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SUMMARY

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we
conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures
and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending
interventions. An integrative analysis uncovered shared longevity mechanisms within and across species,
including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such
as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species
were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes,
involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted
aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified bio-
markers revealed longevity interventions, including KU0063794, which extended mouse lifespan and health-
span. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across
species and provides tools for discovering longevity interventions.

INTRODUCTION

Mammals exhibit substantial variability of lifespan both within and
across species. Generally, there is a strong positive association
between adult weight (AW) and species longevity,1 exemplified
by Etruscan shrews (Suncus etruscus), weighing 1.8 g with life-
span of 3.2 years, and bowhead whales (Balaena mysticetus),
weighing >100 tonswith amaximum lifespan (ML) of >200 years.2

However, there are also exceptions to this rule, the so-called
exceptionally long-lived species, that live significantly longer
than expected based on their AW, such as the naked mole rat
(Heterocephalus glaber),3 some microbats, e.g., the Brandt’s
bat (Myotis brandtii),4 and humans. This variability is achieved
on the evolutionary timescale, and multiple mechanisms that
may contribute to species longevity have been identified.5–10

Mammalian lifespan may also be extended within species.
Dozens of genetic, pharmacological, and environmental inter-

ventions increasing murine lifespan and healthspan are known
today. They includemutations such as growth hormone receptor
knockout (GHRKO),11 drugs such as rapamycin,12 and diets
such as calorie restriction (CR).13–16 In contrast to the inter-spe-
cies data, body size within species is often negatively associated
with longevity. Life expectancy across dog breeds is inversely
correlated with body mass,17 and various murine dwarf models
are often characterized by !30%–60% longer median and ML
compared with wild-type mice,18,19 which appears to be medi-
ated through the decreased activity of growth hormone (GH)
and insulin-like growth factor 1 (IGF-1) signaling.20 Therefore,
some features appear to be differently associated with lifespan
across and within species. Establishing shared and distinct mo-
lecular mechanisms of longevity, as well as their causative rela-
tionship with aging, is critically important for our understanding
of drivers of lifespan regulation and the development of effective
geroprotectors.
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High-throughput data, including transcriptomics, metabolo-
mics, and epigenomics, were used to evaluate molecular fea-
tures of longevity and aging. Aging-related changes in DNA
methylation21,22 and gene expression23,24 were thoroughly
examined in individual mammalian species. Several studies
also conducted qualitative meta-analyses of transcriptomic ag-
ing signatures for different tissues and species,25,26 although
quantitative meta-analyses of age-related gene expression
changes (ECs) have been lacking. Associations between species
longevity and molecular patterns of mammalian organs or cells
were also assessed at the level of the metabolome,27 ionome,28

lipidome,29 and transcriptome.30–32 Finally, by carrying out a
large-scale meta-analysis, we previously characterized gene
expression signatures of lifespan extension induced by various
longevity interventions in mouse tissues.33

Despite the growing number of established geroprotectors
and high-throughput data, a comprehensive analysis of universal
and model-specific signatures of longevity has been lacking. Do
existing lifespan-extending interventions in mice induce molecu-
lar mechanisms shared by long-lived mammals, such as the
naked mole rat, human, and bowhead whale? How do these sig-
natures interplay with age-associated features? What are
the common and distinct mechanisms of longevity induced by
interventions and selected in species during evolution? Can
these signatures be utilized to identify lifespan-extending
interventions?

To answer these questions, we (1) performed RNA sequencing
(RNA-seq) and characterized gene expression signatures of
mammalian longevity across 41 species, including the long-lived
naked mole rat, Brandt’s bat, and bowhead whale; (2) identified
species-specific, tissue-specific, and universal transcriptomic
biomarkers of mammalian aging through a quantitative meta-
analysis of 92 publicly available datasets; (3) investigated com-
mon and distinct molecular mechanisms of aging and longevity
within and across species; and (4) demonstrated that the identi-
fied signatures can be used to discover and characterize life-
span-regulating interventions in mammals.

RESULTS

RNA-seq of tissues across mammalian species
To investigate gene expression signatures of mammalian life-
span, we collected RNA-seq data for 48 young adult animals
and aggregated it with publicly available data.4,31,34–41 This
resulted in 371 biological samples covering six tissues (brain,
kidney, liver, cerebellum, heart, and testis) of 41mammalian spe-
cies from 12 taxonomic orders with a wide range of longevity-
associated traits (Figure 1A; Table S1A), including 4 exception-
ally long-lived mammals: nakedmole rat, Brandt’s bat, bowhead
whale, and human. Utilizing a previously developed pipeline30

(see STAR Methods), we identified 13,784 one-to-one orthologs
across examined species (Figures S1A and S1B; Table S2).

Principal-component analysis revealed that the samples were
segregated predominantly by their organ origin (Figure 1B). The
cerebellum and cerebral cortex samples were clustered
together, whereas the testis samples were distant from the other
organs (Figure S1C). Analysis of variance (ANOVA) confirmed
that organs and species were the primary sources of variation

in gene expression, capturing, on average, 84% of the total vari-
ance across samples. Within tissues, 78%–95% of the variance
was explained by species, even after controlling for batch effect
(Figure S1D). Correlation analysis among species revealed a high
similarity of expression profiles in neural tissues, whereas testis
profiles were diverse across species (Figures 1C and S1E),
consistent with the notion that this organ rapidly evolves under
the impact of reproduction-related selection.37,42–44

To characterize organ-specific expression patterns, we iden-
tified 6,050 genes that significantly upregulated or downregu-
lated (p value, p < 0.01) in one organ relative to the others (Fig-
ure 1D). In the kidney, genes involved in ion transport and
sodium transport were overexpressed, consistent with their
functions in ultrafiltration and selective reabsorption. In the
liver, a higher expression was detected for genes involved in
steroid metabolism, detoxification, and complement and coag-
ulation cascades. Consistent with its energy demand, the heart
exhibited an overexpression of genes related to oxidative phos-
phorylation and the tricarboxylic acid (TCA) cycle. The brain
cortex and cerebellum specifically expressed genes involved
in synaptic transmission and neuronal differentiation, whereas
the testis was characterized by overexpression of genes en-
coding cyclins, centrosomal proteins, and spermatogenesis-
associated proteins, consistent with their roles in sexual repro-
duction. Overall, organ-specific expression patterns were
congruent with their biological roles, and samples from the
same tissues clustered together. The exceptions were chicken
and platypus samples, which clustered by species and away
from the rest of the samples (Figure 1D, bottom), probably
due to their significant evolutionary distance from other exam-
ined species.

Transcriptomic signatures of longevity across species
We employed brain, kidney, and liver samples, representing >35
species, to identify gene expression signatures of long-lived
mammals. Using phylogenetic regression (see STAR Methods),
we identified!100–500 genes that were significantly associated
(p adjusted < 0.05) with animal ML (Figures 2A–2C) and female
time to maturity (FTM) (Figure S2A). Expression of !40%–70%
of these genes was significantly associated with species ML
and FTM after adjustment for body mass (MLres and FTMres,
respectively) (Figures S2B and S2C).
To assess if organ gene expression predicts species ML, we

utilized the Elastic Net linear regression model and leave-one-
out (LOO) technique, iteratively training the model on all but
one species and testing it on the remaining species. When
applied to the test set, the model captured 78% of the total vari-
ation in lifespan in the log scale (Figure 2D). The addition of
mammalian AW did not further improve the model, and body
mass alone captured only 39% of lifespan variation (Figure S2D),
suggesting that tissue gene expression significantly outperforms
AW in predicting mammalian longevity. Several genes, including
Sdc1 and Dtl, were consistently selected by Elastic Net models
trained on different LOO subsets (Figure 2E). Sdc1 encodes pro-
teoglycan syndecan-1, whose deficiency induces inflammation
in mice,45,46 whereas an increased expression of Dtl is associ-
ated with bladder cancer progression, presumably through the
regulation of the AKT/mTOR pathway.47 In agreement, Sdc1
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and Dtl were upregulated and downregulated in the tissues of
long-lived species, respectively (Figure 2E).
Comparison of signatures across tissues revealed significant

pairwise overlaps for both up- and downregulated genes associ-
ated with ML (p adjusted < 2 3 10"5) (Figure 2F) and MLres (p
adjusted < 0.042) (Figure 2G). Accordingly, longevity-associated
ECs were positively correlated across all analyzed organs
(Spearman r > 0.21) (Figure 2H). To examine if common signa-
tures of longevity were driven by universally expressed genes
or blood cell-specific biomarkers, we utilized Tabula Muris sin-
gle-cell atlas.24 The identified signatures of ML in every organ
were, on average, expressed in >49% of cell types (Figure S2E).
Shared biomarkers of longevity across tissues, aggregated with
the harmonic mean p value (HMP)method,48 demonstrated even
more universal expression, being detected in 66% of the individ-
ual cell types, whereas blood cell-specific biomarkers ac-
counted for <1.5% of ML-associated genes.
Cell type deconvolution49 revealed that liver samples were

largely composed of hepatocytes, kidney samples consisted of
epithelial and endothelial cells, and brain samples included neu-
rons, oligodendrocytes, astrocytes, and other glial cells (Fig-

ure S2F). In contrast, the total proportion of immune cells was,
on average, <3% in every organ. Following adjustment for blood
cell abundance across samples, we still detected statistically
significant associations with ML for >95.9% of signature genes
in every examined tissue, suggesting that modest variation in
blood cell composition is not a defining factor for the observed
effects.
Interestingly, longevity-associated ECs in all organs were also

positively correlated with signatures of lifespan in cultured pri-
mary skin fibroblasts (Figure S2G) collected from 16 mammalian
species.30 Although a similarity between longevity biomarkers in
organs may be partially driven by the systemic effect of signaling
and catalytic molecules circulating in the bloodstream, including
cytokines,50–52 extracellular miRNAs,53 metabolites,54 and en-
zymes,55 these results suggest that numerous conservedmolec-
ular mechanisms of lifespan regulation are preserved at the level
of cultured cells and are likely to be encoded in the genome.
To identify pathways associated with species longevity, we

performed functional gene set enrichment analysis (GSEA) of
the lifespan-associated ECs (Figures 2I and S2H; Table S3A).
Shared molecular features of long-lived mammals across

Figure 1. RNA-seq of mammalian tissues
(A) Phylogenetic tree of examined species and their longevity traits. Adult weight (AW), maximum lifespan (ML), and ML residual adjusted for body mass (MLres)

are shown on barplots in logarithmic scale.

(B) Principal-component analysis ofmammalian samples. First 3 principal components (PCs) are shown. The percentage of total variance explained by each PC is

indicated in parentheses.

(C)Within-organ variability acrossmammalian species. Pairwise Spearman correlation coefficients between species expression profiles were calculated for each

organ. The number of available species is indicated in parenthesis.

(D) Expression of genes significantly enriched or depleted in specific organs. Columns represent genes; rows represent biological samples colored by organ, as in

(B). Top pathways enriched for corresponding gene sets are indicated in the text. Ch, chicken; Pl, platypus.

See also Figure S1 and Tables S1 and S2.
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multiple organs included the upregulation of genes involved in
translation (e.g., Rpl28 encoding a large ribosomal subunit
component [Figures 2A and S2B]) and base excision repair
(e.g., Mpg encoding N-methylpurine DNA glycosylase [Fig-
ure 2B]), and downregulation of genes involved in ubiquitin-
mediated proteolysis (e.g.,Cul4b encoding a cullin protein family
member [Figures 2C and S2C]), TCA cycle, and insulin process-
ing (Figures 2I and S2H).

Gene expression biomarkers of mammalian aging
To identify consistent transcriptomic signatures of aging, we
aggregated data on the mouse (Mus musculus), rat (Rattus nor-
vegicus), and human (Homo sapiens) age-related gene ECs from
92 publicly available datasets (Table S1B) (see STAR Methods).
Aging-associated ECs were positively correlated across data-
sets, especially after restricting the analyses to the top statisti-
cally significant genes for each pair of datasets (Figure S3A).

Figure 2. Gene expression signatures of species longevity
(A–C)Representative genes associated with species maximum lifespan. Selected genes include Rpl30 (A), Rpl28 (B), and Cul4b (C). The association between

log10(maximum lifespan) and average normalized log10(expression) is shown for brain (left), liver (middle), and kidney (right). Linear model equation, slope

adjusted p value and R2 estimated with phylogenetic regression are displayed. Data are mean ± SE.

(D) Accuracy of Elastic Net prediction of species maximum lifespan (ML) based on tissue gene expression. Mean absolute error (MAE), R2, and Pearson’s

correlation coefficient were estimated on LOO test set. Each dot represents a single species and is colored by taxonomic group, as in (A)–(C).

(E) Gene expression predictors of maximum lifespan. For each gene, data represent mean weight in Elastic Net models trained on different subsets ± SE. Only

genes with non-zero average weight are included (p adjusted < 0.05).

(F and G) Overlap of genes associated with maximum lifespan unadjusted (F) and adjusted for body mass (MLres) (G) across mammalian tissues. p value was

calculated with Fisher exact tests.

(H) Spearman correlation of longevity-associated gene expression changes. Asterisks reflect statistical significance.

(I) Functional enrichment of lifespan-associated genes. Dotted lines reflect threshold of p adjusted = 0.1. The whole list of enriched functions is in Table S3A.

*p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001.

FTM, female time to maturity; FTMres, female time to maturity residual.

See also Figure S2 and Table S3.
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We observed a higher similarity for age-related ECs from the
same tissue or species (Figures 3G and S3B), although a positive
correlation was detected even for ECs from different tissues,
species, and sources (p < 10"25), suggesting that there are
also universal molecular mechanisms of mammalian aging.
Following the normalization of age-related ECs via multiple

Deming regression (Figure S4) and quantitative meta-analysis
based on a linear mixed-effect model (see STAR Methods), we

identified!200–900 statistically significant gene expression sig-
natures of aging (p adjusted < 0.05) for individual tissues (liver,
brain, and skeletal muscle) and species (human, mouse, and
rat). We also discovered 13 universal aging-associated genes
shared across 3 species and 17 tissues. As expected, age-
related ECs exhibited a stronger positive correlation across da-
tasets when estimated using significant signature genes
(Figures 3A and S3C). To verify the introduced algorithm, we

Figure 3. Transcriptomic signatures of mammalian aging
(A) Spearman correlation of age-related expression changes (ECs) across datasets estimated using a global aging signature. Red frame highlights aggregated

(global) age-related ECs.

(B and C) Spearman correlation of aging-associated ECs between tissues (B) and species (C). Text and asterisks represent correlation coefficient and adjusted p

value, respectively.

(D and E) Overlap of genes with significant age-related ECs across tissues (D) and species (E). p value was calculated with Fisher exact tests.

(F) Vsig4 (upper) and Nrep (lower) age-related ECs. Each dot represents normalized average gene EC calculated from a single dataset ± SE. Red dotted line and

shaded area represent weighted mean EC estimated using mixed-effect model and 95% confidence interval, respectively.

(G) Contribution of tissue, species, and source to pairwise Spearman correlation of age-related ECs. Bar color and asterisks reflect the statistical significance of

factor contribution, assessed with multiple linear regression.

