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ABSTRACT: Supplementation with natural compounds found in fruits and vegetables has long been associated with a reduced risk
of several types of cancer. Pterostilbene is a natural stilbenoid and a dimethylated analogue of resveratrol which is found primarily in
blueberries. Pterostilbene exhibits a range of pharmacological properties, particularly anti-inflammatory and anticancer effects. Due
to two methoxy groups in its skeleton, pterostilbene is more lipophilic than resveratrol and thus possesses higher intestinal
permeability and cellular uptake and enhanced stability. Moreover, pterostilbene exhibits less toxicity and fewer adverse effects,
providing it with superior potential in cancer chemoprevention and chemotherapy applications. Numerous research studies have
demonstrated that pterostilbene possesses detoxification activities, mediating the anti-inflammation response, regulating the cell
cycle, augmenting apoptosis, enhancing autophagy, and inhibiting tumor angiogenesis, invasion, and metastasis by modulating signal
transduction pathways which block multiple stages of carcinogenesis. In this review, we illustrate that pterostilbene is a natural
compound having bioavailability. The extensive metabolism of pterostilbene will be discussed. We also summarize recent research on
pterostilbene’s anti-inflammatory and anticancer properties in the multistage carcinogenesis process and related molecular
mechanism and conclude that it should contribute to improved cancer management.
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■ INTRODUCTION

Cancer development in an organism involves a dynamic
change in the genome, a multistep and long-term process that
involves three critical steps (initiation, promotion, and
progression), which ultimately lead to cancerous cell invasion
and metastasis. This slow, stepwise development is influenced
by many complex factors, including family history, aging, the
carcinogenic agents involved, dietary habits, obesity, circadian
rhythms disruption, and chronic inflammation.1,2 Inflammatory
responses, in particular, play a critical role in tumor
development, impacting every single step in tumor formation.
For instance, an inflammatory microenvironment can increase
the frequency of new mutations, thus enhancing the
proliferation of mutated cells.3,4 Fortunately, many epidemio-
logical studies and clinical trials are being conducted on the use
of natural dietary supplements and nutritionally modified diets
to prevent cancer. Moreover, the literature has demonstrated
that chemo-preventive phytochemicals can block or reverse the
premalignant stage in multistep carcinogenesis or at least
retard the development of precancerous cells into malignant
cells. Thus, chemoprevention is a promising strategy for
preventing cancer.5,6

Pterostilbene (3,5-dimethoxy-4′-hydroxy-trans-stilbene) is a
natural phenolic compound and a dimethylated analogue of
resveratrol which has been studied extensively. Studies have
revealed that it possesses antidiabetic, antihyperlipidemic,
antiatherosclerotic, antihypertensive, anticardiovascular dis-
ease, antiobesity, and antisteatosis activities.7−13 Furthermore,
pterostilbene has been shown to have potent biofunctionalities

in anti-inflammatory and anticancer processes.14−16 Its dimeric
structure indicates that its oxidation reaction takes place at the
4′-OH position of the hydroxystilbenic moieties. Many dimeric
products have been found due to the ability of electron-
delocalized radicals to couple at various sites, resulting in its
multibiofunctionality.17 Due to structural methoxylation at the
3 and 5 positions, pterostilbene is lipophilic, increasing
intestinal absorption and contributing to a higher potential
for biological uptake.18−20 In terms of safety, pterostilbene has
few, if any, toxic side effects and is classified as low risk. It is
safe for use in doses of up to 250 mg/day, according to human
clinical trials.21,22 Thus, pterostilbene has attracted consid-
erable attention in terms of chemopreventive activities against
cancer.14,15

In this review, we first summarize pterostilbene occurrences
in nature and its bioavailability. Then, we will illustrate
pterostilbene’s anti-inflammatory and anticarcinogenic roles in
different steps of cancer development and discuss the related
cellular signaling pathways during carcinogenesis. Finally, we
will describe how pterostilbene can be combined with other
cancer chemopreventive phytochemicals for potential cancer
treatment.
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Natural Occurrence and Derivatives of Pterostilbene.
Pterostilbene is one of the stilbenoids belonging to the
polyphenolic compounds (Figure 1). It is also a phytoalexin
that is synthesized in plants as a secondary metabolite in
response to environmental stresses such as microbial or fungal
(Plasmopara viticola) infestation and exposure to ultraviolet
light or heavy metal.23−25 It was first isolated from the
heartwood of the red sandalwood (Pterocarpus santalinus) tree
in 1940,26 then found shortly thereafter in grapevines (Vitis
vinifera) and blueberries.27,28 In rabbiteye blueberry (V. ashei
Reade), 9.9−15.1 μg of pterostilbene is present, on average, in
every 100 g of dried sample. It can also be found in deerberry
(V. stamineum L.) at about 52 μg/100 g dry sample.29 It is
noteworthy that in grapes infected by a fungus, there is a
higher quantity of pterostilbene in fresh skin (0.2−4.7 μg/g)
when compared to that of healthy grapes (14−74 ng/g for var.
Gamay, and 120−530 ng/g for var. Pinot Noir).30 Because
pterostilbene is not abundant in natural sources, Martińez-
Maŕquez et al. devised a metabolic engineering-based strategy
to produce resveratrol derivatives using resveratrol-converting
enzymes (stilbene synthase resveratrol O-methyltransferase).
This strategy led to naturally produced pterostilbene.31

