 

alterations in central carbon metabolism (133, 142). Rodents fed a MR diet have reduced 

levels of IGF-1, a key effector of the growth hormone signaling pathway that well-

characterized as a regulator of lifespan (104, 143). Dietary supplementation with the amino 

acid selenium, which similarly reduces IGF-1 levels, mimics many of the healthspan benefits 

of a MR diet, protecting mice against weight gain and fat accumulation, and protecting 

against diet-induced obesity (144). Many of the metabolic effects of a MR diet are likely 

mediated by FGF21, which is induced by a MR diet (115). While it was initially believed 

that MR acted to induce FGF21 via the GCN2-ATF4-FGF21 axis discussed above, it was 

recently shown that GCN2 is dispensable for the effects of MR (145). Instead, the induction 

of FGF21 by MR is dependent upon the kinase PKR-like endoplasmic reticulum kinase 

(PERK), which is activated by MR as a result of oxidative stress, and similarly 

phosphorylates eIF2α and induces translation of ATF4 (Fig 2.). However, some of the 

metabolic effects of MR may not require a global increase in FGF21 levels, as female 

C57BL/6J mice have a robust metabolic response to a methionine depleted diet without an 

increase in FGF21 levels (119).

The induction of oxidative stress in the liver of MR-treated mice is due to the depletion of 

the anti-oxidant glutathione, which is generated from methionine via cysteine (145). MR 

may have many other effects that are mediated indirectly via its metabolites. In addition to 

the effects of the methionine metabolite SAM on mTORC1 mentioned above, SAM is also a 

key metabolite for methyltransferases; MR therefore has profound effects on histone 

methylation and gene expression (146). Finally, the transulfuration pathway has been 

implicated in longevity and stress resistance, and both PR and MR promote the generation of 

hydrogen sulfide (H2S), a key longevity regulator, in multiple species (147–150).

Branched-chain amino acids (BCAAs)—The three branched-chain amino acids 

(BCAAs), leucine, isoleucine, and valine, are so named because they have an aliphatic side-

chain with a branched carbon structure. It has long been realized that these amino acids may 

play an important role in health and metabolism; in 1969, it was observed that the BCAAs 

are elevated in the blood of obese humans (151). Over the last 15 years, it has become 

apparent that plasma levels of BCAAs are correlated with obesity and insulin resistance in 

both humans and rodents (152–154).

Conversely, numerous interventions that reduce obesity and improve metabolic health in 

humans, including calorie restriction, protein restriction, and gastric bypass surgery, lower 

plasma levels of BCAAs (21, 155, 156). Branched-chain amino acids are essential, and 

increased consumption of BCAAs correlates with both plasma BCAAs and the incidence of 

type 2 diabetes in humans (157, 158). Rodent studies have demonstrated that dietary intake 

of BCAAs directly regulate metabolic health. Supplementation of BCAAs to a Western diet 

promotes adiposity and insulin resistance in both mice and rats (20, 153).
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Conversely, short-term complete deprivation of any single BCAA promotes hepatic insulin 

sensitivity (123, 124). As complete deprivation of a BCAA is not physiologically relevant, 

several groups have recently investigated the results of simply reducing dietary levels of 

BCAAs. We have shown that reducing dietary levels of BCAAs by 67% improves the 

metabolic health of lean mice, and rapidly restores metabolic health to diet-induced obese 

mice, dramatically reducing adiposity and glucose tolerance (20, 21). Similarly, reduced 

levels of dietary BCAAs slows the accumulation of visceral adipose tissue and preserves the 

insulin sensitivity of Zucker fatty rats (126).

Overall, these studies demonstrate that BCAAs directly regulate metabolic health, and that 

reducing dietary levels of the BCAAs may be a strategy to rapidly promote healthy body 

composition and blood glucose control in overweight or obese humans. A recent randomized 

controlled study has found that short-term dietary restriction of BCAAs decreases insulin 

secretion, induces FGF21, improves oral glucose sensitivity index, and improves white 

adipose tissue metabolism in humans with type 2 diabetes (127). The longer-term effects of 

reducing dietary BCAAs in humans with and without metabolic syndrome remains to be 

determined.