(H) Normalized age-associated ECs across tissues and species. Only genes significantly associated with aging in at least one signature (p adjusted < 0.05)

are shown.

(I) Functional enrichment (GSEA) of aging signatures. Only functions significantly enriched by at least one signature are shown (p adjusted < 0.1). The whole list of

enriched functions is in Table S3B.

p̂ adjusted < 0.1; *p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001.

WBC, white blood cells; SCAT, subcutaneous adipose tissue; BAT, brown adipose tissue; MAT, marrow adipose tissue; muscle, skeletal muscle.

See also Figures S3 and S4 and Tables S1 and S3.
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conducted 4-fold cross-validation, identifying significant age-
associated biomarkers in a training set and applying them
to calculate the correlation between ECs from independent
test datasets. The utilized normalization and meta-analysis
approach resulted in higher correlations across test ECs (p
adjusted = 10"15) (Figure S3D), supporting the generalizability
of the discovered molecular features of aging.

Aging signatures of all examined tissues and species were
positively correlated with each other (Figures 3B and 3C).
Some of them also exhibited significant pairwise overlaps be-
tween aging-associated genes (Figures 3D and 3E). Similar to
biomarkers of species longevity, age-related transcriptomic
changes were mainly driven by widely expressed genes, de-
tected, on average, in >48% of the cell types (Figure S3E). Blood
cell-specific biomarkers accounted for <5%of the aging-associ-
ated genes, and their removal did not affect the significant pos-
itive correlation between age-related ECs of individual tissues
and species (Spearman r > 0.1; p adjusted < 10"5), suggesting
that molecular mechanisms of aging are generally conserved
across various cell types.

Among top genes associated with aging in most tissues and
species, we identified Vsig4 and Nrep, up- and downregulated
with age, respectively (global signature p adjusted < 0.05) (Fig-
ure 3F). Vsig4 encodes an immune checkpoint protein, whose
expression is positively correlated with the physiological frailty
index in male mice,56 and the progression of cancer57–59 and
several inflammatory diseases60 in humans. Downregulation
of Nrep was found to produce learning and memory defects,61

blood pressure abnormalities,62 and obesity.63 Based on our
meta-analysis, these genes may be considered universal dele-
terious signatures of aging, shared by multiple species and
tissues.

Individual tissues and species demonstrated similar transcrip-
tomic age-related changes both at the level of individual genes
(Figure 3H) and enriched functions (Figure 3I). Functional GSEA
revealed a number of shared aging mechanisms across organs
and species (Table S3B), including the upregulation of pathways
associated with established hallmarks of aging, such as biosyn-
thesis of reactive oxygen species, senescence-associated
secretory phenotype (SASP), and inflammation.64,65 In contrast,
genes involved in energy metabolism and mitochondrial transla-
tion were significantly downregulated with age, according to
multiple signatures (Figure 3I).

Global interplay between signatures of longevity
and aging
To examine the relationship between molecular mechanisms of
longevity and aging, we performed a correlation analysis of the
identified signatures along with mouse gene expression patterns
of lifespan-extending interventions discovered previously33 (Fig-
ure 4A). The latter included genes differentially expressed in
response to individual interventions (CR, rapamycin, and muta-
tions associated with GH deficiency), shared biomarkers of
longevity interventions, and ECs associated with their effect on
murine maximum and median lifespans. Transcriptomic signa-
tures were generally consistent within each examined model:
aging, species longevity, and lifespan-extending interventions
(median Spearman r > 0.55 within each model). Biomarkers of

aging were negatively correlated with several signatures of inter-
ventions, including CR, rapamycin, and biomarkers of maximum
and median lifespan (median Spearman r = "0.11) (Figures 4A
and 4B). This dependencemay be partly driven by the decreased
biological age of intervention-treated animals, as previously
demonstrated at the level of DNA methylation.66–68 In contrast,
features of long-lived species strikingly showed a significant
positive association with aging across different tissues (median
Spearman r = 0.16). Since animals used to identify signatures
of species longevity had a similar biological age (young adults),
this finding can hardly be explained by selection bias. Rather,
it seems to indicate that not all age-related changes are harmful
and that adaptive (compensatory) molecular mechanisms regu-
lated by gene expression are also involved,69 being at the same
time selected in long-lived species. Interestingly, transcriptomic
patterns of longevity across species and lifespan extension
within species did not show a strong correlation, exhibiting
both shared and distinct features (Figures 4A and 4B).
To establish if the observed global patterns were reproduced

in evolutionarily distinct taxons of life, we performed a similar
analysis in the budding yeast model, utilizing (1) gene expression
biomarkers of replicative lifespan (RLS) across 40 naturally
evolved strains of Saccharomyces cerevisiae,70 (2) signatures
of RLS in lab yeast strains affected by 1,376 single-gene dele-
tions,71,72 and (3) transcriptomic biomarkers of yeast replicative
aging.73 Interestingly, the interplay between yeast signatures of
aging, lifespan-extending deletions, and longevity across
evolved strains was consistent with the patterns observed in
mammals (Figure S5A). Gene expression signatures of yeast ag-
ing were positively correlated with those of long-lived natural
strains and negatively with those of lifespan-extending muta-
tions, suggesting that divergence of molecular mechanisms of
longevity in response to simple interventions and selection at
great evolutionary distances may be a universal pattern shared
across distinct branches of life.

Common and distinct biomarkers of longevity and aging
To reveal shared and distinct molecular features of mammalian
longevity and aging, we aggregated individual transcriptomic
signatures within every model using HMP,48 obtaining >450
statistically significant genes in each case. Consistent with the
correlation analysis, we observed a significant overlap between
co-regulated aggregated signatures of aging and long-lived
species (p = 1.8 3 10"20), whereas aggregated biomarkers of
lifespan-extending interventions were enriched for genes coun-
teracting aging (p = 7.5 3 10"6) (Figure 4C).
Interestingly, 9 genes were significantly co-regulated with age

and in both longevity models (Table S4). They included Igf1, a
crucial component of insulin and IGF-1 signaling.20,74 Reduced
activity of IGF-1 extends lifespan in various species ranging
from yeasts to mice.74 IGF-1 plasma level in mice is decreased
by established lifespan-extending interventions, including
GHRKO75 and CR,76 and declines with age,77 providing an
example of a healthspan-promoting aging feature. Based on
our data, decreased expression of Igf1 is a universal biomarker
of aging and longevity (Figure 4D, upper left), shared by life-
span-extending interventions and long-lived mammals, even af-
ter adjustment for AW (p < 0.012 for liver signatures).
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In contrast, Lgals1 demonstrated a positive association with
all examined models (Figure 4D, upper right). Its product,
Galectin-1 (Gal-1), regulates cell proliferation and has a promi-
nent anti-inflammatory and proangiogenic activity78,79 that is
protective during recovery from cardiovascular diseases.80

Mice lacking Gal-1 demonstrated cardiac inflammation and
increased susceptibility to chronic inflammatory diseases.81

Gal-1 was also decreased in the cerebrospinal fluid of patients
with Parkinson’s disease.82 Therefore, its upregulation with
age, especially in the brain (p adjusted = 0.004), and in the
longevity models may provide a beneficial effect, protecting
against aging-related chronic inflammation.
Utilizing Fisher’s combined probability test,83 we identified a

comprehensive list of common and distinctmolecular biomarkers

Figure 4. Interplay between transcriptomic signatures of aging and longevity
(A) Denoised Spearman correlation of signatures of aging (red), lifespan-extending interventions (green), and species longevity (blue). Asterisks reflect statistical

significance of each pairwise correlation.

(B) Normalized expression changes (ECs) of genes associated with aging and longevity. Only genes significantly associated with at least one trait are shown

(p adjusted < 0.05). x axis represents individual signatures.

(C) Overlap of aging- and longevity-associated genes. Number of aggregated signature genes and deviation from the expected random overlap are indicatedwith

text and color, respectively. p value was estimated with Pearson’s chi-square tests.

(D) Association of Igf1,Mrps15, Ndufa9, Lgals1, Rela, and C1qb expressions with aging and longevity. Statistical significance of each association denoted with

asterisks was estimated with phylogenetic regression (for species longevity signatures) and mixed-effect model (for other signatures). Data are mean normalized

ECs ± SE.

(E) Functional enrichment of gene signatures shared by several models. Presented functions were annotated by Kyoto Encyclopedia of Genes and Genomes

(KEGG). Missing data are shown in gray.

(F) Number of aggregated, shared, and distinct signature genes associated with aging and longevity. For each pair of models, the difference between the number

of co-regulated and distinct genes was assessed using two-sample proportion tests.

p̂ adjusted < 0.1; *p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001.

CR, calorie restriction; GH, growth hormone; Common, shared signatures of longevity interventions; Median/Max lifespan, signatures of intervention effect on

median/maximummouse lifespan; ML, maximum lifespan; MLres, maximum lifespan residual; Longevity, shared biomarkers of lifespan-extending interventions

and long-lived species.

See also Figure S5 and Table S4.
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of longevity and aging (see STAR Methods). Consistent with pre-
vious results, we detected more distinct than shared features of
aging and lifespan-extending interventions (p adjusted =
0.0045), whereas more co-regulated signatures were observed
for aging and long-lived species (p adjusted = 7.4 3 10"48) and
for long-lived species and interventions (p adjusted = 0.012) (Fig-
ure4F).Sharedsignaturesof species longevity andaging included
genes involved in oxidative phosphorylation (e.g., Ndufa9),
apoptosis (e.g., Rela), and complement and coagulation cas-
cades (e.g., C1qb) (Figures 4D and 4E). Interestingly, the expres-
sion of these genes was changed in the opposite direction by
lifespan-extending interventions. In contrast, some signatures
were shared by both longevity models but not aging, including
several mitochondrial ribosomal protein genes (e.g., Mrps15)
(Figures 4D and 4E). Finally, >200 gene expression biomarkers
were shared across aging and both longevity models (Figure 4F),
further indicating that age-related changes may include not only
harmful but also beneficial compensatory effects.

Longevity-associated metabolic pathways
To uncover specific metabolic mechanisms of longevity
(Figures 5A–5C), we expanded gene expression signatures with
the data onmetabolite profiling.27,33 Using a phylogenetic regres-
sion pipeline, we discovered metabolite biomarkers of ML across
26 mammalian species in various tissues, including brain, liver,
kidney, and heart. By comparing metabolite profiles of wild-type
mice andmice subjected to longevity interventions (acarbose, ra-
pamycin, GHRKO, and Snell dwarf mice), we also identified
metabolite signatures of lifespan extension within species.

Comparison of the identified metabolites revealed shared
biomarkers of longevity, including adenosine, xanthosine, and
succinic acid, whereas several others (e.g., uric acid) showed
a distinct effect (Figure S5B). The metabolite signatures
(Figures 5D–5G) were strongly supported by the corresponding
transcriptomic signatures (Figures 5H–5J), allowing us to
characterize metabolic pathways with consistent multi-omics
association.

Uric acid exhibited one of the strongest associations with life-
span (Figure S5B). Its concentration in various tissueswas higher
in long-lived species but was reduced by lifespan-extending in-
terventions in mice (Figure 5D), whereas its direct metabolite
allantoin showed the opposite behavior (Figure 5E). In mammals,
urate is converted to allantoin by urate oxidase (uricase).84

Accordingly, the expression of uricase gene Uox in the liver
was negatively correlated with ML across species (Figure 5H,
upper). In part, this is related to the pseudogenization of the uri-
case gene in hominoids,85–87 although its expression was also
low in other long-lived mammals, including naked mole rats
and Damaraland mole rats. In contrast, Uox was upregulated
by lifespan-extending interventions in mice (Figure 5H, lower).
Therefore, long-lived mammals seem to accumulate uric acid
through the reduced activity of Uox, whereas the opposite hap-
pens in mice subjected to longevity interventions (Figure 5A).

Another metabolite regulated by lifespan-extending interven-
tions is nicotinamide adenine dinucleotide (NAD+). NAD+ levels
decline with age and affect SIRT1 function, whereas supplemen-
tation with nicotinamide mononucleotide (NMN) or nicotinamide
riboside (NR) can improve healthspan in mouse models.88–90

NAD+ concentration in murine liver was substantially increased
following longevity interventions (Figure 5F). Lifespan extension
was also accompanied by upregulation of genes involved in
NAD+ biosynthesis, including Naprt, Nampt, Nmnat3, and
Nadsyn1, encoding NAD+ synthetase 1 (p adjusted < 0.008 for
association with median and maximum mouse lifespan)
(Figures 5I and S5C). In contrast, we did not observe a significant
association between NAD+ levels and ML across species. How-
ever, there was a slight accumulation of its precursor, quinolinic
acid, in long-lived species (p adjusted = 0.09 for multi-tissue ML
signature), along with the upregulation of Nadsyn1 in the brain,
even after the adjustment for AW (p < 0.007) (Figures 5I and
S5C). Therefore, NAD+ biosynthesis pathway may be involved
in lifespan regulation, although its role appears to bemore prom-
inent at the intraspecies level (Figure 5B).
Genes involved in NAD+ level regulation were also associated

with aging and longevity in yeast. The deletion of genes encoding
mitochondrial NAD+ transporters extended the chronological
lifespan of S. cerevisiae, whereas their overexpression resulted
in a shorter lifespan.91 We observed the downregulation of mito-
chondrial NAD+ carrier NDT1 in response to RLS-extending de-
letions and across long-lived natural strains, and its upregulation
in aged yeast cells (Figure S5D). Besides, NPT1, involved in
NAD+ biosynthesis, was highly expressed in yeasts subjected
to RLS-extending interventions (p adjusted < 6.7 3 10"3).
Finally, metabolites negatively associated with mouse lifespan

included L-cystathionine (Figure 5G), an intermediate product of
methionine degradation. Depletion of this molecule was accom-
panied by significant upregulation of genes responsible for its
conversion into glutathione,92 including Cth, Gclc, and Gss (me-
dian p < 0.007 for association with median and maximummouse
lifespan) (Figure 5J). This pathway also leads to the production of
H2S, which accumulates in mice subjected to CR76 and by itself
extends the lifespan of roundworms.93 Our results support the
role of this pathway in longevity regulation, as it is induced by life-
span-extending interventions both at metabolite and gene
expression levels (Figure 5C). Surprisingly, genes involved in
cystathionine degradation were downregulated in long-lived
species (median p < 0.004 for liver ML signature) (Figure 5J),
providing another example of distinct longevity-associated fea-
tures within and across species.