Bioavailability and Metabolites of Pterostilbene.
Bioavailability is a pharmacokinetic term representing the
ratio between the dose of a drug and its concentration in body
fluids and tissues over time. As the absorbed compound is
consumed and becomes available to the target site, it becomes
accessible for physiological movement or a therapeutic
capacity.32 Many complex processes besides the drug
absorption factor influence the bioavailability exposure dose,
for instance gastric acidity, gastrointestinal transit time, the

hypertrophy of duodenal villi, hepatic enzyme activity, protein
binding, and blood flow.33,34 It is worthwhile mentioning that
the chemical structures of the ingested compounds’ themselves
influence the rate and extent of absorption, metabolism, and
excretion. In pterostilbene, the two methoxy groups in the
stilbenoid skeleton create greater hydrophobicity. Based on the
current literature, methylated polyphenols have dramatically
higher intestinal permeability and enhanced hepatic stability.
Hence, lipophilic properties enhance cellular absorption and
also limit metabolic clearance in the intestinal epithelial and
hepatic cells. Pterostilbene possesses metabolically stable
properties based on having only one free hydroxyl group
usable for glucuronidation or sulphation.35 Studies have shown
that pterostilbene is therefore more bioavailable than other
stilbenoids such as resveratrol, gnetol, piceatannol, and
oxyresveratrol, with oral bioavailability rates of 80%, 29.8%,
6.59%, 50.7%, and 9.13%, respectively.36 A similar result is that
pterostilbene has approximately 3- to 4-fold higher bioavail-
ability than resveratrol.18 The phase II metabolic enzymes and
gut microbiota play critical roles in phytochemical biotrans-
formation. It appears that phytochemical metabolites might
show different or stronger biological activities than their
original molecules.37−40 A study that examined metabolic
profiles found that sulfate and glucuronide conjugates are
evident in the results.18 Wang and Sang’s review presents the
metabolism of resveratrol and pterostilbene, in which the
UDP-glucuronosyltransferase family of enzymes catalyze the
formation of pterostilbene-4′-O-glucuronide from pterostil-
bene and glucuronic acid. Moreover, the pterostilbene-4′-O-
sulfate formed of pterostilbene was catalyzed through the
sulfotransferase family of enzymes. Both forms of metabolite

Figure 1. Selected chemical structures of pterostilbene (A) and pterostilbene metabolites (B). Pterostilbene (3′,5′-dimethoxy-4-hydroxystilbene) is
a dimethylated analogue at the 3 and 5 positions of resveratrol. The representative of the characterized compounds of pterostilbene such as
pterostilbene-4′-O-glucuronide and pterostilbene-4′-O-sulfate. Those are the major routes to eliminate from the human body. Pinostilbene was
through demethylation formation from pterostilbene, it is speculated by gut microbiota demethylases biotransformation product. 3′-
Hydroxypterostilbene, one of the metabolites of pterostilbene isolated from the whole plant of the herb Sphaerophysa salsula. Pinostilbene and 3′-
hydroxypterostilbene both are found to have potent biofunctionalities.
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biological activity are largely unknown and represent important
avenues for further research.20 Shao et al. study has been
demonstrated nine novel mouse urinary pterostilbene metab-
olites, however, their biological activities was unclear.41

Pterostilbene revealed antiobesity effect in rats through
modulating gut microbiota including enrich Akkermansia and
Odoribacter genus.8 Moreover, pinostilbene and pterostilbene
have been shown to have similar biological activities such as
antioxidative,42 anti-inflammatory,43 anticancer,44,45 antimeta-
stasis,46 and neuroprotection.47 Additionally, studies have
revealed that 3′-hydroxypterostilbene, one of the metabolites
of pterostilbene found in the herb Sphaerophysa salsula,48

appears to augment anticancer activity by inhibiting inflam-
mation and tumor cell proliferation as well as inducing
apoptosis in vitro49 and in vivo.50,51 Sun et al. also found that
pinostilbene is a major metabolite of pterostilbene in the
mouse colon.45

