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We analyze aging signatures of DNA methylation and longitudinal electronic medical records from
the UK Biobank datasets and observe that aging is driven by a large number of independent and
infrequent transitions between metastable states in a vast configuration space. The compound effect
of configuration changes can be captured by a single stochastic variable, thermodynamic biological
age (tBA), tracking entropy produced, and hence information lost during aging. We show that tBA
increases with age, causes the linear and irreversible drift of physiological state variables, reduces
resilience, and drives the exponential acceleration of chronic disease incidence and death risks. The
entropic character of aging drift sets severe constraints on the possibilities of age reversal. However,
we highlight the universal features of configuration transitions, suggest practical ways of suppressing
the rate of aging in humans, and speculate on the possibility of achieving negligible senescence.

I. INTRODUCTION

Aging is a complex process manifesting itself across
different organismal levels (see hallmarks of aging [1])
and leading to the exponential acceleration of the in-
cidence of chronic diseases [2] and mortality [3]. It is
both practically and intellectually appealing to reduce
the effects of the multitude of phenotypic changes to a
few, or, even better, a single actionable indicator, most
commonly referred to as “biological age”. Biological age
(BA) models can be trained either to predict chronolog-
ical age or mortality risks of an individual from different
sources of biomedical data, ranging from DNA methy-
lation (DNAm) [4–13] to physical activity records from
wearable devices [14, 15]. Excessive BA (or biological age
acceleration) is associated with all-cause mortality, the
prevalence, future incidence, and severity of chronic [9,
16, 17] and transient diseases, including COVID-19 [15,
18–20]. Hence, BA predictors have increasingly gained
traction in clinical trials [21–23].

The dynamic properties of BA and the exact rela-
tion between BA variation and aging are not entirely
understood. For example, epigenetic aging drift and
hence methylation age may increase without an apprecia-
ble increase in all-cause mortality in negligible senescent
species [24, 25]. Moreover, even in the most healthy indi-
viduals, BA levels can transiently change throughout the
day following circadian rhythms [26] or in response to
stress factors and lifestyle choices such as smoking [17,
27]. The characteristic time required for an organism
state to relax toward the homeostatic equilibrium and
the range of BA fluctuations progressively increase as a
function of age [17]. The number of individuals exhibit-
ing slow recovery increases exponentially and doubles ap-
proximately every 8 years, which is close to the mortality
doubling time for humans [15]. Further applications of
BA models in aging research and medicine would require
a better understanding of the dynamics and causal rela-
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tion between, on the one hand, underlying biological and
physiological variations of the organism state captured
by various BA indicators and, on the other, mortality,
the prevalence and severity of diseases and the effects of
medical interventions.

To address these fundamental questions, we reviewed
the universal features of aging signatures in biomedical
data. We performed the principal component analysis
(PCA) in a large cross-sectional white-blood-cells DNA
methylation (DNAm) dataset [28] and in the longitu-
dinal electronic medical records (EMRs) from the UK
Biobank [29]. In both cases, we observed a large num-
ber of infrequent transitions between the respective states
representing the methylation of individual CpG sites or
the incidence of specific diseases in the course of ag-
ing. At the same time, most of the variance in the data
could be explained by the stochastic evolution of a sin-
gle factor linearly increasing with age and demonstrating
the strongest correlation with Horvath’s DNAm age and
the number of chronic diseases in the DNAm and EMR
datasets, respectively.

To explain the dynamics behind the universally
observed aging signatures, we put forward a semi-
quantitative model of aging in a complex regulatory net-
work. We assumed that living systems are collections
of a vast number of interacting functional units (FUs),
each set to a metastable state at the end of development.
Aging then results from the stochastic relaxation of the
organism state towards equilibrium via a sequence of con-
figuration transitions representing the microscopic state
changes in all FUs.

Since the number of dynamically accessible irregular
configurations is vast, the total number of configuration
transitions is also large. Hence, their compound effects
on individual biological processes can be quantified by a
stochastic variable with a linearly increasing mean and
variance. The quantity progressively increases over time
in a sufficiently large regulatory network and hence may
provide a natural aging clock – the thermodynamic bio-
logical age (tBA). We argue that tBA is the fundamental
aging variable best associated with the dominant princi-
pal component (PC) score in biomedical data, the Hor-
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vath methylation clock, and is proportional to the con-
figuration entropy and hence quantifies the information
lost in the course of the aging process.

II. RESULTS

A. Aging signatures in cross-sectional DNAm data

We start by analyzing a DNAm dataset GSE87571 [28]
produced from aging leukocytes measured by the Il-
lumina Infinium 450K Human Methylation Beadchip.
Each of the reported DNAm levels σ̄i is the average of a
binary single-cell signal over a bulk tissue sample com-
prising a large number of cells. In other words, σ̄i is the
probability of finding a CpG site in a methylated state.