Cellular processes mediating longevity and aging
Functional enrichment analysis of individual transcriptomic
signatures (Figure 6A; Table S3) and significant co-regulated
and distinct biomarkers across various models (Figure 6B;
Table S5A) highlighted cellular processes that mediate longevity
regulation and aging. Resembling results obtained on individual
genes, age-associated functional changes were positively
correlated with patterns of species longevity and negatively
correlated with features of lifespan-extending interventions
(Figure S6A).
Upregulation of ribosome protein genes was among the most

consistently shared functional signatures of aging and both
longevity models (Figures 6A and 6B). However, although genes
encoding cytosolic ribosomal proteins demonstrated a positive
association with all examined traits, mitochondrial ribosomal
protein genes were upregulated in both longevity models but
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downregulated with age (Figures 4D, 4E, and 6A). Mitochondrial
translation was one of themost significant pathways enriched for
gene expression signatures that separated longevity and aging
(p adjusted = 5.73 10"6) (Figure 6B), suggesting that mitochon-

drial function may be an essential conserved mechanism of life-
span regulation.
Energy metabolism, including the TCA cycle and oxidative

phosphorylation, was significantly co-downregulated with age

Figure 5. Molecular pathways associated with mammalian longevity
(A–C) Pathways associated with lifespan-extending interventions and species longevity. Metabolites and genes are shown in rectangles and Italic, respectively.

Arrows represent significant positive (up) and negative (down) associations with longevity within (green) and across (blue) species.

(D–G)Association of uric acid (D), allantoin (E), NAD+ (F) and cystathionine (G) concentration with longevity within (green) and across (blue) species. The vertical

axis reflects metabolite normalized logFC in murine liver in response to individual lifespan-extending interventions and aggregated across interventions

(Common); slope of association with mouse median (Lifespan.median) and maximum lifespan (Lifespan.max); and slope of association with species maximum

lifespan (ML) and maximum lifespan residual (MLres) in individual organs and aggregated across organs (Pooled). Error bars are ±SE.

(H–J) Association of Uox (H), Nadsyn1 (I), and Cth (J) expressions with lifespan extension induced by interventions (survival curve icon) and across species

(mouse/whale icon). Examined organs are reflected with liver and brain icons. The black line, slope p value and R2 indicate the model fitted with phylogenetic (for

species) or linear (for interventions) regression. Data are mean ± SE.

p̂ adjusted < 0.1; *p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001.

CR, calorie restriction; EOD, every-other-day feeding; oe, overexpression; M, male; F, female; NA, nicotinic acid; NaMN, nicotinic acid mononucleotide; NaAD,

nicotinic acid adenine dinucleotide; NAD, nicotinamide adenine dinucleotide; NMN, nicotinamide mononucleotide; NAM, nicotinamide; SAM, S-sdenosyl

methionine; GSH, glutathione.

See also Figure S5.
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Figure 6. Common and distinct transcriptomic signatures of longevity
(A) Functional enrichment (GSEA) of longevity and aging-associated signatures. Only functions significantly enriched by at least one signature (p adjusted < 0.1)

are presented. The whole list of enriched functions is in Table S3. NES, normalized enrichment score.

(B) Functional enrichment of aggregated, shared, and distinct signatures of longevity and aging. Proportion of pathway-associated genes and statistical sig-

nificance estimated with Fisher exact test are reflected by bubble size and color, respectively. The whole list of functions is in Table S5A.

(C) Partial correlation network of gene expression signatures of longevity and aging. Sign of partial correlation coefficient (PCC) is indicated by color. AW, adult

weight; Ints, signature of interventions effect on maximum lifespan; AA Met, metabolism of amino acids and derivatives; adaptive immune, adaptive immune

system; complement, complement cascade; FA Met, fatty acid metabolism; innate immune, innate immune system; Interf g, interferon gamma signaling; Mt

trans, mitochondrial translation; Oxid Phosph, oxidative phosphorylation; Ribo, ribosome.

(D) Effect of cardamonin (left), clofilium tysolate (middle), and deguelin (right) on survival of fibroblasts from species with different lifespans following paraquat-

induced oxidative stress. y axis displays log-ratio of the number of survived fibroblasts treated and untreatedwith the compound. x axis showsmaximum lifespan

unadjusted (top) and adjusted (bottom) for adult weight. Slope p value was assessed with mixed-effect linear model. Data are mean ± SE. n = 3–6 per treated and

control group for every species/strain.

(E) Evolutionary features of longevity and aging-associated aggregated signature genes. Data are mean ± SE. Statistical significance of enrichment denoted with

asterisks was assessed with Fisher’s exact test.

(F) Common (bold), distinct, and unique transcriptomic signatures of longevity across and within species.

p̂ adjusted < 0.1; *p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001.

ML, maximum lifespan; MLres, maximum lifespan residual.

See also Figure S6 and Tables S3 and S5.
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and in long-lived species but upregulated by lifespan-extending
interventions in mice (Figures 4D, 4E, 6A, and 6B). In contrast,
genes associated with some branches of an innate immune
response, including complement and coagulation cascades
and tumor necrosis factor (TNF) signaling, were co-upregulated
in aged animals and long-lived species, but not in response to
lifespan-extending interventions (Figures 4D, 4E, 6A, and 6B).
This association was also shared by Rela, a component of the
NF-kB complex, a crucial regulator of inflammation and
apoptosis.94

Inflammation and NF-kB activity facilitate the development of
numerous age-related diseases,94–97 and Rela targets are upre-
gulated with age in several murine organs.98 Based on our data,
Rela expression is a universal biomarker of aging upregulated
across different tissues, whereas its downregulation is associ-
ated with the extension of mouse lifespan (Figure 4D). Interest-
ingly, Rela and other genes encoding NF-kB components were
not downregulated in long-lived mammalian species, instead
showing a trend toward positive association with species
longevity (Figure 4D).
To examine the relationship between the identified mecha-

nisms, we computed a sparse partial correlation network for
features associated with longevity and aging (Figure 6C). Spe-
cies AW was positively associated with the expression of genes
involved in DNA repair and innate immune system response,
pointing to the role of these pathways in cancer prevention,
in agreement with Peto’s paradox.99 Even after the adjustment
for AW and other features, species longevity was positively
correlated with the expression of genes associated with
complement cascade, DNA repair, translation, and aging and
negatively correlated with Igf1 expression and regulation of
proteolysis and fatty acid metabolism. Complement cascade
and proteolysis were strongly connected to aging, partially ex-
plaining its unexpected positive correlation with signatures of
long-lived species. In contrast, intervention-induced mouse
lifespan extension was associated with the upregulation of
metabolic pathways (oxidative phosphorylation, fatty acid
metabolism, and amino acid metabolism), translation and
DNA repair, and downregulation of aging biomarkers, even af-
ter adjustment for all the examined features. Overall, longevity
within and across species seems to be driven by multiple inter-
connected mechanisms, including age-related and indepen-
dent regulators of lifespan.
We hypothesized that molecular signatures of lifespan-ex-

tending interventions in mice that are not shared by long-lived
species, such as the inhibition of complement cascade and
NF-kB pathway, may reflect marginally effective ways to pro-
mote longevity by regulating the response to the already accu-
mulated damage. Since they have not been selected during
the evolution of long-lived mammals, such approaches can be
less effective in these organisms compared with short-lived spe-
cies. In contrast, common signatures of longevity, including the
upregulation of mitochondrial function and downregulation of
Igf1, may represent core mechanisms that affect damage accu-
mulation itself and can be effectively targeted in both short- and
long-lived species.
To test this hypothesis, we subjected fibroblasts of mouse

(inbred C57BL/6J and genetically heterogeneous UM-HET3

strains), rat, naked mole rat, western long-eared myotis, Yuma
myotis, and human to oxidative stress using paraquat (dose
close to LD50). Prior to stress induction, we treated cells with
several compounds that promote mouse cell survival under
these conditions100: cardamonin (CD), an inhibitor of NF-kB101

and an activator of NRF2100,102; clofilium tysolate (CT), a K+

channel blocker that facilitates mitochondrial DNA replication
and restores mitochondrial mass in mutants with defective
polymerase g103,104; and deguelin (DG), a rotenoid that
inhibits PI3K/Akt signaling105 and upregulates mitochondrial
translation genes.106 We assessed if these compounds would
also improve viability of cells obtained from long-lived species.
As expected, all three compounds improved the average survival
of mouse and rat fibroblasts subjected to oxidative stress (p
adjusted < 0.011) (Figure 6D). However, the effect of CD was
significantly reduced in fibroblasts of long-lived species,
whereas CT and DG induced similar cell survival independent
of species lifespan (Figure 6D, upper). The dependence of CD
stress resistance effect on ML was even stronger after adjust-
ment for animal AW (Figure 6D, bottom) and baseline level of
cell survival under control conditions (Figure S6B), whereas the
response to CT and DG did not depend on species ML after
any of these adjustments. Therefore, the compound that tar-
geted molecular mechanisms of mouse lifespan extension (NF-
kB and NRF2 signaling) but not signatures of long-lived species
was able to improve stress resistance of cells from short-lived
species only. In contrast, compounds that targeted shared
mechanisms of longevity (mitochondrial function and insulin
signaling) had a comparable beneficial effect on cell survival in-
dependent of mammalian lifespan.
To make the identified transcriptomic signatures available to

the research community, we developed an interactive database,
mSALT (mammalian Signatures of Aging and Longevity Traits;
http://gladyshevlab.org/mSALT/). For every gene, mSALT pro-
vides (1) a general association of its expression with various
models of mammalian aging and longevity (Figure 4D); (2) the
relationship between its expression and longevity across
mammalian species (Figures 2A–2C); (3) the relationship be-
tween its expression and effect of various interventions on
mouse lifespan (Figures 5H–5J); and (4) its age-related EC
across various tissues and species (Figure 3F).

Evolutionary features of longevity-associated genes
To examine evolutionary features of longevity and aging bio-
markers, we tested their enrichment for several characteristics,
including involvement in the basic cellular maintenance, evolu-
tionary age, mutation intolerance, and haploinsufficiency44

(see STAR Methods). For every trait, we contrasted proportions
of signature genes with opposite features (e.g., mutation
tolerant/intolerant, evolutionary old/young, etc.), using randomly
selected non-signature genes with a similar average expression
level as a background (Figure S6C).
Significant overrepresentation of housekeeping genes was

observed for aging biomarkers (odds ratio [OR] = 1.19,
p adjusted = 0.038) (Figure 6E), indicating that aging is deeply
connected with the reduction of core cellular homeostasis. Sig-
natures of species longevity were enriched for evolutionary
ancient genes, originated before the emergence of bony
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vertebrates (OR = 1.5, p adjusted = 0.02), whereas transcrip-
tomic biomarkers of lifespan-extending interventions were
mostly evolutionary young genes originated in tetrapods (OR =
1.23, p adjusted = 0.003) (Figure 6E).

Gene essentiality was assessed by mutation intolerance, i.e.,
probability of being intolerant to gene loss-of-function mutation,
and haploinsufficiency, i.e., sensitivity to a gene copy-number
reduction.According tobothmetrics, signaturesof long-livedspe-
cies were enriched for essential genes (OR > 2, p adjusted < 10"4)
(Figure 6E). Biomarkers of lifespan-extending interventions
showed the opposite pattern, being depleted for such genes
(OR < 0.77, p adjusted < 0.004), underlying a significant difference
in routes of lifespan regulation across and within species (Fig-
ure 6F). Essential evolutionarily old genes associatedwith species
longevity were enriched for PI3K-Akt, cytokine, TNF and MAPK
signaling, ubiquitin-mediated proteolysis, and cell cycle (Fig-
ure S6D; Table S5B), whereas evolutionarily young, mutation-
tolerant signatures of lifespan-extending interventions were
involved inmetabolic pathways (fatty acidmetabolism, respiratory
electron transport, and peroxisome proliferator-activated recep-
tor [PPAR] signaling), and complement and coagulation cascades
(Figure S6E; Table S5C).

Longevity signatures reveal lifespan-regulating
interventions
To discover genetic, environmental, and pharmacological inter-
ventions, whose effect on mammalian gene expression resem-
bles transcriptomic signatures of aging and longevity, we utilized
GeneQuery, a tool that searches for public datasets with similar
ECs, and Connectivity Map (CMap), a resource containing tran-
scriptomic profiles of human cells subjected to thousands of
chemical compounds.107,108

Using GeneQuery, we identified 7 interventions in mice that
induced ECs significantly associatedwith aggregated signatures
of longevity and aging, including a hepatocyte-specific condi-
tional knockout of Keap1,109 chronic hypoxia,110 high-fat
diet,111 deficiency of telomere-binding protein Rap1,112 overex-
pression of p21 in skeletal muscle,113 deficiency of Dicer1 in he-
patocytes,114 and constitutive expression of NF-kB activator
IKK2 in the liver115 (Table S6A).

Utilizing a GSEA-based approach (see STAR Methods), we
found that ECs generated by Keap1 knockout and chronic hyp-
oxia in mouse liver were positively associated with aggregated
andmultiple individual signatures of lifespan-extending interven-
tions (CR, GH deficiency, etc.) (Figure 7A, upper). Accordingly,
hypoxia responsewas protective againstmitochondrial dysfunc-
tion associated with multiple aging-related diseases,116,117 and
chronic hypoxia extended healthspan and lifespan of mice with
genetic mitochondrial disease produced byNdufs4 knockout.116

KEAP1, an inhibitor of acute stress regulator NRF2, also signifi-
cantly affects longevity. Its loss-of-function mutations extended
the median lifespan of Drosophila melanogaster males,118

whereas the overexpression of the NRF2 ortholog (SKN-1)
increased the average lifespan of roundworms.119 Based on
our data, Keap1 knockout and chronic hypoxia generate ECs
associated with intraspecies longevity and do not significantly
perturb aggregated biomarkers of aging or long-lived species,
being good candidates for lifespan extension in healthy mice.