The potent metabolic benefits of reduced BCAA consumption strongly suggested that 

reducing dietary levels of BCAAs might promote mammalian healthspan and even increase 

lifespan. Such effects could be mediated in part by reducing mTORC1 signaling, as the 

BCAAs, particularly leucine, are strong agonists of mTORC1 and genetic and 

pharmacological interventions that inhibit mTORC1 signaling extend mammalian lifespan 

and healthspan (46, 159–162). In agreement with this hypothesis, circulating levels of the 

BCAA are associated with hepatic mTOR activity and negatively associated with lifespan 

(19).

Consistent with a negative effect of BCAAs on longevity, dietary supplementation with extra 

BCAAs leads not only to impaired metabolic health, but to decreased lifespan (20, 111, 153, 

163). Solon-Biet and colleagues did not observe increased or decreased longevity on mice 

fed a 50% or 80% restricted BCAA diet from 12 weeks of age (111). Similarly, Richardson 

and colleagues found that 67% restriction of BCAAs improved metabolic health and reduced 

frailty of male and female mice without increasing lifespan when started at 16 months of age 

(112). However, lifelong restriction of BCAAs reduced frailty and extended the lifespan of 

male, but not female mice by over 30%, reducing mTORC1 signaling in multiple tissues 

specifically in males (112). It is clear that the precise level of restriction, time of diet 

initiation, and sex may play a role in determining if BCAA restriction will extend lifespan, 

but both studies support a model in which reduced dietary consumption of BCAAs promote 

healthspan.

BCAAs have been linked to multiple diseases of aging, including Alzheimer’s disease; and 

defects in BCAA catabolism induced by diabetes may drive the pathogenesis of Alzheimer’s 

disease by increasing brain levels of the BCAAs and activating mTORC1 (164). Dietary 

supplementation of BCAAs has been shown to increase neuropathology and decrease the 

survival of a mouse model of Alzheimer’s disease (165). BCAAs are also suggested to be 

critically important in cancer; there is an increased uptake and catabolism of BCAAs by 
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some types of cancer that drives cancer progression (166, 167). Conversely, defective BCAA 

catabolism leading to an accumulation of BCAAs and mTORC1 hyperactivation have been 

shown to be important in other cancer types, and dietary BCAA intake has been shown to be 

correlated with cancer risk (168).

However, not all experiments in model organisms clearly support a model in which reducing 

dietary BCAAs improves healthspan and extends longevity. In the budding yeast S. 
cerevisiae, supplementation of leucine actually promotes chronological lifespan during CR 

(169). In C. elegans, supplementation with BCAAs or impaired expression of a major 

BCAA catabolic enzyme, branched-chain amino acid transferase 1 (BCAT-1) resulted in 

extended lifespan and healthy aging without affecting fecundity (170). In contrast, dietary 

restriction of BCAAs in D. melanogaster improves stress resistance, ameliorates age-related 

pathologies, and extends lifespan (171); this is likely mediated in part via the regulation of 

mTORC1 activity by the single fly Sestrin orthologue (172). In contrast to the results 

described above, consumption of an essential amino acid supplement with extra BCAAs is 

reported to extend the longevity of male mice (173, 174). However, the BCAA supplement 

and diet used in these experiments actually alter the levels of many essential and non-

essential dietary amino acids, including methionine, making the role of the BCAAs in this 

response unclear.

In contrast to the generally deleterious effects of life-long consumption of high levels of the 

BCAAs, short-term supplementation with BCAAs has shown promise in preclinical and 

clinical studies in the aged. BCAA supplementation along with low resistance exercise 

increased muscle strength and physical function in sarcopenic older adults (175). A clinical 

prospective study on blood metabolites revealed an inverse relation between BCAA levels, 

dementia and AD. Reduced levels of BCAAs were associated with higher risk of AD (176). 

BCAA supplementation enhanced cognitive recovery in patients with severe traumatic brain 

injury (177).Supplementation of BCAAs has also been shown to extend the survival time, 

reduce complications, and reduce the recurrence rate of patients treated for hepatocellular 

carcinoma (178, 179)

While one potential explanation for the conflicting results of different studies may be age or 

disease status, another explanation for the conflicting results of different studies may be the 

fact that the BCAAs have usually been considered as a group due to their structural 

similarity and shared catabolic pathways. However, there is emerging evidence that the 

individual BCAAs have unique effects on signaling and metabolism. Leucine, for example, 

is a strong activator of mTORC1 in most cell types, binding to Sestrin2 and activating 

mTORC1 by promoting the recruitment of mTORC1 to the lysosomal surface via a Rag-

GTPase dependent pathway (67, 69, 180–182). This crucial signaling pathway leads to the 

activation of many downstream pathways that regulate metabolism and aging (44). In 

contrast, isoleucine and valine do not strongly interact with Sestrin2 and may be less potent 

activators of mTORC1.