Anti-inflammatory Activity of Pterostilbene. Inflam-
mation is a well-known complicated biological response to
microbial infection, chemical irritation, and tissue injury that
aims to eliminate the pathogen or abnormal cells. The
inflammatory response triggers signaling cascades and activates
transcription factors and gene expression. Ultimately, the
immune or inflammatory cells produce and release various
oxidants and proinflammatory cytokines. Simultaneously, these
inflammatory mediators promote further recruitment of a wide
range of immune cells into inflamed sites and there they elicit
redness, fever, edema, and pain.52 Currently, a great deal of
evidence points to chronic inflammation increasing the risk of

developing cancer. For example, ulcerative colitis and Crohn’s
disease are associated with colon cancer; prostatitis is
connected with prostate cancer. Due to mutant cells
accompanying an inflammation microenvironment, oxidative
stress, gene mutations, epigenetic changes, inflammatory
cytokine-induced cell proliferation, the inhibition of apoptosis,
the secretion of proteinases, the expression of adhesion
molecules, and angiogenesis drive the malignant trans-
formation.3,53 Therefore, inhibition of inflammatory signaling
is usually recognized as a potential mode for chemoprevention.
As mentioned previously, pterostilbene is a plant phytoalexin

polyphenol that functions primarily to protect the plant against
pathogens or other environmental stresses. Pterostilbene
contributes to a variety of biofunctional properties, in
particular, anti-inflammatory and antioxidant properties.
Furthermore, several in vivo and in vitro studies have shown
that pterostilbene inhibited chronic inflammation for a wide
range of diseases including neuroinflammation, dermatitis,
pancreatitis, inflammatory bowel disease, atherosclerosis, and
obesity (Figure 2.).54−59 According to the portion in vivo
study,55,65,72 result of conversion of animal doses to human
equivalent doses, the dietary intake is approximately 96−480
mg/day in a 60 kg human. Pterostilbene was found to be an
agonist for the peroxisome proliferator-activated receptor α
(PPAR α) in vitro60 and in vivo.61 Pterostilbene is associated
with anti-inflammatory activity due to the induced expression
of the inhibitory protein nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor, alpha
(IκBα).62,63In vitro, pterostilbene suppresses the pro-inflam-

Figure 2. Schematic representation of chemopreventive effects of pterostilbene on inflammation diseases. Pterostilbene could attenuate
inflammation-related diseases such as Alzheimer’s disease, dermatitis, obesity or metabolic disease-induced inflammatory, pancreatitis, and
inflammatory bowel disease, etc. The anti-inflammatory mechanisms of pterostilbene correlate with several signaling pathways and have multiple
direct and/or indirect targets by these factors.
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matory cytokines (such as TNFα, IL-1β, IL-6, IL-8, and IL-18)
and nitric oxide (NO) production through the inhibition of the
nuclear factor kappa B (NF-κB) signaling nuclear trans-
location55,64−70 and performs the same service in vivo.71−75

Furthermore, pterostilbene has been demonstrated to down-
regulate inducible nitric oxide synthase (iNOS) and cyclo-
oxygenase-1 (COX-1) or COX-2, the prostaglandin E2
(PGE2) gene, or protein levels in vitro66,69,76,77 and in
vivo.74,75,78−80 Moreover, it was found that pterostilbene
represses the levels of iNOS and COX-2 by inactivating NF-
κB or activator protein 1 (AP-1) via blocking the
phosphorylation activating the mitogen-activated protein
kinase (MAPK) (extracellular signal-regulated protein kinase,
ERK1/2 and p38), phosphatidylinositol-3-kinase/protein
kinase B (PI3K/Akt),66,70,71,77,78 and jun amino-terminal
kinase (JNKs) pathways.64 In addition, pterostilbene sup-
presses the p65 nucleus translocation, thus inhibiting NF-κB
activity.70,71,73−75,79 Furthermore, it has been suggested that
pterostilbene attenuates inflammatory responses by inhibiting
endoplasmic reticulum stress (ERS) signaling in human
umbilical vein endothelial cells (HUVECs), inflammatory
injuries induced by TNF-α,81 and potassium dichromate-
induced HaCaT skin cell inflammation modes.82