Other examined models induced ECs negatively associated
with longevity interventions but positively associated with aging
(Figure 7A, upper). Interestingly, some of them were also nega-
tively correlated with aggregated signatures of long-lived spe-
cies (e.g., Dicer1 knockout), whereas others had no or even pos-
itive association (e.g., Rap1 knockout and p21 overexpression).
The identified models indeed exhibited age-related pathological
phenotypes. Thus, high-fat diet produced hepatocellular dam-
age, fibrosis, and reduced mitochondrial density in the liver
and markedly affected lifespan of male C57BL/6J mice.111

IKK2 activation in the liver generated severe chronic inflamma-
tion, also leading to organ fibrosis.115 Rap1 knockout induced
glucose intolerance, liver steatosis, and excess fat accumulation
associated with obesity.112 Hepatocyte-specific deficiency of
Dicer1, an enzyme involved inmiRNAprocessing, produced pro-
gressive cellular damage, apoptosis, and inflammation in 2- to
4-month-old mice,114,120 whereas its knockout in the skeletal
muscle resulted in decreased muscle mass and abnormal myo-
fiber morphology.121 Finally, overexpression of tumor suppres-
sor p21 induced cellular senescence in human cells122,123 and
contributed to the development of muscle atrophy.113 Thus,
aggregated signatures of lifespan-extending interventions and
aging reasonably discriminate between potentially detrimental
and beneficial interventions based on their effect on murine
gene expression, whereas positive associations with biomarkers
of long-lived species do not always result in the improvement of
healthspan in short-lived mammals, as demonstrated by p21
overexpression and Rap1 deficiency models.
Based on CMap predictions, we selected 3 chemical com-

pounds that induced pro-longevity ECs according to signatures
of lifespan-extending interventions and long-lived species,
including PI3K inhibitor GDC-0941,124 PKCb and PI3K/Akt
pathway inhibitor enzastaurin,125 and MEK and TNF-a inhibitor
AS-703026.126,127 We applied these compounds orally to UM-
HET3 male mice for 1 month and performed RNA-seq on
their liver and kidney samples (Table S1C). Additionally, we
expanded these data with transcriptomic profiles of mice
subjected to 3 drugs identified in our previous study33: mTOR
inhibitors KU0063794128 and AZD8055,129 and antioxidant as-
corbyl-palmitate.130

By comparing expression profiles of treated mice with age-
matched control samples, we identified compound-induced
ECs in murine organs and examined their association with bio-
markers of aging and longevity (Table S6B). Consistent with
CMap predictions, all selected compounds generated changes
positively associated with an aggregated signature of at least
one longevity model (Figure 7A, lower). Moreover, pro-longevity
effects of KU0063794, ascorbyl-palmitate, AZD8055, and GDC-
0941 were supported simultaneously by aggregated biomarkers
of lifespan-extending interventions (in the kidney and the liver;
p adjusted < 0.004) and long-lived species (in kidney;
p adjusted < 6 3 10"4), along with multiple individual signatures
(GH deficiency, CR, maximum and median lifespan, etc.).
To test if compounds that induce longevity-associated

ECs extend murine lifespan and healthspan, we subjected
25-month-old C57BL/6 male mice to a diet containing a top hit
from our analysis, KU0063794 (Figure 7B). KU0063794 at 10
ppm extended the remaining median and ML of old mice by
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32.6% and 10.9%, respectively (log-rank test p = 0.038) (Fig-
ure 7C), with no effect on animal body weight (Figure 7D).
KU0063794 also improved mouse gait speed measured at
30 months (Figure 7E). The frailty index of mice before and
5 months after the treatment initiation showed no difference be-
tween the control and experimental groups prior to drug
supplementation (Figure S7A); however, mice subjected to
KU0063794 were significantly less frail following the treatment
(Figure 7F). Detailed analyses also revealed a KU0063794-
induced improvement of coat and eye-related features
(Figure S7B).
Chronic treatment with another mTOR inhibitor, rapamycin,

decreases the percentage of T cells in secondary lymphoid or-
gans.131 We tested if KU0063794 affected immune cell propor-
tion in the spleen of 27-month-old mice after 5 months of treat-

ment and observed a slightly reduced percentage of T cells
relative to the total number of CD45+ cells (Figure 7G).
KU0063794 also affected the proportion of follicular B cells,
but not other B cell populations (Figure S7C). Age-associated
clonal B cells (ACBCs), which produce B cell lymphoma in
aged mice,132 were unaffected by KU0063794, suggesting that
its lifespan-extending effect is not driven by the delay of B cell
lymphoma.
Since chronic rapamycin treatment also leads to glucose intol-

erance in mice,131 we performed a glucose tolerance test on a
separate cohort of 24-month-old male mice subjected to
KU0063794 for 2 months. KU0063794 did not affect glucose
tolerance in old mice as there was no difference in glucose clear-
ance dynamics between the control and treated groups
(Figures 7H and 7I).

Figure 7. Transcriptomic longevity signatures reveal lifespan-regulating interventions
(A) Association of murine gene expression response to genetic, environmental (upper) and pharmacological (lower) interventions with signatures of aging (red),

long-lived species (blue) and lifespan-extending interventions (green). Aggregated (left) and individual (right) signatures were utilized. Statistical significance

denoted with asterisks was estimated with GSEA-based test. The output of the association analysis is in Table S6. p̂ adjusted < 0.1; *p adjusted < 0.05; **p

adjusted < 0.01; ***p adjusted < 0.001.

(B) Design of the study testing the effect of KU0063794 on mouse survival and healthspan.

(C) Survival curves of male C57BL/6 mice subjected to KU0063794 (10 ppm) at 25 months old. p value was calculated with log-rank tests.

(D) Body weight of 30-month-old control and KU0063794-treated male C57BL/6 mice.

(E) Median time to finish measured in 30-month-old control and KU0063794-treated male C57BL/6 mice.

(F) Frailty index score of 30-month-old control and KU0063794-treated male C57BL/6 mice.

(G) Percentage of immune cell types in spleens of 27-month-old control and KU0063794-treated male C57BL/6 mice.

(H) Glucose tolerance in 24-month-old control and KU0063794-treated C57BL/6 mice. n = 10 for each group.

(I) Area under the curve (AUC) of glucose level shown in (H).

p values on (D)–(I) were calculated with one-tailed Wilcoxon rank-sum tests.

NES, normalized enrichment score; CR, calorie restriction; GH, growth hormone; ML, maximum lifespan; MLres, maximum lifespan residual; KO, knockout; OE,

overexpression; WAT, white adipose tissue.

See also Figure S7 and Tables S1, S6, and S7.
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Necropsy analyses of mice from the lifespan cohort that
died from natural causes or were euthanized due to the
moribund state did not reveal significant differences in
incidences of individual pathologies between control and
treated groups (Table S7). Larger follow-up studies may pro-
vide more data on specific healthspan-promoting effects of
KU0063794.

DISCUSSION

In this work, we characterized gene expression signatures of
mammalian lifespan in 3 organs. Many patterns of species
longevity were conserved across tissues, including up- and
downregulation of genes associated with DNA repair and protein
degradation, respectively. Interestingly, they were also observed
in primary fibroblasts,30 indicating that shared molecular mech-
anisms of longevity are presumably driven not only by the sys-
temic effect of circulating signaling molecules (e.g., IGF-1) but
also by genetically encoded features (e.g., mutations in regulato-
ry regions). Activation, rather than suppression, of proteasome
or autophagy extends the lifespan of model organisms, including
roundworms,133,134 fruit flies,135 and mice.136 Downregulation of
proteolysis in long-lived species may be caused by higher
accuracy of protein synthesis, lower level of damage, or better
maintenance of the translation machinery.137 Indeed, protein
turnover rate is negatively correlated with species lifespan in
mammals.138

The identified transcriptomic signatures were concordant with
the metabolite data. Thus, urate concentration was positively
correlated with species longevity, and the uricase gene expres-
sion was downregulated in long-lived mammals. Interestingly,
the opposite effect was produced by lifespan-extending inter-
ventions in mice, demonstrating that different molecular mecha-
nisms may be associated with longevity on short-term and
evolutionary timescales. The double-edged sword effect of urate
on healthspan is supported by its role both as an antioxidant and
activator of the inflammasome, contributing to metabolic disor-
ders.139 Similarly, activation of genes involved in methionine
metabolism was a specific feature of lifespan extension in
mice, whereas the upregulation of NAD+ biosynthesis induced
by longevity interventions was only partially shared by long-lived
mammals.

Mammalian age-related transcriptomic changes were also
generally similar across different organs and species. Many of
them were related to the established hallmarks of aging,
including mitochondrial dysfunction, senescence, and inflam-
mation.64,65 Thus, detrimental molecular processes leading to
the loss of physiological integrity appear to be partly modulated
at the level of gene expression. Secretory signaling molecules
associated with the accumulated damage, such as inflammatory
cytokines, may be partially responsible for the induction of com-
mon aging-related changes across tissues, supported by the
systemic effect of heterochronic parabiosis and plasma dilution
on mouse organs.140,141

Comparison of the identified transcriptomic signatures of
mammalian aging, species longevity, and lifespan-extending in-
terventions in mice revealed a complex interplay between these
traits. Overall, aging signatures were negatively correlated with

features of mouse lifespan extension, suggesting that the bene-
ficial effect of established longevity interventions may be associ-
ated with the deceleration of damage accumulation resulting in a
younger biological age. At the same time, biomarkers of long-
lived species were positively correlated with age-related
changes. Genes responsible for this trend were involved in en-
ergy metabolism (e.g., oxidative phosphorylation) and certain
branches of the innate immune response (e.g., complement
cascade). This finding points to the existence of various strate-
gies to achieve longevity (Figure 6F), some of which may be
marginally efficient for short-lived species but do not provide a
long-term benefit on an evolutionary timescale. In agreement
with this hypothesis, CD, an inhibitor of the NF-kB complex,
improved the survival of fibroblasts from short-lived species un-
der oxidative stress but was significantly less effective in cells
from long-lived mammals.
A positive association between biomarkers of aging and spe-

cies longevity can also be driven by the multifaceted nature of
age-related processes, incorporating bothdeleterious andadap-
tive effects, a pattern also observed for epigenetic changes in hu-
mans.69 This hypothesis is further supported by the existence of
signatures shared by aging and both longevity models, such as
upregulation of ribosomal protein genes and downregulation of
Igf1. The common adaptive effects can reflect the slowdown of
damage accumulation achieved through the reduction of protein
turnover rate and translation, which are associated with
increased lifespan across species,138 and occur during aging142

and in response to lifespan-extending interventions.143 On the
other hand, shared biomarkers of longevity that display opposite
association with aging, such as upregulatedmitochondrial trans-
lation, may represent robust determinants of lifespan regulation
through counteraction of harmful age-related changes driving
the physiological deterioration. Accordingly, compounds that
targeted these mechanisms provided similar improvement in
cell survival to fibroblasts from short- and long-lived mammals.
Another notable difference between molecular signatures of

longevity within and across species was the evolutionary age
and essentiality of the corresponding genes. Biomarkers of
long-lived species were enriched for evolutionarily ancient, mu-
tation-intolerant genes, whereas lifespan-extending interven-
tions mainly affected younger genes tolerant to mutations and
copy-number variation. Overall, the data suggest that longevity
on the evolutionary timescale is achieved by fine-tuning of funda-
mental machinery deep-rooted in natural history that affects
primary damage emergence and rate of its accumulation (i.e.,
upregulation of DNA repair and innate immune response, and
downregulation of the IGF-1 and PI3K-Akt pathway).9 On the
other hand, most established lifespan-extending interventions
seem to operate through the modulation of less conserved com-
ponents associated with metabolic remodeling (i.e., upregula-
tion of oxidative phosphorylation and fatty acid and amino acid
metabolisms) and deceleration of secondary detrimental pro-
cesses induced in response to already accumulated damage
(i.e., downregulation of NF-kB, and complement and coagulation
cascades). These two mechanisms may represent complemen-
tary ways to deal with molecular damage and provide an instru-
ment to search for efficient combinatorial therapies, targeting
both longevity strategies simultaneously.
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By employing the discovered signatures of longevity and ag-
ing, we identified several candidates for mouse healthspan and
lifespan extension, including chronic hypoxia, hepatocyte-spe-
cific Keap1 knockout, KU0063794, AZD8055, GDC-0941, and
ascorbyl-palmitate. Interestingly, some of them were supported
by both models of longevity, suggesting that they may be simi-
larly effective in short- and long-lived mammalian species. In
agreement with the prediction, one of the top candidates re-
vealed by signature-based screening, KU0063794, significantly
extended lifespan and healthspan of old C57BL/6mice. Remark-
ably, its short-term effect on the transcriptomic profile was not
negatively associated with aging, suggesting that it does not
seem to be a necessary condition to achieve a longer lifespan.
Future comprehensive studies may shed light on the differences
in the mechanisms of longevity interventions operating via anti-
aging or aging-independent routes. Thus, transcriptomic
signatures of longevity may be used to identify lifespan- and
healthspan-extending interventions based on their gene expres-
sion profiles, thereby facilitating the discovery of novel
geroprotectors.

Limitations of the study
Some variation in biological age between examined species may
be present due to the unknown precise age and exact health sta-
tus of young adult animals collected in thewild. Future expansion
of this dataset with samples of different ages for each species
would be of high value for the identification of age-adjusted
longevity signatures and analysis of differences in molecular
mechanisms of aging across species. Besides, signatures of es-
tablished lifespan-extending interventions identified for mouse
models may not entirely translate to other mammals. The collec-
tion of similar data from other species would shed light on the
universality and differences in mechanisms of CR, GH defi-
ciency, and other interventions. Finally, the shared and distinct
longevity signatures were analyzed based on transcriptomic
and metabolomic data; however, multi-omics approaches may
yield further insights into mechanisms of lifespan regulation.
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Brüning, T., Rummel, C., Grützner, F., Cardoso-Moreira, M., Janich, P.,

et al. (2020). Transcriptome and translatome co-evolution in mammals.

Nature 588, 642–647. https://doi.org/10.1038/s41586-020-2899-z.

45. Rops, A.L., Götte, M., Baselmans, M.H., Van DenHoven,M.J., Steenber-

gen, E.J., Lensen, J.F., Wijnhoven, T.J., Cevikbas, F., Van Den Heuvel,

L.P., Van Kuppevelt, T.H., et al. (2007). Syndecan-1 deficiency aggra-

vates anti-glomerular basement membrane nephritis. Kidney Int. 72,

1204–1215. https://doi.org/10.1038/sj.ki.5002514.

46. Vanhoutte, D., Schellings, M.W.M., Götte, M., Swinnen, M., Herias, V.,

Wild, M.K., Vestweber, D., Chorianopoulos, E., Cortés, V., Rigotti, A.,

et al. (2007). Increased expression of syndecan-1 protects against car-

diac dilatation and dysfunction after myocardial infarction. Circulation

115, 475–482. https://doi.org/10.1161/CIRCULATIONAHA.106.644609.

47. Luo, Y., He, Z., Liu, W., Zhou, F., Liu, T., and Wang, G. (2022). DTL Is a

Prognostic biomarker and Promotes Bladder Cancer Progression

through Regulating the AKT/mTOR axis. Oxid. Med. Cell. Longev.

2022, 3369858. https://doi.org/10.1155/2022/3369858.

48. Wilson, D.J. (2019). The harmonic mean p-value for combining depen-

dent tests. Proc. Natl. Acad. Sci. USA 116, 1195–1200. https://doi.org/

10.1073/pnas.1814092116.

49. Chu, T., Wang, Z., Pe’er, D., and Danko, C.G. (2022). Cell type and gene

expression deconvolution with BayesPrism enables Bayesian integrative

analysis across bulk and single-cell RNA sequencing in oncology. Nat.

Cancer 3, 505–517. https://doi.org/10.1038/s43018-022-00356-3.

50. Sinha,M., Jang, Y.C., Oh, J., Khong, D., Wu, E.Y., Manohar, R., Miller, C.,

Regalado, S.G., Loffredo, F.S., Pancoast, J.R., et al. (2014). Restoring

systemic GDF11 levels reverses age-related dysfunction in mouse skel-

etal muscle. Science 344, 649–652. https://doi.org/10.1126/science.

1251152.

51. Moigneu, C., Abdellaoui, S., Ramos-Brossier, M., Pfaffenseller, B., Wol-

lenhaupt-Aguiar, B., de Azevedo Cardoso, T., Chiche, A., Kuperwasser,

N., Azevedo da Silva, R., Pedrotti Moreira, F., et al. (2023). Systemic

GDF11 attenuates depression-like phenotype in aged mice via stimula-

tion of neuronal autophagy. Nat. Aging 3, 213–228. https://doi.org/10.