Distinct roles for the individual BCAAs have also been observed in vivo. We have observed 

thicker dermal white adipose tissue and heavier epididymal fat pads in mice fed a diet in 

which the levels of leucine were specifically reduced (21). An intermediate valine catabolite, 
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3-hydroxy-isobutyrate (3-HIB), is secreted from muscle cells and can activate trans-

endothelial fatty acid transport, thereby causing lipid accumulation and insulin resistance 

(183). Finally, in a recent study we demonstrated that each of the BCAAs has distinct 

metabolic effects in mice, with restriction of dietary isoleucine being necessary and 

sufficient for the metabolic benefits of a low protein diet. As highlighted in Fig. 3, these 

effects were independent of hepatic mTORC1 and GCN2 signaling, and mediated in part 

through FGF21, which was strongly induced by isoleucine restriction and not by restriction 

of leucine or valine alone (125). In humans, we found that dietary levels of isoleucine are 

positively associated with BMI (125); and another recent study found that blood levels of 

isoleucine are correlated with increased mortality in humans (184). In contrast, blood levels 

of leucine and valine were associated with decreased human mortality (184).

Tryptophan—The essential amino acid tryptophan and its metabolites have been widely 

studied as key regulators of metabolic health. Segall and Timiras were the first to report that 

a tryptophan deficient diet (185) could delay aging in rats, finding that a chronic deficiency 

of tryptophan delayed pathological signs of aging, including the onset of tumors, and 

increased lifespan (186). Although this small study was not carried to completion, follow up 

work demonstrated that tryptophan restriction reduced age-related pathologies and extended 

the lifespan of both rats (110) and mice (109). Similar beneficial responses have been shown 

in yeast, worms, and flies, where ibuprofen has been shown to extend longevity by 

destabilizing tryptophan permeases and reducing tryptophan uptake (187).

The physiological and molecular mechanisms by which tryptophan restriction promotes 

health and longevity are still under investigation. It was recently shown that tryptophan 

restriction in the context of a casein-based diet induces FGF21, promoting metabolic health 

(Fig. 3) (188). The major catabolic pathway of tryptophan is the kynurenine pathway, which 

produces metabolites like kynurenic acid and nicotinamide adenine dinucleotide (NAD+) 

(189). This pathway is in fact the sole de novo biosynthetic pathway for NAD+, which has 

been implicated in many metabolic processes, including mitochondrial function, and NAD+ 

supplementation has been shown to be beneficial in many diseases of aging (reviewed in 

(185)). Numerous studies have also investigated links between tryptophan metabolism, 

immune cell function, and inflammation (190–193). Finally, a recent study found that the 

serum level of tryptophan was associated with onset of diabetes (194).

As with protein and the BCAAs, while some studies suggest that tryptophan restriction is 

beneficial, several studies have found that instead dietary supplementation with tryptophan 

may be beneficial for aging and specific age-related diseases. Tryptophan supplementation 

extends the lifespan of C. elegans (195), while low serum tryptophan levels and alterations 

in tryptophan catabolism are associated with reduced life expectancy in people with 

coronary artery disease (196, 197). Dietary supplementation of tryptophan suppresses blood 

glucose level and thereby delays diabetes progression in diabetic rats (198).

Tryptophan is a well-known precursor of serotonin, which has been implicated in many 

neurodegenerative disorders. Tryptophan-rich diets can prevent age-associated cognitive 

decline in rats (199), and in humans there is a negative correlation between tryptophan levels 

and cognitive functioning during aging (200). Humans with Alzheimer’s disease have been 
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shown to have increased tryptophan catabolism and altered kynurenine levels, which may be 

linked to impaired cognitive function (200). However, tryptophan does not simply have 

beneficial effects on the aging brain; a study in young adults recently showed that 

consumption of a tryptophan-rich diet has a positive effect on anxiety and depression (201).

Glycine—Multiple studies have demonstrated that dietary supplementation of glycine can 

increase longevity and promote metabolic health. Dietary glycine increases lifespan in C. 
elegans, suppressing many genes involved in aging processes (202). This effect requires 

methionine synthase and S-adenosyl methionine synthetase, suggesting that glycine 

promotes longevity through alterations in methionine metabolism (Fig. 3). Dietary glycine 

regulates the action of GNMT, an enzyme that removes the methyl group from methionine 

(203, 204).