Chemopreventive Effects of Pterostilbene in Initia-
tion Stage of Carcinogenesis. The initiation stage in the
development of cancer consists of exposure to carcinogens,
oxidative stress, or inflammatory injury, which results in the
DNA damage, gene mutations, and irreversible genetic
alterations, triggering the transformation of normal cells into
cancer cells.83,84 Thus, the inhibition of oxidative stress and
inflammation or reduction of the metabolic activation of
numerous chemical carcinogens can reduce carcinogenesis.
It is well-known that the expression of several enzymes is

associated with detoxifying/antioxidant genes on the nuclear
factor erythroid 2-related factor 2/antioxidant response
element (Nrf2/ARE) pathway. Kelch-like ECH-associated
protein 1 (Keap1) is a repressor protein that binds to Nrf2.
Thus, the loss of interactions between Keap1 and Nrf2
proteins favors their dissociation and the subsequent nuclear
translocation of Nrf2, while also transactivating the ARE in the
promoter region of target genes (such as SOD, CAT, GPx,
HO-1, and NQO1) and inhibiting ROS production.85−87

Bhakkiyalakshmi and colleagues revealed that pterostilbene
was able to activate the Nrf2/ARE pathway due to
pterostilbene-favorable interactions with the arginine triad
residues (R380, R415, R480) in the Keap1 kelch domainthus
further activating Nrf2 by nuclear translocation as well as ARE-
driven downstream target gene expression.88 Pterostilbene
treatment of colon HT-29 cells results in significantly increased
GST and NQO1 activity as well as GSH levels.81 In addition,
pterostilbene was found to inhibit miR-377, leading to an
increase in SOD expression and activity in fructose-induced
conditionally immortalized mouse podocyte cell and Sprague−
Dawley rat podocyte oxidative stress and injury models.89

Carcinogens such as polycyclic aromatic hydrocarbons
(PAHs) and heterocyclic (aromatic) amines (HCAs or
HAAs) are ubiquitous in dietary and environmental systems.
Members of the human cytochrome P450 family have
important roles in the activation of a wide range of
environmental procarcinogens.90 Thus, a recent study
postulated that selecting inhibitors of the cytochrome P450
family or another metabolizing enzyme could reduce the risk of
mutagenesis and cancer. Mikstacka et al. reported that

pterostilbene could inhibit CYP1A2 catalytic activities in a 7-
ethoxyresorufin-O-deethylation (EROD) assay.91 The authors
further found that pterostilbene exhibited potent inhibitory
activity toward CYP1A1 and CYP1B.92 Moreover, research has
shown that pterostilbene has the highest inhibitory effect
toward CYP2C8 and UGT1A6 activity in in vitro assays.93

These studies collectively demonstrate that pterostilbene may
exert potential health benefits related to the inhibition of the
initiation stage of carcinogenesis.

Chemopreventive Effects of Pterostilbene in Promo-
tion Stage of Carcinogenesis. In the tumor promotion
process, transformation to malignant cells is accelerated
generally via oxidative stress and chronic inflammation.
Furthermore, during this stage, the mutant cells begin their
loss of regulated cell proliferation while simultaneously evading
apoptosis and immune surveillance.2,53

Apoptosis, namely, programmed cell death or cellular
suicide, has a critical role in maintaining the balance in
multicellular organisms. It is particularly important in
embryonic development, the shaping of organs, regulating
the immune system, and eliminating potential cancer cells.
Apoptosis requires multistep, multipathway, and highly
ordered processes that terminate in the enzymatic breakdown
of cellular DNA. Apoptosis can be initiated either through the
mitochondria (intrinsic pathway) or death receptor ligation
(extrinsic pathway).94,95 Also, various environmental stresses,
such as ROS, hypoxia, genotoxic compounds, and ER Ca2+