1038/s43587-022-00352-3.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD19 BioLegend Cat#115503; RRID: AB_313638

Anti-mouse/human CD11b BioLegend Cat#101203; RRID: AB_312786

Anti-mouse CD3 BioLegend Cat#100243; RRID: AB_2563946

Anti-mouse CD45 BioLegend Cat#103103; RRID: AB_312968

Chemicals, peptides, and recombinant proteins

DMEM, high glucose, GlutaMAX! Gibco Cat#10566016

Fetal Bovine Serum R&D Systems Cat#S11150

Bovine Serum Albumin Sigma Cat#A9418

Antibiotic-Antimycotic (100X) Gibco Cat#15240096

DMSO (Dimethyl sulfoxide) Sigma Cat#D2650

Paraquat dichloride hydrate Sigma Cat#36541

Cardamonin Selleck Chemicals Cat#S3942

Clofilium tosylate Targetmol Cat#T14982

Deguelin Selleck Chemicals Cat#S8132

KU-0063794 MedChemExpress Cat#HY-50710

AZD8055 MedChemExpress Cat#HY-10422

Ascorbyl-palmitate MedChemExpress Cat#HY-B0987

GDC-0941 MedChemExpress Cat#HY-50094

Enzastaurin MedChemExpress Cat#HY-10342

AS-703026 MedChemExpress Cat#HY-12042

Critical commercial assays

PureLink RNA Mini Kit Thermo Fisher Scientific Cat#12183020

CellTiter-Glo" Luminescent Cell

Viability Assay

Promega Cat#G7570

Deposited data

Raw data files and processed data files for

RNA-seq

This paper GEO: GSE227360

mSALT database This paper http://gladyshevlab.org/mSALT/

Metabolite profiling data Ma et al.27; Tyshkovskiy et al.33 N/A

Public gene expression data from tissues

and fibroblasts of mammalian species

Fushan et al.31; Brawand et al.37; Kim

et al.34; Merkin et al.38; Qiu et al.41;

Seim et al.4; Fan et al.40; Seim et al.35;

Yim et al.39; Fang et al.36

GEO: GSE43013, GSE30352, GSE30337,

GSE41637, GSE33300, GSE42297, GSE39150,

GSE50726; SRA: PRJNA263931, PRJNA72723

Public gene expression data on

mammalian aging

See Table S1B for a list of sources N/A

Gene expression signatures of lifespan-

extending interventions

Tyshkovskiy et al.33 N/A

Yeast gene expression signatures of

longevity

Kaya et al.70 N/A

Public gene expression data of yeast

replicative aging

Janssens et al.73 N/A

Public gene expression profiles of mouse

tissues subjected to interventions

Osburn et al.109; Baze et al.110; Zhou

et al.111; Yeung et al.112; Bongers et al.113;

Hand et al.114; Sunami et al.115

GEO: GSE15891, GSE11287, GSE11899,

GSE46209, GSE63007, GSE28085, GSE36838
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Animal Ageing and Longevity (AnAge)

Database

Tacutu et al.144 https://genomics.senescence.info/species/

index.html

Gene sets of housekeeping, essential and

evolutionary old genes

Wang et al.44 N/A

Tabula Muris single-cell atlas Almanzar et al.24 GEO: GSE109774

Experimental models: Cell lines

C57Bl/6J mouse fibroblasts (Mus

musculus)

Lee et al.145 N/A

UM-HET3 mouse fibroblasts (Mus

musculus)

University of Michigan N/A

Rat fibroblasts (Rattus norvegicus) University of Rochester N/A

Naked mole rat fibroblasts (Heterocephalus

glaber)

Lee et al.145 N/A

Western long-eared myotis fibroblasts

(Myotis evotis)

University of Michigan N/A

Yuma myotis fibroblasts (Myotis

yumanensis)

University of Michigan N/A

Human fibroblasts (Homo sapiens) Lee et al.145 N/A

Experimental models: Organisms/strains

Baboon (Papio anubis) Southwest National Primate Research

Center (SNPRC)

N/A

Canadian beaver (Castor canadensis) Southwest National Primate Research

Center (SNPRC)

N/A

Long-tailed macaque (Macaca fascicularis) Southwest National Primate Research

Center (SNPRC)

N/A

Siberian chipmunk (Tamias sibiricus) Fushan et al.31 N/A

American black bear (Ursus americanus) Fushan et al.31 N/A

Sugar glider (Petaurus breviceps) Fushan et al.31 N/A

Greater tube-nosed bat (Murina

leucogaster)

Fushan et al.31 N/A

White-footed mouse (Peromyscus

leucopus)

Fushan et al.31 N/A

Mouse: C57BL/6J National Institute on Aging Aged Rodent

Colony

N/A

Mouse: UM-HET3 University of Michigan Medical School N/A

Software and algorithms

Flow cytometry analysis: FlowJo! BD Biosciences N/A

Adaptor removing: Trimmomatic

(version 0.32)

Bolger et al.146 http://www.usadellab.org/cms/index.php?

page=trimmomatic

Functional enrichment: GSEA Subramanian et al.147 http://software.broadinstitute.org/gsea/

index.jsp

Functional enrichment: gprofiler2 Kolberg et al.148; Raudvere et al.149 https://cran.r-project.org/web/packages/

gprofiler2/index.html

App development: shiny Chang et al.150 https://shiny.rstudio.com/

Programming environment: RStudio https://www.rstudio.com/ N/A

Differential gene expression analysis of

RNAseq: edgeR

Robinson et al.151 https://bioconductor.org/packages/release/ bioc/

html/edgeR.html

Differential gene expression analysis of

microarrays: limma

Ritchie et al.152 https://bioconductor.org/packages/release/ bioc/

html/limma.html

Mixed-effect model: metafor Viechtbauer et al.153 http://CRAN.R-project.org/package=metafor
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Vadim N.
Gladyshev (vgladyshev@rics.bwh.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d RNA-seq data reported in this work are available at NCBI GEO data repository under accession number GEO: GSE227360

(SubSeries GSE227358 and GSE227359). Accession numbers for publicly available datasets analyzed in this study are listed
in the key resources table.

d mSALT database can be accessed through the following link: http://gladyshevlab.org/mSALT/. Data analysis code is available
from the authors upon request.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mammalian species sample collection
The 39 organ samples for young adults of baboon (Papio anubis), beaver (Castor canadensis), and long-tailed macaque (Macaca fas-
cicularis) were collected from the Southwest National Primate Research Center (SNPRC). The 9 organ samples for young adults of
chipmunk (Tamias sibiricus), American black bear (Ursus americanus), sugar glider (Petaurus breviceps), tube-nosed bat (Murina leu-
cogaster), and white-footed mouse (Peromyscus leucopus) were collected as previously described.31

Cell lines and culture
Fibroblasts from 6 species were cultured, including Mus musculus (C57BL/6J and UM-HET3 strains), Rattus norvegicus, Heteroce-
phalus glaber, Myotis evotis, Myotis yumanensis and Homo sapiens. Mouse (C57BL/6J strain) and naked mole rat (NMR) fibroblast
cell lines were established as previously described from 3 individual animals per species/strain.145 Primary human fibroblasts were
derived from skin biopsy. The rat fibroblast line was obtained from the University of Rochester collection.159 Primary fibroblast lines
from UM-HET3 mice and two bats (western long-eared myotis and Yuma myotis) were from the University of Michigan collection.160

All fibroblasts were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with Glutamax and supplemented with 10% fetal
bovine serum and 1X antibiotic/antimycotic. All cells were cultured at 37#C and 5% CO2, while NMR cells were cultured at 32#C,
3% O2 and 5% CO2.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RNAseq normalization: RLE Anders and Huber154 https://bioconductor.org/packages/release/ bioc/

html/edgeR.html

Prediction of compounds with similar gene

expression response: CMap

Lamb et al.107; Subramanian et al.147 https://clue.io

Identification of similar gene expression

profiles: GeneQuery

https://artyomovlab.wustl.edu/

genequery/

N/A

Mapping: STAR (version 2.5.2b) Dobin et al.155 https://github.com/alexdobin/STAR

Counting: featureCoutns (version 1.5) Liao et al.156 https://subread.sourceforge.net/

Harmonic mean p value: harmonicmeanp Wilson et al.48 https://cran.r-project.org/web/packages/

harmonicmeanp/index.html

Cell type deconvolution: bayesPrism Chu et al.49 https://github.com/Danko-Lab/BayesPrism

Sparse partial correlation matrix: glasso Friedman et al.157 https://cran.r-project.org/web/packages/

glasso/index.html

Phylogenetic analysis: phangorn Schliep et al.158 https://cran.r-project.org/web/packages/

phangorn/index.html

ll

e3 Cell 186, 1–21.e1–e12, June 22, 2023

Please cite this article in press as: Tyshkovskiy et al., Distinct longevity mechanisms across and within species and their association with ag-
ing, Cell (2023), https://doi.org/10.1016/j.cell.2023.05.002

Article

mailto:vgladyshev@rics.bwh.harvard.edu
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227360
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227358
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE227359
http://gladyshevlab.org/mSALT/
https://bioconductor.org/packages/release/%20bioc/html/edgeR.html
https://bioconductor.org/packages/release/%20bioc/html/edgeR.html
https://clue.io
https://artyomovlab.wustl.edu/genequery/
https://artyomovlab.wustl.edu/genequery/
https://github.com/alexdobin/STAR
https://subread.sourceforge.net/
https://cran.r-project.org/web/packages/harmonicmeanp/index.html
https://cran.r-project.org/web/packages/harmonicmeanp/index.html
https://github.com/Danko-Lab/BayesPrism
https://cran.r-project.org/web/packages/glasso/index.html
https://cran.r-project.org/web/packages/glasso/index.html
https://cran.r-project.org/web/packages/phangorn/index.html
https://cran.r-project.org/web/packages/phangorn/index.html


Animals and predicted compounds
Three-month old UM-HET3 mice were subjected to diets containing compounds predicted with the longevity gene expression sig-
natures via Connectivity map (CMap)107,108: GDC-0941 (pictilisib) (50 ppm, as in Salphati et al.161 and Raynaud et al.162), enzastaurin
(75 ppm, as in Graff et al.125 andGelardi et al.163), AS-703026 (30 ppm, as in Kim et al.164), KU0063794 (10 ppm, as in Yongxi et al.165),
AZD8055 (20 ppm, as in Garcı́a-Martı́nez et al.166) and ascorbyl-palmitate (6.3 ppm, as in Veurink et al.167) for 1 month. Liver and
kidney sampleswere taken from treatedmice alongwith their untreated sex- and age-matched littermates, whichwere fed ad libitum.
In all cases, interventions continued until the animals were sacrificed. All animal protocols were approved by the Brigham and
Women’s Hospital and University of Michigan Institutional Animal Care and Use Committees.
All organisms received the same diet (Purina 5LG6) made in the same commercial diet kitchen (TestDiet, Richmond, IN, USA).

Genetically heterogeneous UM-HET3 strain, in which each mouse had unique genetic background but was derived from inbred
grandparents of the same background (C57BL/6J, BALB/cByJ, C3H/HeJ, andDBA/2J), was used in this setting. This cross produces
a set of genetically diverse animals, which minimizes the possibility that the identified signatures represent gene expression patterns
specific to inbred lines. Moreover, this strain was used by ITP to test the lifespan extension potential of the compounds analyzed in
this study. In all cases, interventions continued until the animals were sacrificed.
All mice were kept at a density of 3 males per ventilated cage, in a specific-pathogen free vivarium, with 12:12 light:dark cycle.

Animals were moved to fresh cages every 14 days. Maintenance of specific-pathogen free status was documented quarterly, using
sentinel mice exposed to spent bedding sampled from each experimental cage, and evaluated by a mixture of fecal RT-PCR tests
and serology for anti-viral antibodies. Health was evaluated daily for each mouse.

Animals and KU0063794 treatment
Old C57BL/6J male mice were obtained from the National Institute on Aging Aged Rodent Colony. 22 months old and 25 months old
mice were subjected either to control 5053 diet or to 10 ppmKU0063794 incorporated into 5053 diet andwere fed ad libitum. All diets
were irradiated and heat-sealed and stored at 4ºC for 6 months or less. During lifespan analysis mice were checked every weekday.
Mice died from natural causes or were euthanized due to the moribund state (characterized by body condition score of 1.5 or less,
tumor size over 2 cm, reluctance to move, or labor breathing). Animals from cross-sectional cohort were euthanized with CO2

following by cervical dislocation. All experiments using mice were performed in accordance with institutional guidelines for the
use of laboratory animals andwere approved by the Brigham andWomen’s Hospital and HarvardMedical School Institutional Animal
Care and Use Committees.

METHOD DETAILS

RNA-seq profiling of mammalian tissues
For RNA-seq analysis of mammalian species, 48 samples were collected from different tissues of young males corresponding to 8
species: baboon, beaver, long-tailed macaque, American black bear, chipmunk, sugar glider, tube-nosed bat, and white-footed
mouse (Table S1A). RNA-seq libraries were prepared as previously described.31 Paired-end sequencing with 200bp (for baboon,
beaver, long-tailed macaque) or 100 bp (for bear, chipmunk, sugar glider, tube-nosed bat, white-footed mouse) read length was per-
formed on Illumina HiSeq2000 platform. Additional RNA-seq libraries were obtained from the following NCBI Gene Expression
Omnibus (GEO)168 and Sequence Read Archive (SRA) datasets: GSE43013,31 GSE30352,37 GSE30337,34 GSE41637,38

GSE33300,41 GSE42297,4 GSE39150,40 PRJNA263931,35 PRJNA7272339 and GSE5072636 (Table S1A). Total mammalian dataset
included 371 biological samples from brain (36 species), kidney (36 species), liver (41 species), cerebellum (10 species), heart (13
species), and testis (10 species). As an out-group, we also included 12 chicken (Gallus gallus) samples obtained from the same or-
gans. All analyzed samples were obtained from males, except for vervet and horse where females were used.
For RNA-seq analysis corresponding to drugs predicted with longevity signatures, we used 4 and 8 biological replicates per exper-

imental group for treated and control mice, respectively (Table S1C). RNA was extracted from tissues with PureLink RNA Mini Kit as
described in the protocol and passed to sequencing. RNA-seq libraries were prepared as described in Hashimshony et al.169 and
sequenced with 100 bp read length option on the Illumina HiSeq 2500.