Glycine supplementation also increases the lifespan of rodents, including a small study 

conducted in Fisher 344 rats (113), and a large study conducted in UM-HET3 mice (114) by 

the NIA Interventions Testing Program. Although the overall effect of glycine 

supplementation on longevity was small, numerous rodent and human studies have found 

benefits from glycine supplementation. Glycine supplementation in aged mice enhanced 

activation of T cells as well as mitochondrial biogenesis (205), and has anti-inflammatory 

properties via inhibition of pro-inflammatory cytokines (206). Glycine intake also promotes 

metabolic health, reducing the accumulation of abdominal fat, plasma triglyceride levels and 

blood pressure induced by a high sucrose diet in rats (207).

In humans, glycine supplementation has been shown to be protective against chronic 

inflammation, oxidative stress and immune responses caused by type 2 diabetes (208). Cell 

culture studies suggest that glycine rescues age-related mitochondrial defects in human cells 

(209). Glycine is essential for the proliferation of muscle progenitor cells in cell culture and 

conditionally essential in vivo in mice (210), and humans with a genetic variant that raises 

blood levels of glycine have a reduced risk of cardiovascular disease (211). In humans, 

blood levels of glycine are positively associated with insulin sensitivity (212), and higher 

blood levels of glycine are associated with a reduced risk of diabetes (213).

Conclusions

Promoting healthy aging is becoming of increasing importance around the world as the 

population grays. Many people, particularly the elderly, are also threatened by the increasing 

prevalence of obesity and diabetes, which are both deleterious in themselves and increase 

the risk of developing many other diseases of aging. Here, we have discussed how instead of 

cutting calories, changing the composition of the diet – in particular, altering the levels of 

dietary protein or of specific dietary amino acids – may be a translatable and sustainable 

method to promote healthy aging.

An emerging consensus of animal and human data suggests that, contrary to long-held 

popular beliefs, lower protein consumption is more beneficial for health and longevity than 

high protein consumption. Recent human studies have found that lower protein intake is 

correlated with improved metabolic health as well as increased longevity, while a high 
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protein intake correlates with an increased risk of diabetes and cardiovascular disease. This 

is not to say that there may not be risks of reducing protein consumption; in older people, 

lower protein intake has been associated with frailty and sarcopenia, and increased protein 

intake has been suggested as an intervention to preserve muscle mass in this population 

(214–216). Long-term clinical trials of PR will be critical to determining if PR can promote 

healthy aging and longevity in humans, as well as the time periods when PR may be 

beneficial and identifying any portions of the life where PR may be detrimental.

It is now becoming clear that dietary protein quality – the specific amino acid composition 

of the dietary protein – has a profound effect on metabolic health and longevity in mammals. 

In this review, we have discussed current knowledge on how dietary amino acids can affect 

metabolic health and longevity. These include studies demonstrating that restriction of 

methionine, BCAAs or tryptophan can improve healthspan and lifespan in rodents. While 

only a few human studies on these types of diets have been conducted, preliminary evidence 

suggests that restriction of methionine or BCAAs may also have metabolic benefits in 

humans. Data from rodents already suggests that the age of initiation of methionine or 

BCAA restriction, as well as the degree of restriction, will influence the ultimate effect of 

these diets (111, 112, 217). As with PR, long-term clinical trials will be critical to 

determining if restriction of specific dietary amino acids – and which ones, and when – can 

promote healthy aging in humans.

As discussed here, multiple molecular mechanism – including mTORC1, eIF2α, ATF4, and 

FGF21 – engaged by PR or restriction of specific amino acids may contribute to the 

beneficial effects of protein and amino acids restricted diets. While long-term adherence to 

amino acid restricted diets in humans is likely to be low, an expanding range of chemicals to 

modulate signaling through these pathways is being developed (218–223). It therefore seems 

likely that as we achieve a deeper understanding of the shared and distinctive molecular 

mechanisms engaged by restriction of different amino acids, pharmaceuticals can be 

developed that mimic the benefits of these diets to promote health and longevity.
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Figure 1: Benefecial effects of protein restricted (PR) diet on health in various target organs.
As depicted in this figure, a low protein diet exerts its beneficial effects on metabolic status 

through actions in multiple tissues, including liver, skeletal muscle and adipose tissue. PR 

has also been shown to have cardioprotective effects and has positive influence on memory 

and cognition function. Figure created with Biorender (https://biorender.com).
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Figure 2: Overview of nutrient signaling pathways altered by methionine restriction (MR).
The benefical effects of MR are likely mediated through multiple metabolic pathways and 

molecular mechanisms. These include the integrated stress response pathway (PERK/GCN2-