depletion, can perturb ER, induce unfolded protein accumu-
lation, and then lead to ER stress, which can affect the P53
upregulated modulator of apoptosis (PUMA) or Bcl-2 protein
families, which ultimately regulate apoptosis.96 The mitochon-
drial pathway is controlled by the Bcl-2 protein family, which
includes both pro-apoptotic and antiapoptotic members. It has
been proven that pterostilbene can upregulate the expression
of the pro-apoptotic factors Bax, Bad, Bak, and Bid;
downregulate the antiapoptotic factors Bcl-2, Bcl-xl, and Mcl-
1; and decrease the mitochondrial membrane potential.
Subsequently, cytochrome C, Smac/DIABLO, and cytosol
expression induces caspase activation (such as caspase 9 and
caspase 3/7) directly, consequently resulting in programmed
cell death. Conversely, Smac/DIABLO can allow apoptosis to
proceed by blocking the inhibitor of the apoptosis
proteins.97−99 The death receptor ligation pathway is triggered
by the death receptor Fas via the Fas ligand. Under these
circumstances, downstream caspases are activated in the
apoptosis cascade. It is found that pterostilbene increases Fas
and Fas ligand expression. In addition, tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) induces apoptosis
and can bind to four different receptors, DR4 and DR5 (two
pro-apoptotic death receptors, or DRs) and DcR1 and DcR2
(two antiapoptotic decoy receptors, or DcRs). Research has
suggested that pterostilbene induces cancer cell exogenous
apoptosis, which, through increasing DR4/5 and decreasing
DcR-1/2 expression, ultimately activates caspase 3/7/
8.7,100−102 Studies have reported that pterostilbene treatment
enhances ER stress by upregulating the phospho- PKR-like ER
kinase (p-PERK), activating transcription factor 4 (ATF4) and
C/EBP homologous protein (CHOP) expressions, leading to
ER Ca2+ depletion and cytoplasm-induced apoptosis in cancer
cells.103,104 Taken together, it is obvious that pterostilbene can
augment apoptosis in cancer cells, giving it potential in cancer
chemoprevention.15
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Autophagy is a mechanism that maintains cellular homeo-
stasis by fusing with lysosomes to degrade aggregated proteins,
damaged organelles, and other undesirable cytoplasmic
materials in response to many different forms of stress. In
specific conditions, autophagy improves survival during
starvation or leads to programmed cell death. Nevertheless,
the role of autophagy in human diseases is intricate and
disputed. For instance, in tumors, autophagy may trigger
cytoprotective mechanisms by degrading the cytotoxic
substances for energy reuse. However, when a cell undergoes
damage that is irreversible or results in stress overload,
autophagy could play an important role as executioner.105

Numerous recent studies have shown that pterostilbene
induces both autophagy and apoptosis in several cancerous
cells in which autophagy plays a more pro-death role than a
pro-survival role.106 Wang et al. have suggested that
pterostilbene inhibits cell proliferation and causes S phase
cell cycle arrest in human cholangiocarcinoma cells by
inducing autophagy via p62 downregulation, thus leading to
elevated expression of endogenous Beclin-1, autophagy related
protein 5 (ATG5), and microtubule-associated protein 1A/1B-
light chain 3-II (LC3-II), and increases in LC3-I.107 The
authors reveal that pterostilbene could induce autophagy, as
evident by the increases of LC3-I and LC3-II, in addition to
apoptosis and cell cycle arrest in Bcap-37 and MCF-7 breast
cancer cell lines.108 Similarly, Ko et al. report that pterostilbene
inhibits the cell growth of SAS and OECM-1 human oral
cancer cells by inducing cell cycle arrest and apoptosis. It also
induced autophagy, as indicated by increases in Beclin-1, LC3-
II, and LC3-I, through regulating the activation of JNK1/2 and
the inhibition of Akt, ERK1/2, and p38.109 Interestingly,
pterostilbene inhibits hepatocellular carcinoma cell growth
without the induction of apoptosis in an ER stress and
autophagy-dependent p-eIF2α /ATF4/LC-3 pathway.110 Fur-
thermore, pterostilbene has been confirmed to induce
autophagy in tumor cells, which in turn impacts one form of
programmed cell death or inhibits tumor growth and
malignant transformation. The induction of autophagy by
pterostilbene seems to be a promising strategy for anticancer
strategies. However, studies in this area remain insufficient, and
the mechanism of pterostilbene in cancer autophagy warrants
further exploration.
The most fundamental characteristic of a tumor is

uncontrolled cell proliferation, and the loss of the regulation
of the cell cycle is a critical factor. Thus, inducing cell cycle
arrest in cancer cells might limit malignancy during carcino-
genesis.111 Several in vivo and in vitro studies have revealed that
pterostilbene suppresses cancer cell proliferation via multiple
pathways. It was reported that pterostilbene inhibited cell
growth in the prostate cancer DU145 and 22Rv1cell lines by
decreasing the expression of miR-17, miR-21a, and miR-106a/
b, thus restoring phosphatase and tensin homologue (PTEN)
tumor suppressor expression. In this study, pterostilbene also
reduced tumor growth via the reduction in circulating miR-17-
5p and miR-106a-5p levels as well as restoring PTEN level in
the xenograft model.112 The study demonstrated the PTEN
can control the cell cycle via many pathways but likely through
regulating the PI3K/AKT pathway.113 Pterostilbene is found
to downregulate the PI3K/Akt/mTOR signaling pathway
induction of mantle cell lymphoma JeKo-1 and the Granta-
519 cell line apoptosis and cell cycle arrest at the G0/G1
phase.114 Additionally Chen et al. indicate that pterostilbene,
via the inhibition of the EGFR/PI3K/Akt/ERK/mTOR