Stress resistance assay
Stress resistance assay was performed as described previously.100 Briefly, on day 1, fibroblasts were suspended at a concentration
of 5,000 cells/100 ml (0.53 105 cells/ml) in DMEM plus 0.5% BSA. Cells were then aliquoted into 96-well plates and incubated over-
night at 37#C or 32#C (in the case of NMR cells) in a 5% humidified CO2 or 5% humidified CO2, 3%O2 (for NMR) incubator. On day 2,
0.1 ml of Cardamonin, Clofilium tosylate, Deguelin or DMSO (control) were added, for an initial compound concentration of 8 mM
(Cardamonin), 4 mM (Clofilium tosylate), 2 mM (Deguelin) and the initial DMSO concentration of 0.1%. Plates were then incubated
overnight. On day 3, 5 ml of medium alone (control) or medium plus paraquat were added to the plates. Paraquat concentration
was optimized for each species so that, on average, approximately 50% of fibroblasts survived following this treatment. On day
4, 100 ml of CellTiter-Glo detection reagent was added to each well, and luminescence (RLU) was measured on a SynergyTM HT
Multi-Mode Microplate Reader (BioTek" Instruments, Inc). The experiment was reproduced 3-6 times for each compound and con-
trol group for every species and mouse strain.
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Frailty index and gait speed
Frailty index was measured as described in Schultz et al.170 prior to the start of the treatment (in 25-month-old mice) and after
5 months of treatment for control mice and mice subjected to KU0063794 (30-month-old mice). Frailty index score was calculated
per the original protocol. Gait speedwasmeasured as in Shindyapina et al.171 for same groups of mice. In brief, mice were positioned
in the standard mouse cage that had free space on the one end and a food container on the other end. The time of finish was deter-
mined as the time when the mouse nose crossed the finish line. Each mouse was let run four times and the median value was re-
corded. An attempt was considered successful if the mouse crossed the finish line without standing or turning 90 degrees or
more during the run. Ten seconds were recorded if a mouse failed to finish the run in 10 seconds.

Glucose tolerance test
24-month-old mice subjected KU0063794 for 2months and age-matched control micewere placed into food-free cages for 16 hours
(usually from 7 pm until 11 am the next day). The next day, mice were weighted, marked, bled from the tail and the fasting blood
glucose level wasmeasuredwith a glucometer Accu-Chek PerformNano (Accu-check inform II strips). Filtered 30%glucose in sterile
saline solution (Sigma) was injected i.p. at a final dose of 1 g/kg of body weight. Injections were done at 30-second intervals between
the mice. Glucose level was measured again at 20, 40, 60 and 120 minutes after the injection with a 30-second interval between
the mice.

Flow cytometry
Myeloid cells were gated as CD45+CD3-CD11b+CD19-, B cells as CD45+CD11b-CD3-CD19+, T cells as CD45+CD3+CD11b-CD19-.
mAbs used for staining included: anti-CD19 [6D5], anti-CD11b [M1/70], anti-CD3 [17A2], and anti-CD45 [30-F11] (all fromBiolegend).
Dead cells were excluded by DAPI staining. Data was collected on a Cytek DXP11 and analyzed by FlowJo software (BD). Spleens
were gently pressed between microscopy slides to get single-cell suspensions. One ml of cell suspensions were 1) incubated with
14 ml of red blood lysis buffer for 10 min on ice, 2) centrifuged at 4#C, 250 g for 10 min, 3) washed once with 1 ml of FACS buffer (1%
FBS in PBS), 4) stained in 100 ul of AB solution (2 ng/ul of each AB) at 4#C for 20 min protected from light, 5) washed again, 6) filtered
into tubes with cell strainer snap cap (Corning), and 7) analyzed with flow cytometry.

Necropsy analysis
Mice were euthanized with CO2 followed by cervical dislocation. The chest and abdomen were opened, and the body was immersed
into formalin solution and stored at 4#C until further analysis. For necropsy, all organs, including small endocrine organs, were
dissected, trimmed at 5 mm thickness and embedded in paraffin blocks. Paraffin blocks were sectioned at 5 mm and stained with
hematoxylin and eosin. The slides were examined blindly by a pathologist.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data processing
For tissue samples from mammalian species, we utilized the pipeline from Ma et al.30 to generate reference sequences and identify
species-specific ortholog gene sets (using the published annotated genomes in Ensembl or NCBI if available; otherwise generating
de novo transcriptome assembly with Trinity). Genome annotation for 29 out of 42 specieswas available in NCBI or Ensembl, whereas
the other 13 species required de novo assembly of the transcriptomes. The RNA-seq reads were then mapped to the species-spe-
cific ortholog sets using STAR155 and read counting was performed by featureCounts.156 Those ortholog sets with too high counts
(i.e. read counts contributing to >5% of the total counts) or too low counts (i.e. less than 10 counts in >30% of the samples) were
discarded. The library sizes were scaled by trimmed mean of M-values (TMM) method, log10-transformed, and quantile-normal-
ized.151 The final expression set consisted of 13,784 gene orthologs across 42 species, including 41mammalian species and chicken
(Gallus gallus) used as an out-group. Phylogenetic tree on Figure 1Awas constructed based on nucleotide sequences of 13,784 gene
orthologs using neighbor joining method.

For samples corresponding to predicted compounds, quality filtering and adapter removal were performed using Trimmomatic
(version 0.32).146 Processed/cleaned reads were thenmapped with STAR (version 2.5.2b)155 and counted via featureCounts (version
1.5).156 To filter out genes with low number of reads, we left only genes with at least 6 reads in at least 66.6% of samples, which re-
sulted in 9,011 detected genes according to Entrez annotation. Filtered data was then passed to RLE normalization.154

Ortholog quality of mammalian species samples
Before proceeding with data analysis of mammalian species RNA-seq samples, we assessed the quality of the orthologs in terms of
the following areas (Figure S1). The coding sequences were checked for completeness of open-reading frame (including start codon,
stop codon, and correct coding frame). Sequence fragments or partially missing sequences (e.g. those species with no published
genomes and had to rely on de novo transcriptome assembly) were filled up using the consensus of related species. In the mamma-
lian transcriptome dataset, 80%of the orthologs did not require filling up or were filled up <10%of sequence length, and there was no
significant bias against those filled up using consensus in terms of standardized expression values (Figure S1B). To assess the quality
of our de novo assembly strategies, we also generated de novo transcriptomes for those species with published genomes (18
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species with genomes available in Ensembl and 11 species with genomes available in NCBI; Table S2). Read alignment rates to the
ortholog sets were consistent across the samples with and without complete genomes (Figure S1A, upper), and the Spearman
correlation coefficients between the read counts based on de novo assembled ortholog set alignment and those based on genome
alignment were >0.95 for most of these species (Figure S1A, lower), suggesting that the de novo assembled ortholog sets accurately
reflected the gene expression counts. Lastly, for each of the 18 species with annotated genomes in Ensembl, we compared our or-
tholog definition with the Ensembl ortholog definition. Ortholog data for !10,000 to !15,000 of our orthologs (per species) could be
found in Ensembl, and 90-99% of themmatched our definition (Table S2), suggesting that the results of our pipeline were consistent
with other databases.

Life history data of the species
The adult weight (AW), maximum lifespan (ML) and female time to maturity (FTM) data of the species (or if not available, for a closely
related species) were obtained from the Animal Ageing and Longevity (AnAge) Database.144 In addition, since both ML and FTM in-
crease with AW, we calculated the body mass adjusted residuals (i.e. MLres and FTMres), to represent the ratio between the
observed longevity and the expected longevity based on body mass.27,30 Two allometric equations were used to calculate the re-
siduals. The MLres equation, MLres = ML =ð4:88 3 AW0:153Þ, was based directly on the documentation of the AnAge database
(http://genomics.senescence.info/help.html#anage). The FTMres equation, FTMres = FTM =ð78:1 3 AW0:217Þ, was based on linear
regression using the FTM and body mass records of 1330 mammalian species in the AnAge database.

Mammalian RNA-seq data analysis
Principal component analysis (PCA) was performed on the standardized expression values and the first three Principal Components
(PCs) were extracted. 6,050 genes significantly enriched or depleted in one organ relative to the others (p value <0.01) were identified
withWilcoxon rank-sum test. Heatmap showing organ-specific expression patterns was constructed based on standardized expres-
sion values of these genes. Complete linkage hierarchical clustering was performed based on Spearman correlation distance.
ANOVA was used to assess the percentage of variation in the expression of individual genes explained by species and tissues

across all available samples. Within tissues, 82-94% of variance was explained by species (Figure S1D). To account for a potential
batch effect introduced by different data sources aggregated during analysis, we also performed a similar analysis within datasets,
running it on samples from the same data source. Datasets with at least 4 different species and 8 biological replicates available for a
given organ were considered. For each of them, we applied ANOVA for every gene to estimate the percentage of variation in the
expression explained by species. The calculated estimates were pooled together and visualized on boxplots. This analysis resulted
in similar estimates (78-95% of variance explained by species), suggesting that batch effect introduced by various sources of data is
relatively small compared to species-specific differences (Figure S1D).
Spearman correlation between average expression profiles of different species for each tissuewas calculated in a pairwisemanner

(Figure 1C). To adjust for differences in the number of species and biological replicates available for each organ, a similar analysis was
performed for nine species that were available for all presented organs (bonobo, chicken, chimpanzee, gorilla, human, macaque,
mouse, opossum, and platypus). Besides, the same number of biological replicates for each species was selected across all tissues.
The difference between the median correlation coefficient in the testis and other organs was assessed usingWilcoxon rank-sum test
(Figure S1E).
To identify genes with significant correlation to the longevity traits (ML, MLres, FTM or FTMres), regression was performed using

the generalized least square approach, by incorporating the phylogenetic relationship in the variance-covariance matrix.27,30,172,173

As previously described,27,30 four different trait evolution models (‘null’, ‘Brownian motion’, ’Pagel’s lambda’, and ’Ornstein-Uhlen-
beck’) were tested and the best fit model was selected based onmaximum likelihood. A two-step procedure was applied to verify the
robustness of the results. In the first step, the species whose exclusion would lead to most improvement in the slope p value (i.e. a
potential outlier), was identified and removed. The regression p value of this step was reported as ‘sensitive p value’. In the second
step, maximum p value after exclusion of each individual species was identified, reported as ‘robust p value’. The False Discovery
Rate (FDR) correction based on Benjamini-Hochberg (BH) approach was performed to adjust for multiple hypothesis testing.174 To
qualify as a top hit, we required a gene to have adjusted p value < 0.05. To test if genes associated with longevity retained their as-
sociation after adjustment for body mass, we performed the same procedure for identified top hits (adjusted p value < 0.05) using
MLres or FTMres as outcome variables. We qualified gene as significant if corresponding p value < 0.05 after this adjustment.
To account for a potential bias introduced by differences in gene length and sequence variation across species, for every gene in

the ortholog set we calculated its length in all examined species based on the de novo assembled transcriptomes together with the
nucleotide sequence distance from the corresponding Mus musculus sequence. Pairwise sequence distance was estimated based
on Jukes-Cantor model with ‘dist.ml’ function from R package phangorn.158We then introduced estimated values of gene length and
sequence distance as additional covariates in the regression model, which was used to identify significant gene expression signa-
tures of ML and FTM acrossmammalian species. For every tissue, we then calculated the proportion of signature genes that retained
a statistically significant association with the longevity traits following this adjustment (p value < 0.05). Adjustment for variation in gene
length and nucleotide sequence across species did not affect the statistically significant association with ML and FTM for more than
96.5% and 93.5% of identified signatures, respectively.
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To build an unbiased model of ML prediction based on tissue gene expression, we applied an Elastic Net linear regression algo-
rithm from scikit-learn library (linear_model.ElasticNet function). We divided species in training and test sets using leave-one-out
(LOO) procedure. Each individual species was consequently used as a test sample, while other species were used for training
and cross-validation (CV). Hyperparameters of the model were trained using 10-fold cross-validation. Trained hyperparameters
included Pearson’s correlation coefficient threshold for feature selection (between 0.15 and 0.75), alpha (between 10-4 and 102)
and l1 ratio (between 0.2 and 1). Hyperparameters associated with the lowest mean absolute error (MAE) on CV set were chosen
during each LOO iteration. The trained model was then applied to the test sample, and predicted value of log10(Maximum Lifespan)
was calculated. Afterwards, predictions for each test sample were pooled together, and the accuracy of the model was assessed
using mean absolute error (MAE), R2 and Pearson’s correlation coefficient. When applied to test set, final model resulted in
R2 = 0.78 and MAE = 0.13, corresponding to !35% difference in ML (Figure 2D). The same approach was used to estimate the ac-
curacy of prediction based on tissue gene expression and adult AW as well as AW alone. AWwas included in the model in both linear
and logarithmic scales. Model based only on AW resulted in R2 = 0.39 and MAE = 0.24 (Figure S2D).

Top gene expression predictors of mammalian ML were assessed based on model coefficient distributions across Elastic Net
models trained on different subsets. For every gene, mean model coefficient was calculated together with its standard error. Statis-
tical significance of gene coefficient difference from zero was estimated using t test. p values were adjusted for multiple comparisons
using BH approach. To quality as a robust predictor of maximum lifespan, we required a gene to have adjusted p value < 0.05.

Signatures of maximum lifespan in cultured primary skin fibroblasts collected from 16mammalian species were obtained fromMa
et al.30 Spearman correlation between gene expression signatures associated with mammalian longevity in different organs and fi-
broblasts was calculated in a pairwise manner. The union of top 500 longevity-associated genes (with the lowest p values) was used
for each pair of signatures. Hierarchical clustering of signatures was performed based on complete linkage and Euclidean distance.
To determine the statistical significance of overlap between signatures associated with ML or MLres in different tissues, we per-
formed Fisher exact test separately for up- and downregulated genes, considering 13,784 genes as a background.

Aggregation of aging data for meta-analysis
To identify signatures associated with mammalian aging, we aggregated gene expression data from the following GEO,
ArrayExpress175 and SRA datasets: GSE9103, GSE123981, GSE3150, GSE6591, GSE74463, GSE53960, GSE66715, GSE11291,
GSE34378, GSE27625, GSE12480, GSE36192, GSE1572, GSE28422, GSE25941, GSE53890, GSE38718, GSE674, GSE17612,
GSE21935, GSE362, GSE132040, E-MTAB-3374, PRJNA281127, PRJNA516151. The datasets included RNA-seq and microarray
samples obtained from different tissues ofMus musculus, Rattus norvegicus and Homo sapiens. In total, our meta-analysis covered
aging-associated changes in 17 different tissues based on 92 datasets from 25 different sources (Figures 3A and S3A; Table S1B).

Prior to aggregating the data into signatures, the following preprocessing protocol was executed for individual datasets. For RNA-
seq data, low-covered genes were filtered out using a soft threshold. Then gene Ensembl IDs were mapped to Entrez IDs. The read
was filtered out if there were zero or multiple Entrez IDs corresponding to the Ensembl ID. In case of multiple Ensembl IDs corre-
sponding to one Entrez ID, the gene coverage was calculated as the sum of the corresponding read coverages. Afterwards, the
expression data was normalized using RLE method,154 log-transformed and scaled.

For microarray data, gene expression was log-transformed to conform to normal distribution if needed. Then samples within every
study were normalized by scaling and quantile normalization. Afterwards, platform IDs weremapped to Entrez ID gene format. If mul-
tiple IDs corresponded to the same Entrez IDs, average log-expression was calculated.

For both types of data, self-consistency was evaluated using PCA, and outlier samples were discarded. Finally, mean and standard
error of aging-associated gene EC for every gene was calculated together with p value using limma.152 Pairwise comparison model
was utilized for datasets with 2 age groups, whereas linear model was used for datasets with multiple ages, resulting in log fold
change (logFC) or slope coefficient as a metric of EC, respectively. Since both these metrics estimate gene expression change
with age – in old animals compared to young ones or per unit of time, respectively – we considered them equally in the subsequent
pipeline (differences in time units were adjusted via normalization later, see ‘‘aging gene expression signatures’’). Obtained p values
were adjusted for multiple hypothesis testing using BH approach. Therefore, for every dataset we estimatedmean EC, standard error
of EC, p value and adjusted p value for each expressed gene. Importantly, one study may include multiple datasets if several species
or tissues have been analyzed there. This may be a source of batch effect, which we removed during subsequent steps of the
analysis.