ATF4-FGF21), decreased GH/IGF-1 signaling, and decreased mTORC1 signaling as a result 

of decreased IGF-1 signaling, the activation of GNMT and reduced levels of the methionine 

metabolite SAM. The suppression of mTORC1 activity leads to increased autophagy and 

decreased protein translation, which act to promote health and longevity. Abbreviations: 

eIF2α -eukaryotic transcription factor 2α, FGF21 -fibroblast growth factor 21, GH/IGF-1- 

Growth hormone/insulin-like growth factor 1, mTORC1- mechanistic target of rapamycin 
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complex 1, UCP1 - uncoupling protein 1, PERK- protein kinase R (PKR)-like endoplasmic 

reticulum kinase, GCN2 -general control nonderepressible 2, GNMT- glycine‐N‐methyl 

transferase, ATF4- Activating Transcription Factor 4, SAM-S-Adenosyl methionine, AKT- 

Protein kinase B, Foxo- forkhead box transcription factors.
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Figure 3: Overview of major signaling pathways altered by restriction or supplementation of 
amino acids.
Restriction of methionine, tryptophan or the BCAAs extends lifespan and improves 

metabolic health. Restriction of methionine, tryptophan, or isoleucine, but not restriction of 

leucine or valine, induces FGF21 and increases energy expenditure through the FGF21-

UCP1 axis. All three BCAAs, Trp, and methionine (via SAM) stimulate mTORC1 activity, 

and restriction reduces mTORC1 activity. Glycine supplementation promotes longevity 

through its regulation of methionine and SAM levels. Abbreviations:Trp-tryptophan, Ile-

Isoleucine, Val-valine, Leu-leucine, Met-methionine, Gly-glycine, FGF21 -fibroblast growth 

factor 21, mTORC1- mechanistic target of rapamycin complex 1, UCP1 - uncoupling 

protein 1, SAM-S-Adenosyl methionine
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Table 1:

Summary of recent studies examining the effects of amino acid restriction or supplementation on the lifespan 

of rodents. Level of intake is the percent of the altered amino acids(s) in the experimental diet relative to the 

control diet. M -Male, F-Female, BCAAs = branched-chain amino acids (leucine, isoleucine, and valine).

Species/Strain/Sex Altered Amino acid Lifespan Level of intake relative to 
control diet

Study

Methionine

Mice CB6F1 (F) ↓ Met Increased 23–35% Miller et al., 2005 (104)

Mice CB6F1 (M) ↓ Met Increased 7% Sun et al., 2009 (105)

Rats Fisher 344 (M) ↓ Met Increased 20% Orentreich et al., 1993 (106)

Rats Fisher 344 (M) ↓ Met Increased 20% Richie et al., 1994 (107)

Sprague Dawley
Brown Norway

Wistar

↓ Met Increased 20% Zimmerman et al., 2003 (108)

Tryptophan

Swiss Albino Mice (M) ↓ Trp Increased 17% (De Marte et al., 1986 (109)

Long Evans rats (F) ↓ Trp Increased 30% or 40% Ooka et al., 1988 (110)

Branched-chain amino acids

Mice C57BL/6J ↑ BCAAs Decreased 200% Solon-Biet et al., 2019 (111)

Mice C57BL/6J ↓ BCAAs Increased (M only) 33% Richardson et al., 2021 (112)

Glycine

Rats Fisher 344 (M) ↑ Gly Increased 347% or 522% Brind et al., 2011 (113)

Mice UM‐HET3 ↑ Gly Increased 772% Miller et al., 2019 (114)
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Table 2:
Effect of altered dietary levels of methionine or the branched-chain amino acids on the 
metabolic health of rodents and humans.

M-Male, DIO – Diet Induced Obesity, T2D-Type 2 Diabetes, BCAAs - branched chain amino acids, FGF21-

fibroblast growth factor 21, WAT-white adipose tissue. Table is adapted from Green et al., 2019 (128) with 

permission.