signaling pathway, decreases urethane-induced lung tumori-
genesis.59 Moreover, a study has shown that pterostilbene can
upregulate a cell-intrinsic checkpoint and repair response
protein p53, p21, p27, and p16 expression as well as
downregulate the cyclin-dependent kinase levels of cyclin A,
cyclin E, Cdk2, Cdk4, and Cdk6, which are associated with Rb
phosphorylation, resulting in HL-60 gastric carcinoma cell G1
arrest.102 Tan et al. showed that pterostilbene-induced H520
lung squamous carcinoma cell S phase accumulation was
accomplished via downregulated cyclin A and cyclin E as well
as the upregulation of p21 and p27 expression.115 Pterostilbene
was also found to activate the ataxia telangiectasia mutated
(ATM) and check point kinases 1/2 (CHK1/2) pathways
upstream of p53, thus inhibiting NSCLC and A549 lung cancer
cell proliferation.116 Furthermore, research has demonstrated
that pterostilbene decreases the levels of cyclin A2, CDK2, and
cdc25A as well as upregulating the level of Chk2-induced
accumulation of lymphoma cells in the S-phase.117 In
summary, pterostilbene can, through a series of signaling
pathways, contribute dramatically to cell cycle arrest and
suppress cancer promotion and progression.

Chemopreventive Effects of Pterostilbene in Pro-
gression Stage of Carcinogenesis. Approximately 90% of
deaths of cancer patients occur during the progression stage in
carcinogenesis. An ample supply of nutrients allows malignant
cells to invade surrounding tissues, ultimately migrating from
the primary tumor to distant organs and proliferating at
metastatic sites.118 Pterostilbene has been reported to aid
against angiogenesis and suppress cancer invasion and
metastasis.
Angiogenesis is indispensable for invasive tumor growth and

metastasis since it makes possible the extensive vascular
network needed to deliver oxygen and nutrients to, as well as
remove metabolic wastes from, tumors. Thus, regulating
tumor-associated angiogenesis is a chemotherapeutic strategy
used to limit cancer progression. Many cytokines (inflamma-
tory microenvironment) and antiangiogenic factors regulate
the process of angiogenesis, for which the most important
positive regulatory factor is VEGF. Substantial evidence
suggests that pterostilbene can suppress angiogenesis. A
study has revealed that pterostilbene decreases VEGF
production in SK-MEL-2 human melanoma cell lines.119 It
has been found that pterostilbene significantly suppressed
AOM-induced GSK3 β phosphorylation and Wnt/β-catenin
signaling, resulting in VEGF inhibition in ICR mice.78

Moreover, pterostilbene reduces the MTA1-associated proan-
giogenic factors HIF-1α, VEGF, and IL-1β, leading to
decreased angiogenesis in PC3M prostate cancer cells.120

Also, Dhar et al. report that pterostilbene inhibition of MTA1
led to decreased hemangiogenesis and lymhangiogenesis, as
evinced by CD31, VEGF-C, and IL-1β immunostaining and
immunoblot analyses in Pten+/f prostate-specific heterozygous
mice.121 Similarly, Li et al. found that pterostilbene inhibited
MTA1 in vivo and decreased angiogenesis.122 In addition,
pterostilbene suppresses angiogenesis by targeting c-Met,
whose inactivation decreases perivascular migration, invasion,
and angiogenesis through IL-8 and CXCL1-mediated CXCR1
signaling in breast carcinoma 231BrM cells.123

Tumor cell invasion and metastasis are modulated by several
microenvironmental factors such as matrix metalloproteinases
(MMPs), EGFs, and extracellular matrixes (ECMs). In the
MDA-MB-231 human breast cancer cell line, pterostilbene
decreases tumor cell migration and invasion caused by
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invadopodium formation by suppressing the expression of
constitutively active c-Src, cortactin, Tks5, MT1-MMP,
Twist1, and PDGFR-α as well as decreasing the activity of
MMP-2/9.124 Moreover, pterostilbene has been shown to, via
downregulated PKC, EGF, and VEGF, then through blocking
the phosphorylation of MAPK and PI3K/AKT pathway,
inhibit NFκB and AP-1 activity, thereby suppressing MMP-9
gene expression against TPA-mediated HepG 2 cell line
metastasis.125 Likewise, research has demonstrated that
pterostilbene can inhibit CREB, NFκB, and SP-1 expression
as well as DNA-binding activities on MMP-2 and u-PA

promoters, reduce MMP-2 and u-PA expression, and
subsequently inhibit the effects on oral cancer SCC-9 cell
line invasion and migration.126 An epithelial-mesenchymal
transition (EMT) is a salient preliminary step in metastasis that
allows cancer cells to acquire migratory and invasive
abilities.127 Su and colleagues reveal that pterostilbene can
upregulate E-cadherin and downregulate the EMT markers
Snail, Slug, vimentin, and ZEB1 expression, thus inhibiting
triple-negative MDA-MB-231 and Hs578t breast cancer cells as
well as the MDA-MB-231 cell tumor xenograft model
migration and invasion.128 Also, pterostilbene can suppress