Dependence of pairwise correlation between the gene expression age-related ECs from individual datasets on meta-features
(belonging to the same study, species and tissue) (Figure 3G) was examined using the following model:

r = b0 +b1 3 study +b2 3 tissue+b3 3 species;

where r is a pairwise Spearman correlation coefficient, and study, tissue and species are binary factor variables, equal to 1 if source
ID, tissue and species, respectively, are the same for both datasets in the certain pair, and 0 otherwise. Belonging to the same tissue
had the highest effect on the similarity between aging-associated gene ECs (adding, on average, 0.23 to Spearman r), followed by
dataset- and species-specific effects (each adding, on average, 0.06 to the Spearman r).
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To assess independent effects of tissue and species on similarity across datasets, we tested if they are maintained regardless of
whether the other factor matches. Specifically, we calculated Spearman correlation coefficients for the datasets corresponding to
(i) different tissues and species, (ii) different tissues and the same species, (iii) the same tissue and different species, (iv) the same
tissue and species (Figure S3B). To account for a potential batch effect associatedwith the source of data, for this analysis we utilized
only the pairs of datasets from independent studies. Differences between the groups were assessed with Wilcoxon rank sum test.
Interestingly, increased similarity between age-related ECs within the same species or tissue was maintained both when the other
factor matched and when it differed, pointing to the existence of independent tissue- and species-specific aging transcriptomic bio-
markers. Statistical significance of positive average correlation between the datasets corresponding to different species, tissues and
studies (group (i)) was assessed with Wilcoxon signed-rank test.

Aging gene expression signatures
Prior to signatures identification, normalization of ECs from individual datasets was performed based on the following algorithm. First,
denoised Pearson correlation of age-related ECs was calculated for each pair of datasets (Figure S3A). For that, we used the union of
top statistically significant aging-associated genes (with the lowest p values) in each dataset within certain pair. The threshold for the
number of genes was chosen so that it maximizes the number of significant pairwise correlations (adjusted p value < 0.05 & absolute
r > 0.1). We identified the threshold of 250 genes to be optimal for noise removal. Second, to bring ECs to the same scale across
individual datasets, we calculated normalization coefficients using multiple Deming regression model. Contrary to the simple linear
regression, Deming regression fits data by minimizing errors on both x and y axes, treating both variables equally. Therefore, it is well
suited for calibration of similar measurements performed in different studies.176We optimized thismethod by applying it to all pairs of
aging datasets simultaneously, producing the set of normalization coefficients that would minimize sum of pairwise differences in
ECs across all the data. During this step, we applied multiple Deming regression to the pairs of datasets with significant correlations
(adjusted p value < 0.05 & absolute r > 0.1), considering top 250 significant genes in each case. The cumulative squared loss across
considered pairs of datasets wasminimized with R function optim using L-BFGS-Bmethod. Normalization coefficients were allowed
to vary between 0.01 and 100. To establish global minimum of error function, themultiple Deming regression was carried out 10 times
with random initial sets of normalization coefficients, and final coefficients were chosen from the run with the smallest cumulative
regression error. Among these 10 runs, the error minimum was the same for the majority of runs indicating that the global minimum
was achieved for each signature (Figure S4).
Finally, normalized ECs from individual datasets were used to identify robust aging signatures. To account for standard error of

gene ECs and to remove batch effect related to the belonging of several datasets to the same study, we applied linear mixed-effect
model using R packagemetafor.33,153 As an input, we used both mean and standard error of EC. To mitigate source batch effect and
adjust for non-equal representation of various tissues and species in our data, random terms corresponding to the dataset ID (GEO/
ArrayExpress/SRA ID), tissue and species were introduced in the model. Such approach allowed us to account for the size of the
effect and variance of the estimated EC within each individual dataset, which provides a more sensitive and accurate analysis
compared to previous studies focused on the comparison of lists of differentially expressed genes.
Using this procedure, we obtained aggregated normalized age-related EC and corresponding p value for every gene. We declared

genes to be statistically significant signatures of aging if adjusted p value was less than 0.05. The described algorithm was utilized
separately for 3 species-specific (human, mouse and rat), 3 tissue-specific (liver, brain and muscle) and 1 global (based on all pre-
sented tissues and species) aging signatures (Figure S3C).
To validate that described approach produces aging signatures that can be generalized to the independent data, we performed

4-fold cross-validation. Specifically, we divided the list of datasets into 4 similar subsets so that each independent source of data is
contained only in one subset. Iteratively, we used 3 folds to identify signatures applying the method described above, while the 4th

fold was used as a test set. We estimated pairwise Spearman correlations between gene expression changes from different datasets
in the test fold, using (i) all genes or (ii) significant signature genes (adjusted p value < 0.05) obtained on the training set. To assess the
efficiency of normalization based on multiple Deming regression, we also calculated correlation coefficients using (iii) significant
signature genes identified without the Deming regression step (with simple scaling normalization). Pairwise Spearman correlation
coefficients from test folds were then pooled together and visualized on boxplot (Figure S3D). Differences in average correlation co-
efficients estimated using the described sets of genes were assessed with Wilcoxon signed-rank test and adjusted for multiple com-
parisons using BH approach. On average, correlation between test datasets estimated based on signature genes was significantly
higher compared to those calculated based on thewhole transcriptome, and it was further increasedwithmultiple Deming regression
normalization, supporting validity of the utilized approach.
The significance of overlap between different aging signatures was estimated by Fisher exact test separately for up- and down-

regulated genes, considering all genes tested for age association as a background. BH procedure was used to adjust p values
for multiple comparisons. Normalized ECs for visualization of gene expression changes across individual aging datasets and aggre-
gated signatures (Figures 3F and 3H) were calculated as ECi

sdðECÞ, where i denotes a certain gene and sdðECÞ is a standard deviation of
ECs across all genes in the given dataset or signature.
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Aggregated biomarkers of aging and longevity
To identify genes robustly associated with certain trait (aging, lifespan-extending interventions and longevity across species), we
calculated harmonic mean p value (HMP) for every gene across individual signatures corresponding to the trait using R package har-
monicmeanp.48 To account for EC direction, harmonic mean p values were estimated for both positive and negative association as
described in Yoon et al.83 Briefly, individual p values obtained from two-tailed tests were halved and synchronized according to
the effect direction. In other words, every pi was converted to pi/2 if the directions of true effects and tested association coincide
or to 1 " pi otherwise. Then harmonic mean p values were calculated for both cases, and the smaller of the two combined p values
was selected. This p valuewasmultiplied by two for the two-tailedmeta-analysis p value and adjusted formultiple comparisons using
Benjamini-Hochberg method. We considered a gene as significant in the aggregated signature of the trait if its adjusted HMP was
<0.05 and the rate of signatures where it was changed in the same direction was higher than 80%. Overlap of significant trait signa-
tures was assessed using Pearson’s chi-squared test separately for each pair of traits.

Expression of signatures across cell types
Cell type deconvolution of mammalian organ samples was performed with R package BayesPrism.49 Tabula Muris single-cell atlas
(both 10x and FACS data) corresponding to liver, kidney, brain (myeloid and non-myeloid), limb muscle and heart, was downloaded
fromGEOdatabase (GSE109774) and used as a reference for cell type annotation.24 For visualization, different types of epithelial and
endothelial cells were pooled together. B cells, T cells, microglial cells, Kupffer cells, macrophages, natural killer cells and other leu-
kocytes were considered as immune cells. The average proportion of each cell type and standard error was calculated for every or-
gan (Figure S2F). To adjust for subtle variation in blood cell abundance across species, we introduced the proportion of immune cells
estimated for individual samples as a separate covariate into the regression model. For every tissue, we then estimated the percent-
age of previously identified signature genes that retained a statistically significant association with mammalian maximum lifespan (p
value < 0.05) after this adjustment.

A gene was considered to be expressed in a certain cell type if at least 3 counts were detected in at least 5%of cells corresponding
to this type. For every gene, we calculated a proportion of individual cell types where it was expressed. To estimate it, we considered
99 cell types present in the Tabula Muris single-cell atlas across all available tissues. For individual and aggregated signatures of
mammalian lifespan and aging, we visualized the distributions of calculated proportions for the corresponding significant genes
(adjusted p value < 0.05) using boxplots (Figure S2E).

We defined genes as blood cell specific biomarkers, if they were expressed in a higher proportion of blood cell types than non-
blood cell types, and less than in 10% of non-blood cell types, according to the Tabula Muris atlas. This threshold resulted in 830
blood cell specific genes. Blood cell specific biomarkers accounted for fewer than 1.5% of genes significantly associated with
maximum lifespan of mammalian species, and their removal did not affect significant positive correlation between signatures of in-
dividual tissues (Spearman r > 0.21 for all pairwise comparisons).

Comparison of longevity signatures and traits
To compare mean ECs corresponding to individual gene expression signatures associated with mammalian aging and longevity at
inter- and intra-species level, we utilized denoised Spearman correlation method as described previously. p values were adjusted for
multiple comparisons using BH method. Normalized ECs for barplot visualization were calculated by dividing aggregated gene
expression changes on standard deviation of ECs across all genes within the signature as described previously (Figure 4D). Genes
were selected for visualization if they (i) were significantly associated (adjusted p value < 0.05) with multiple longevity or aging traits
and (ii) were established to be associated with longevity based on other studies or were annotated as a member of gene set demon-
strating significant association with the analyzed traits.

To identify a comprehensive list of shared and distinct molecular biomarkers across examined traits, we utilized Fisher’s combined
probability test from R packagemetap, an effective and sensitive technique to integrate p values from various tests. Contrary to the
HMPmethod, this approach requires aggregated tests to be independent, but provides high statistical power for detection of incom-
plete associations.83 To detect common biomarkers for a group of traits, Fisher’s combined probability test was applied to every
gene, using HMP corresponding to eachmodel and adjusting for the direction of EC (similar to the HMP algorithm). To detect distinct
biomarkers, the same algorithm was applied, but sign of EC was inverted for one of the models. In each case, Fisher’s combined
probability test was applied separately for both positive and negative associations, and the minimum of the two resulted p values
was chosen, similar to the HMP algorithm described previously. BHmethod was used to adjust resulted p values for multiple hypoth-
esis testing. We considered a gene as a significant common or distinct biomarker of the traits if its adjusted Fisher’s combined prob-
ability p valuewas <0.05 and the rate of signatureswhere it was changed in the same direction was higher than 80%within each of the
traits included in the analysis. The described algorithm was performed separately for identification of common and distinct bio-
markers within each pair of traits (‘‘Aging & Interventions’’, ‘‘Aging & Species’’, ‘‘Interventions & Species’’) as well as between aging
traits and both longevity traits at once (‘‘Longevity & Aging’’). As a result, we found 300-1,200 significant shared and opposite sig-
natures across various pairs of traits (Figure 4F). Difference between the number of significant common and distinct biomarkers
for each of the analyzed trait sets was evaluated using two-sample proportion test.
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Yeast signatures of longevity and aging
Gene expression signatures of budding yeast longevity across natural strains and deletion mutants were identified in our previous
study.70 Briefly, 40 natural strains of S. cerevisiae were used to evaluate biomarkers of replicative lifespan (RLS) across strains,
while signatures of long-lived deletion strains were calculated based on RLS and gene expression data of 1,376 knockout strains
from McCormick et al.72 and Kemmeren et al.,71 respectively.
To obtain gene signatures of yeast replicative aging, we utilized deconvolved transcriptome data from Janssens et al.73 Genes,

which expression was associated with time in linear and logarithmic scale, were identified using limma.152 Resulted p values were
adjusted for multiple hypothesis testing using BH method. Genes with adjusted p value < 0.05 were considered significant.
Mean slope coefficients corresponding to ECs associated with yeast aging and longevity across natural and deletion strains were

compared using Spearman correlation. p values were adjusted for multiple comparisons using BH method. Normalized ECs for bar-
plot visualization were calculated by dividing gene expression changes on standard deviation as described previously.

Functional enrichment analysis of signatures
For identification of functions enriched by individual aging and longevity signatures, we performed gene set enrichment analysis
(GSEA)147 on a pre-ranked list of genes based on log10(p value) corrected by the sign of regulation, calculated as:

" log10ðpvÞ3 sgnðecÞ;

where pv and ec are p value and aggregated expression change for certain gene, respectively, estimated with mixed-effect model,
and sgn is signum function (is equal to 1, -1 and 0 if value is positive, negative and equal to 0, respectively). REACTOME, KEGG and
GO BP from Molecular Signature Database (MSigDB) have been used as gene sets for GSEA.147 Adjusted p value cutoff of 0.1 was
used to select statistically significant functions.
To identify functions enriched by aggregated biomarkers of traits as well as common and distinct signatures of various models, we

performed Fisher exact test using R package gprofiler2,148,149 considering all genes tested for association with the corresponding
trait as a background. KEGG, REACTOME and GO BP ontologies were used. We declared functions to be enriched if their BH
adjusted Fisher exact test p value was smaller than 0.1. Gene ratio was estimated for enriched functions as proportion of genes
in the given signature, which are associated with the given pathway. Significance score was calculated as log10(adjusted p value)
corrected by the sign of direction.
Hierarchical clustering of enriched functions for a heatmap was performed based on normalized enrichment scores (NES) and sig-

nificance score for GSEA and Fisher exact test, respectively, using complete linkage and Spearman correlation distance. Enriched
functions that (i) were significantly enriched (adjusted p value < 0.1) by multiple signatures and (ii) represented different aspects of
cellular biology, as assessed manually and based on the overlap of corresponding gene sets, were selected for visualization. The
whole lists of statistically significant enriched functions are available in Tables S3 and S5.

Metabolomics analysis
Metabolite profiling data corresponding to 26 mammalian species and the effect of 5 lifespan-extending interventions onmouse liver
in males and females were based on data fromMa et al.27 and Tyshkovskiy et al.33 Each species in the mammalian dataset was rep-
resented by 1-4 biological replicates per tissue (2.6 samples on average), while each treatment in the longevity intervention dataset
was represented by 5-6 biological replicates per sex. To filter out metabolites with low coverage, onlymetabolites detected in at least
66.6% of the samples were kept. Afterwards, filtered data were log10-transformed and scaled.
The effect of individual interventions on metabolite concentration was assessed separately for males and females using limma.

Besides, a singlemodel combining the effect of all interventions was built to identify common signatures of lifespan extension. Finally,
to find metabolites associated with the quantitative effect of interventions, a linear model incorporating the effect of certain interven-
tion on median and maximum lifespan (taken from Tyshkovskiy et al.33) was created. In each case, sex and batch were introduced in
the model as separate covariates to account for the possible bias. Metabolites were declared significant if their p values, adjusted by
BH method, were <0.1.
To investigate associations of metabolite levels with ML, MLres, FTM and FTMres across species, phylogenetic regression model

was built separately for each tissue (brain, liver, kidney, and heart), as described previously for gene expression data. To identify sig-
natures of mammalian longevity across tissues, we aggregatedmean slopes of metabolite concentration from all the organs together
with their standard errors in a fixed-effect model using R package metafor. Metabolites were declared significant if their p values,
adjusted by BH method, were less than 0.1.