Species/Strain/Sex Altered 
amino 
acid

Level of 
intake 
relative to 
control 
diet

Metabolic health Length of 
intervention

Study

Methionine

Mice CB6F1 (F) Met 23–35% Decreased circulating IGF-1, insulin and 
glucose
Increased resistance to liver stress

Lifespan study Miller et al., 2005 (104)

Mice C57BL/6J (M) Met 20% Increased food intake
Reduced body weight
Improved hepatic insulin sensitivity
Decreased hepatic lipogenic gene 
expression

8 weeks Lees et al., 2014 (115)

Mice C57BL/6J (M) Met 20% Improved insulin sensitivity
Reduced hepatic glucose production
Increased FGF21

8 weeks Stone et al., 2014 (116)

Mice C57BL/6J (M) Met 15% Increased food intake
Increased energy expenditure
Reduced accumulation of body weight 
and fat mass

10 weeks Wanders et al., 2017 
(117)

Mice C57BL/6 J 
(M)

Met 20% Increased food intake
Reduced body and fat mass
Improved glycemic control
Decreased fasting blood glucose and 
insulin
Increased lipid cycling in WAT
Decreased hepatic lipogenic gene 
expression
Elevated FGF21

8 weeks Lees et al., 2017 (118)

Mice C57BL/6J 
(M/F and M/F DIO)

Met 0% Increased food intake
Reduced weight and adiposity
Improved glycemic control
Increased energy expenditure
Elevated FGF21 (males)

5 weeks Yu et al., 2018 (119)

Mice C57BL/6J Met 20% Reduced Body Weight and Adiposity
Increased food intake
Increased expression of thermogenic 
markers
Improved insulin sensitivity
Decreased circulating lipid levels

7 weeks Forney et al., 2020 
(120)

Rats Fisher 344 (M) Met 20% Decreased Body weight
Reduced visceral fat
Decreased serum lipds and IGF-1

Lifespan study Malloy et al., 2006 
(121)

Humans (O) Met 6% Increased fat oxidation
Decreased hepatic lipid metabolism

16 weeks Plaisance et al., 2011 
(122)

Branched-chain 
amino acids

Mice C57BL/6J (M) Leu or Ile 
or Val

0% Improved insulin sensitivity
Improved glucose tolerance
Increased hepatic insulin sensitivity (Leu)
Decreased fasting blood glucose (Ile or 
Val)

1 or 7 days Xiao et al., 2011 (123) 
and Xiao et al., 2014 
(124)
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Species/Strain/Sex Altered 
amino 
acid

Level of 
intake 
relative to 
control 
diet

Metabolic health Length of 
intervention

Study

Mice C57BL/6J (M) Leu 33% Increased adiposity 13 weeks Fontana et al., 2016 
(21)

Mice C57BL/6J (M) BCAAs 33% Increased food intake
Reduced accumulation of body weight 
and fat mass
Improved glycemic control
Decreased fasting blood glucose

13 weeks Fontana et al., 2016 
(21)

Mice C57BL/6 J 
(M)

Leu 20% Increased food intake
Decreased body and fat mass
Improved glycemic control
Decreased fasting insulin
Increased lipid cycling in WAT

8 weeks Lees et al., 2017 (118)

Mice C57BL/6J (M, 
DIO)

BCAAs 33% Rapid weight and fat mass loss
Improved glycemic control
Increased energy expenditure
Transient increase in fasting FGF21

14 weeks Cummings et al., 2018 
(20)

Mice C57BL/6J BCAAs 20%, 
50%, or 
200%

Increased food intake (200%)
Decreased weight and fat mass
Decreased leptin
Decreased liver triglycerides
Decreased fasting insulin (20%)

Lifespan study Solon-Biet et al., 2019 
(111)

Mice C57BL/6J BCAAs 33% Increased food intake
Reduced weight and adiposity
Improved glycemic control
Increased energy expenditure

Lifespan study Richardson et al., 2021 
(112)

Mice C57BL/6J (M) Ile 33% Increased food intake
Decreased weight and adiposity
Improved glucose tolerance
Increased hepatic insulin sensitivity
Decreased fasting blood glucose
Increased energy expenditure
Elevated FGF21

12 weeks Yu and Richardson et 
al., 2021 (125)

Rats Zucker fatty BCAAs 55% Improved skeletal muscle glucose 
disposal and insulin sensitivity

15 weeks White et al., 2016 (126)

Humans (T2D) BCAAs 40% Decreased insulin secretion
Induced FGF21 production,
Improved oral glucose sensitivity 
Improves white adipose tissue 
metabolism

4 weeks Karusheva et al., 2019 
(127)
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