Figure 3. Schematic representation of the chemopreventive effects of pterostilbene on the multiple stages of carcinogenesis. Pterostilbene could
markedly inhibit the carcinogenesis via modulation of multiple signaling pathways, including induction of detoxification and antioxidant enzymes,
antiproliferation and cell cycle arrest, induction of apoptosis as well as the regulation of autophagy, inhibition of invasion and metastasis,
antiangiogenesis.
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EMT status by decreasing NFκB, Twist1, and vimentin as well
as increasing the E-cadherin level in both M2 TAM-cocultured
MCF7 and MDA-MB-231 cells as well as the MDA-MB-231
cell xenograft model.129 Additionally, pterostilbene can reduce
EMT and migration by upregulating E-Cadherin and down-
regulating N-Cadherin, Twist, Snail, Slug, vimentin, ZEB1, and
ZEB2 expression in MCF7 breast cancer cells.130 Moreover,
pterostilbene decreases MTA1 protein levels, resulting in the
downregulation of EMT-related tumor metastasis factor
vimentin as well as the upregulation of E-cadherin in
prostate-specific Pten f/f mouse models.121 Similarly, research
shows that pterostilbene inhibits MTA1 in prostate can-
cer.121,122 In addition, pterostilbene suppresses vascular
adhesion molecule 1 (VCAM-1) expression in the hepatic
sinusoidal endothelium, which decreases B16M-F10 cell
adhesion to the endothelium.131 These findings suggest that
pterostilbene possesses antiangiogenesis and anti-invasion/
metastasis properties because it regulates multiple signaling
molecules.
Combinatorial Strategies of Pterostilbene with

Phytochemicals for Cancer Chemoprevention. The
stratagem of using a combination of dietary phytochemicals
with drug therapies has shown many advantages, for instance,
decreasing side effects and dosage, preventing drug resistance,
and increasing patient tolerance which also strengthens
pharmacological actions. Many studies demonstrate that
pterostilbene cotreatment with drugs has the potential to
inhibit or delay carcinogenesis. For example, pterostilbene and
5-fluorouracil cotreatment showed potent anticancer effects in
Caco-2 colon cancer cells. In MCF7 and ZR-75-1 breast cancer
cells, higher efficacy of cell viability reduction was observed
with pterostilbene and tamoxifen cotreatment.15,132,133 Inte-
grative oncology is a new focus in cancer research, with
treatment that focuses on natural phytochemicals as nontoxic
tools that can cooperate with current cancer therapies in the
hope they can enhance the efficacy of traditional treatments.
Several research studies have shown that the combination of
pterostilbene with phytochemicals could be a potential strategy
for chemotherapy of cancer. Pterostilbene and (−)-epigalloca-
techin-3-gallate cotreatment in both pancreatic cancer MIA
PaCa-2 and PANC-1 cell inhibits cell growth and induces
apoptosis through the mitogen-activated protein kinase
pathways.134 Moreover, pterostilbene cotreatment with 6-
shogaol increases the anticancer activity of paclitaxel in MCF-7
breast cancer cells.135 Singh et al. showed that a combination
of pterostilbene and lupeol was more effective in reducing
tumorigenesis and ROS generation in B[a]P-induced mouse
skin carcinogenesis.136 The combination of pterostilbene and
astragalus enhances apoptosis and inhibits the cell growth of
melanoma in SK-MEL-2 cells and in SK-MEL-2 bearing
mice.137 Pterostilbene combined with curcumin demonstrated
significant potency to decrease LOX-mediated activity, thus
suppressing HCC cell metastasis induced by long-term ethanol
exposure.138 Taken together, these findings suggest that
pterostilbene cotreatment with other phytochemicals brings
synergy benefits or targets multiple molecular mechanisms to
boost the efficacy of anticancer treatments. Further inves-
tigation and validation in the form of more clinical studies and
applications are warranted.
Overall, pterostilbene, the 3,5-dimethoxy motif at the A-

phenyl ring of resveratrol has increased bioavailability with
preserved beneficial activity. Pterostilbene exerts potent
anticancer actions through its regulation of multiple cell