Partial correlation network
To assess interdependence between various molecular mechanisms of longevity and aging, we utilized the mammalian tissue gene
expression dataset and computed a partial correlation network for species maximum lifespan, adult weight, transcriptomic signa-
tures of aging and lifespan-extending interventions as well as the expression of key individual genes (Igf1, Rela, Cth) and functional
gene sets significantly associated with different models of longevity and aging (Figure 6C). For every available tissue and species,
each of these features was calculated. For functional gene sets, the score was estimated asmean normalized expression of all genes
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associated with this function according to KEGG or REACTOME ontology. For the signatures of aging and interventions, the differ-
ence of mean normalized expression between genes positively and negatively associated with this trait was calculated. Biomarkers
of mouse maximum lifespan and the aggregated signature across species and tissues were used as gene sets associated with
longevity interventions and aging, respectively. Sparse partial correlation network of estimated features was computed with R pack-
age glasso, using graphical lasso regularization andmodel selection based on ExtendedBayesian information criterion (EBIC).157 The
resulted Gaussian graphical model was visualized with R package qgraph.

Effect of compounds on fibroblast survival
Percentage of viable cells in each sample was subjected to log transformation. The effect of every compound on cell survival under
oxidative stress conditions was calculated as a difference between mean log percentage of viable cells in experimental group
(treated with certain compound) and mean log percentage of viable cells in control group (treated by DMSO). Standard error was
calculated using t test. To estimate the average effect of the compound on the survival of cells from short-lived species (mice and
rats), we aggregated the corresponding estimates of an average compound effect and SE across these species in a single
random-effect model using R package metafor. An association between the effect of a compound and species longevity was as-
sessed with fixed effect model where ML or MLres was included as an independent variable. Percentage of viable cells in the control
group was not significantly correlated with species lifespan (Spearman r = 0.16, p value = 0.24). To adjust for a potential effect of this
factor on the compound effect, we included mean log percentage of viable cells in control group to the regression model as a co-
variate. This adjustment did not affect statistical significance of investigated associations.

Enrichment of trait biomarkers by gene sets
To identify enrichment of trait biomarkers by housekeeping, essential and evolutionary old genes, we utilized gene sets from Wang
et al.44 Gene essentiality was defined based on two metrics: mutation intolerance (the probability of being intolerant to loss-of-func-
tion mutation)177 obtained from ExAC release 0.3.1 (http://exac.broadinstitute.org/), and haploinsufficiency (sensitivity to a gene
copy number reduction) estimated in Shihab et al.178 Phylogenetic age of the genes was obtained from the GenTree database.179

Evolutionary old and young genes were defined as 1:1 therian orthologs that originated before the emergence of bony vertebrates
and after the emergence of tetrapods, respectively.

To assess if significant trait biomarkers as well as common and opposite signatures of various traits are enriched for a certain
feature described above, we utilized Fisher exact test. For each pair of gene sets (housekeeping / non-housekeeping, haplosufficient
/ haploinsufficient, mutation tolerant / intolerant, evolutionary old / young), we estimated overrepresentation of one gene set over the
other in a subset of signature genes. As a background for each trait, we used genes that were tested for an association with the cor-
responding trait in the signature analysis but did not reach statistical significance. Besides, to account for the fact that some of the
gene sets may be enriched for genes with a higher expression, and highly expressed genes have also a larger chance of being iden-
tified as a signature of a certain trait due to a higher statistical power, we controlled for this potential confounder by randomly select-
ing background genes in such a way that the genes associated and not associated with the trait have a similar distribution of average
expression in mammals (Figure S6C). Specifically, for every trait, we divided the range of average log(expression) of genes across
mammals in 100 uniform windows, and for every window we randomly picked up the same proportion of genes showing and not
showing a significant association with the trait. The resulting subset of non-significant genes was used as a background for Fisher
exact test. Enrichment for certain feature within each pair of gene sets was considered significant if BH adjusted p value was smaller
than 0.1. Odds ratios (OR) were calculated as:

!
signset1

nonsignset1

"

!
signset2

nonsignset2

"
;

where set1 and set2 correspond to the opposite sets of genes (etc. housekeeping and non-housekeeping genes), while sign and
nonsign correspond to the number of genes associated and not associated with the trait, respectively.

Pathway enrichment analysis for evolutionary old, haploinsufficient and mutation-intolerant signatures of longevity across species
and evolutionary young, haplosufficient and mutation-tolerant signatures of lifespan-extending interventions was performed using
Fisher exact test in a similar way. REACTOME and KEGG ontologies were utilized.

Prediction of longevity interventions
To identify interventions associated with longevity at gene expression level, we employed GSEA-based algorithm developed in our
previous study.33 First, for every individual signature and global trait we specified 1000 genes with the lowest p values and divided
them into up- and downregulated genes. These lists were considered as gene sets. Then we ranked genes related to interventions of
interest based on their p values, as described in functional enrichment section.

To find interventions associated with longevity traits from publicly available sources, we utilized GeneQuery tool (https://
artyomovlab.wustl.edu/genequery/). Datasets of interest were then downloaded from GEO under the following accession numbers:
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GSE15891,110 GSE11287,109 GSE11899,114 GSE46209,112 GSE63007,113 GSE28085115 and GSE36838.111 We preprocessed each
dataset, performed quantile normalization and Entrez ID transformation and applied limma model for calculation of p values, which
were converted to log10(p value) corrected by the sign of regulation, as described earlier.
For compounds predicted via CMap, we calculated p values of gene expression logFC in livers of treatedmice compared to control

independently for every drug using edgeR. We then converted them to log10(p value) corrected by the sign of regulation as described
earlier and proceeded to GSEA-based analysis.
We calculated GSEA scores separately for up- and downregulated lists of gene set as described in Lamb et al.107 and defined final

GSEA score as amean of the two. To calculate statistical significance of obtainedGSEA score, we performed permutation test where
we randomly assigned genes to the lists of gene set maintaining their size. To get p value of association between certain intervention
and longevity signature, we calculated the frequency of observed final GSEA score being bigger by absolute value than random final
GSEA scores obtained from 5,000 random permutations. Permutation test p values were further adjusted for multiple hypothesis
testing using BH method. Associations were considered significant if adjusted p value was smaller than 0.1.

ADDITIONAL RESOURCES

Interactive database mSALT based on shiny framework150: http://gladyshevlab.org/mSALT/.
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Supplemental figures

Figure S1. Mammalian RNA-seq data quality assessment, related to Figure 1
(A) Comparison of read alignment to ortholog sets and to genome. Percentage of reads for each species aligned to the ortholog sets are shown (top). For species

with complete genomes, the reads were also aligned to the respective genomes (middle), and the average Spearman correlation coefficient between the read

counts of ortholog set alignment and the read counts of genome alignment was calculated (bottom). Data are mean ± SE. See Table S2 for more details.

(B) The effect of filling up with consensus. The ortholog sets were categorized by their lengths that required filling up (left), and corresponding relative expression

values are shown (right).

(C) Clustering of the samples from different sources. The symbols in the parenthesis indicate the source of sample. Hierarchical clustering was performed using

complete linkage on a Pearson correlation distance matrix.

(D) Percentage of gene expression variation explained by species and replicates in various tissues. Boxplots reflect the percentage of explained variance in gene

expression estimated using ANOVA across datasets (left) and within individual datasets (right).

(E) Gene expression patterns are least conserved in testes. Pairwise Spearman correlation coefficients were calculated for each tissue based on 9 species with all

organs being present. Same number of biological replicates were used across tissues. Median values of correlation coefficients between testis and other tissues

were compared using Wilcoxon rank-sum test.

*p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001.
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Figure S2. Additional features of gene expression signatures of longevity across mammalian species, related to Figure 2
(A–C) Association of selected genes with female time to maturity (A) and maximum lifespan adjusted for body mass (B and C). Selected genes include Rpl30 (A),

Rpl28 (B), and Cul4b (C). Association between log10(female time to maturity) (A) or log10(maximum lifespan adjusted for body mass) (B and C) and average

normalized log10(expression) is shown for brain (left), liver (middle), and kidney (right). The black line, equation, slope p value, and R2 correspond to the model

fitted with phylogenetic regression. Data are mean ± SE.

(D) Accuracy of Elastic Net species maximum lifespan prediction based on adult animal weight evaluated on a test set. Adult weight was introduced in linear and

logarithmic scale. Each dot represents a single species and is colored by taxonomic group, as in (A)–(C). Mean absolute error (MAE), R2 and Pearson’s correlation

coefficient are shown in text.

(E) Expression of genes associated with mammalian maximum lifespan across cell types. Percentages of cell types with detected expression of significant

individual (brain, liver, and kidney) and aggregated longevity-associated genes (adjusted p value < 0.05) are shown.

(F) Proportion of various cell types in brain, liver, and kidney samples. Immune cells, including Kupffer cells, microglial cells, macrophages, B cells, T cells, natural

killer cells, and other leukocytes, were pooled together. Data are mean proportions across species ± SE.

(G) Spearman correlation between transcriptomic signatures of longevity across species in organs and primary fibroblasts. Spearman correlation coefficients and

adjusted p values are reflected by numbers and asterisks, respectively.

(H) Functional enrichment of mammalian longevity signatures. Only functions significantly enriched by at least one signature are shown (adjusted p value < 0.1).

Statistical significance is reflected with asterisks. The whole list of enriched functions is in Table S3A.

p̂ adjusted < 0.1; *p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001.
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(legend on next page)
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Figure S3. Identification of gene expression signatures of aging, related to Figure 3
(A) Denoised Spearman correlation between aging-associated gene expression changes across individual datasets. Correlations are shown separately for all the

datasets (global), species-specific signatures (human, rat, and mouse), and tissue-specific signatures (brain, skeletal muscle, and liver).

(B) Similarity of aging-related gene expression changes across datasets corresponding to the same or different tissues and species. Denoised Spearman

correlation coefficients were calculated for every pair of datasets from independent sources. Statistical difference between 4 subsets of dataset pairs was

assessed with Wilcoxon rank-sum test. *p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001.

(C) Spearman correlation of age-associated changes across datasets calculated based on the signatures of aging. Correlationswere calculated separately for the

global signature, species-specific signatures (human, rat, and mouse), and tissue-specific signatures (brain, skeletal muscle, and liver).

(D) Spearman correlation of age-associated changes across datasets in test set calculated based on all genes or significant signature genes identified from the

training test. Signatures were calculated without (middle) or with (right) normalization based onmultiple Deming regression. BH-adjusted p values calculated with

Wilcoxon signed-rank test are shown in the text.

(E) Expression of aging-associated genes across cell types. Percentages of cell types with detected expression of tissue-specific (brain, liver, and skeletal

muscle), species-specific (human, rat, and mouse), and aggregated signatures of aging (adjusted p value < 0.05) are shown.
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Figure S4. Normalization of aging datasets based on multiple Deming regression, related to Figure 3
Each dot represents a single run from a different set of initial parameters. Boxplots represent the distribution of final normalization coefficients for a given dataset,

whereas color of the dots reflects the associated mean squared error (MSE).
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Figure S5. Metabolite changes associated with longevity across and within species, related to Figures 4 and 5
(A) Denoised Spearman correlation of S. cerevisiae aging and longevity signatures. Signatures of replicative aging, lifespan-extending deletions, and inter-strain

longevity are shown in red, green, and blue, respectively. Statistical significance of each pairwise correlation is shown with asterisks.

(B) Metabolites associated with the effect of lifespan-extending interventions in mice and longevity across mammalian species. Normalized slopes of association

between metabolite concentration and mouse median lifespan (y axis) or mammalian maximum lifespan adjusted for body mass (y axis) are shown. Metabolites,

whose concentration is significantly associated with longevity according to interventions, species, or both models, are shown in green, blue, and red,

respectively.

(C) Association of murineNadsyn1 expression changewith longevity signatures. Statistical significance of each association denoted with asterisks was estimated

with phylogenetic regression (for species longevity signatures) and mixed-effect model (for other signatures). Data are mean normalized ECs ± SE.

(D) Association of yeast Ndt1 (YIA6) expression change with longevity signatures. Statistical significance of each association denoted with asterisks was esti-

mated with linear regression. Data are mean normalized ECs ± SE.

p̂ adjusted < 0.1; *p adjusted < 0.05; **p adjusted < 0.01; ***p adjusted < 0.001. EC, expression change; CR, calorie restriction; GH, growth hormone; ML,

maximum lifespan; MLres, maximum lifespan residual.
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Figure S6. Common and distinct molecular signatures of longevity across and within species, related to Figure 6
(A) Spearman correlation of gene expression signatures based on functional enrichment (GSEA) scores. Only functions enriched by at least one signature

(adjusted p value < 0.1) were used for the calculation.

(B) Adjusted effect of cardamonin (left), clofilium tysolate (middle), and deguelin (right) on the survival of fibroblasts from species with different lifespans following

paraquat-induced oxidative stress. The effect of compound was calculated as a log ratio of the number of survived fibroblasts with and without treatment.

Here, the effect on survival was adjusted for the baseline survival rate (estimated for fibroblasts treated with DMSO) by incorporating the latter term into the

regressionmodel. Dependence with maximum lifespan unadjusted (top) and adjusted (bottom) for adult weight was examined. Slope adjusted p value is shown in

text. Data are mean ± SE. n = 3–6 per compound and control group for every species and mouse strain.

(C) Average expression of genes associated and not associated with longevity and aging traits before (left) and after (right) filtering. 100 uniform windows were

used to randomly select subsets of signature and non-signature genes with similar distribution of log expression for every trait.

(D) Pathways enriched by evolutionary old, mutation-intolerant, and haploinsufficient genes associated with longevity across mammalian species. Adjusted p

value threshold of 0.1 is shown as a dotted line. The whole list of enriched functions is in Table S5A.

(E) Pathways enriched for evolutionary young, mutation-tolerant, and haplosufficient genes associated with lifespan-extending interventions in mouse. Adjusted

p value threshold of 0.1 is shown as a dotted line. The whole list of enriched functions is in Table S5B.

CR, calorie restriction; GH, growth hormone; ML, maximum lifespan; MLres, maximum lifespan residual; REAC, REACTOME.
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Figure S7. KU0063794 effect on frailty features and B cell population in old mice, related to Figure 7
(A) Frailty index score in 25-month-old male C57BL/6 mice that were later assigned to treated and control groups.

(B) Frailty index score features in 30-month-old male C57BL/6 mice from treated and control groups.

(C) Percentage of B cell subpopulations in spleens of 27-month-old male C57BL/6 mice treated for 5 months or age-matched control groups measured by flow

cytometry. ABC, age-associated B cells; ACBCs, age-associated clonal B cells.

p values were calculated with one-tailed Wilcoxon rank-sum tests.
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