signaling pathways and has multiple direct and/or indirect
targets within cells. These signals interact to diminish the risk
of carcinogenesis (initiation, promotion, and progression
stages). These mechanisms include the induction of detox-
ification and antioxidant enzymes, anti-inflammation actions,
the arrest of cell-cycle progression, and pro-apoptotic as well as
the regulation of autophagy, antiangiogenesis, anti-invasion
activities, and metastasis (Figure 3). Based on the portion in
vivo study,15,78,139 conversion of animal doses to human
equivalent doses, the dietary intake of approximately 192−
1200 mg/day in 60 kg human can be suggested. Nevertheless,
the evidence as to whether pterostilbene can mediate immune
surveillance, which regulates the relation between the
autophagy and apoptosis mechanisms, is still lacking. More-
over, clear solubility, stability, and clinical trials for
pterostilbene are still needed in order to develop it into a
chemopreventive and chemotherapeutic agent.
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Akt, protein kinase B; AOM, azoxymethane; AP-1, activator
protein 1; ARE, antioxidant response element; ATF4,
activating transcription factor 4; ATG, autophagy related
protein; ATM/ATR, ataxia telangiectasia mutated/ataxia
telangiectasia and Rad3-related protein; Bad, bcl-associated
death protein; Bak, bcl-2 homologous antagonist-killer protein;
Bax, bcl-2 associated X protein; Bcl-2, B-cell lymphoma-2; Bcl-
xl, bcl-X Protein; Bid, BH3 interacting domain death agonist
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protein; CAT, catalase; CD31, cluster of differentiation 31;
CDC25A, cell division cycle protein A; CDK, cyclin-depend-
ent kinase; CHK, check point kinases; CHOP, C/EBP
homologous protein; c-Met, mesenchymal-epithelial transition
factor; COX, cyclooxygenase; CREB, AMP response element
binding protein; CXCL1, chemokine (C-X-C motif) ligand 1;
CXCR1, interleukin (IL)-8/C-X-C chemokine receptor 1;
CYP, cytochrome enzyme; Cyt-c, cytochrome c; DCR1/2,
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) receptors 3/4; DIABLO, Diablo homologue; DR4/
5, tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) receptors 1/2; EGF, epidermal growth factor;
EGFR, epidermal growth factor receptor; eIF2, eukaryotic
initiation factor 2; EMT, epithelial-mesenchymal transition;
ER stress, endoplasmic reticulum stress; ERK, extracellular
signal-regulated protein kinase; ERK, extracellular signal-
regulated protein kinase; ERK1/2, extracellular signal regulated
kinases 1/2; Fas, factor associated suicide; FasL, factor
associated suicide ligand; GPx, glutathione peroxidase; GSK-
3β, glycogen synthase kinase-3; GST, glutathione-S-trans-
ferase; HGF, hepatocyte-growth factor; HIF-1α, hypoxic
response transcription factor-1α; HO-1, heoxygenase-1; IκBα,
nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, alpha; IKK, I kappa B kinase; IL, interleukin;
iNOS, inducible nitric oxide synthase; JNK, jun amino-
terminal kinase; Keap1, kelch-like ECH-associated protein 1;
LC3, microtubule-associated protein 1A/1B-light chain 3;
MAPK, mitogen-activated protein kinase; Mcl-1, myeloid cell
leukemia-1; MMPs, matrix metalloproteinases; MTA1, meta-
stasis-associated protein 1; mTOR, mammalian target of
rapamycin; NF-κB, nuclear factor kappa B; NK cells, natural
killer cells; NO, nitric oxide; NQO1, NAD(P)H:quinone
oxidoreductase1; Nrf2, nuclear factor erythroid 2-related factor
2; p62, autophagic receptor p62; p65, nuclear factor NF-kappa-
B p65 subunit; PERK, PKR-like ER kinase; PGE2,
prostaglandin E2; PI3K, phosphatidylinositol-3-kinase; PKC,
protein kinase C; PPARα, peroxisome proliferator-activated
receptor; PTEN, phosphatase and tensin homologue; PUMA,
P53 upregulated modulator of apoptosis; ROS, reactive oxygen
species; Smac, second mitochondria-derived activator of
caspase; SOD, superoxide dismutase; TNF-α, tumor necrosis
factor-α; UDP, Uridine 5′-diphospho; UGT1A6, UDP-
glucuronosyltransferase 1-6; VCAM, vascular adhesion mole-
cule 1; VEGF, vascular endothelial growth factor; ΔΨ m,
mitochondrial membrane potential
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