To avoid complications due to the cross-over between
the development and aging process, we removed sam-
ples collected from individuals younger than 25 y.o. Fur-
thermore, to counter the “curse of dimensionality” [30]
due to the shallow nature of the dataset (approximately
450k CpGs, each measured in less than 800 patients),
we filtered out CpGs without a significant correlation
with age (after the Bonferroni correction for multiple
testing, p = 0.005/450k). Ouf of approximately 100k
CpGs significantly correlated with age (almost 25% of
all reported), most were either initially hypermethylated
in the 20 − 25-year-olds (σ̄i > 0.9, 26% of all CpGs) or
hypomethylated (σ̄i < 0.1, 28% of all CpGs).

The DNAm signal has a non-normal distribution be-
cause it is limited to the interval [0, 1]. Instead, we used
normally-distributed log-odds ratios hi ∼ ln(σ̄i/(1− σ̄i))
characterizing the probability of a CpG’s methylation. In
physics, such a parametrization is used to define the prob-
ability of observing a polarized state of a magnet in the
presence of a magnetic field according to the Boltzmann
probability distribution (see Section S.V). Accordingly,
hi quantifies the free energy differences between the cor-
responding methylation states. In view of this analogy,
henceforth, we refer to hi as “regulatory fields”.

The PCA of regulatory fields reveals a few principal
components (PCs) associated with age. The dominant
PC (DNAm-PC1) evolves approximately linearly as a
function of age (Fig. 1a; Pearson’s r = 0.68, p = 3·10−98).
The variance of DNAm-PC1 also increases linearly with
age (Fig. 1b), which is a hallmark of a stochastic process
(see below).

Aside from DNAm-PC1, the best correlation with
chronological age was produced by the third PC, DNAm-
PC3, (Pearson’s r = 0.56, p = 3 · 10−62). DNAm-PC3 in
subsequent age-adjusted bins increased faster than at a
linear pace as a function of age (Fig. 1c). The variance
of DNAm-PC3 also increased faster than linearly so that
the inverse variance decreased approximately linearly in
the patients older than 40 years old (Fig. 1d). By ex-
trapolation, the inverse variance of DNAm-PC3 would
approach zero (and hence the variance would diverge) at
some age within the age range of 120–150 years.
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FIG. 1. PCA of age-dependent methylation profiles from
white-blood-cells samples from GSE87571. (a) DNAm-PC1
and (b) variance of DNAm-PC1 increase, on average, linearly
as functions of age. (c) DNAm-PC3 increases faster than
linearly with age; (d) inverse variance of DNAm-PC3, the ex-
trapolation for the range of 40 to 75 years vanishes at 120
y.o. (e) Distribution of PC vector components. (f) DNAm-
PC1 scores correlate with Horvath’s DNAm age. The color
bar represents patients’ chronological age. (g) Gene set en-
richment analysis: CpG sites comprising DNAm-PC3 are as-
sociated with the regulation of innate immune response. (h)
Methylation profiles driven by DNAm-PC1 and DNAm-PC3
are associated with developmental and mental diseases, and
internal organs’ diseases.

The loading vectors corresponding to DNAm-PC1 and
-PC3 describe two distinct methylation profile changes
with age. The distribution of the PC1 loading vector’s
components is non-Gaussian and bi-modal. Hence, the
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dominant aging signature in DNAm data involves two
large groups of CpG sites (Fig. 1e) changing their methy-
lation (“polarization”) with age in opposite directions.
The first PC score is then proportional to the total num-
ber of polarization transitions.

On the contrary, the distribution of the loading vec-
tor’s components from DNAm-PC3 has a single peak and
clear leading contributions from non-Gaussian tails (see
Fig. 1e). The gene set enrichment analysis of methylation
regions associated with the PC3 variation reveals path-
ways involved in innate immunity and cancer (Figs. 1g
and h).

The dominant PC scores computed from the
GSE87571 samples demonstrate the best correlation with
Horvarth’s DNAm age [4] (Fig. 1f). The correspond-
ing Pearson’s correlation coefficients were r = 0.75 (p =
2 · 10−131) and r = 0.52 (p = 10−52) for DNAm-PC1 and
DNAm-PC3, respectively (see also Figs. S.1 and S.2 for
a summary of other PC scores’ correlation with age and
Horvath’s DNAm age).

a b
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FIG. 2. PCA of disease-state vectors from the electronic medi-
cal records (EMR) from the UK Biobank: (a) Age dependence
of the first three PC scores; (b) PC1 correlates with the total
number of chronic diseases; The solid lines and the ranges rep-
resent the means and the standard deviations in subsequent
age-matched cohorts. (c) Variance of PC1 increases linearly
with age (d) Autocorrelation function C(τ) of PC1 increases
linearly as a function of the time lag τ .

To confirm the stochastic character of the dominant
aging signature in humans, one would need to analyze
a large longitudinal dataset. We did not have access to
a high-quality set of longitudinal DNAm measurements.
Instead, we turned to an extensive electronic medical
records collection (EMRs) from the UK Biobank. Ir-
respective of the age at the first assessment, the EMRs
provided information on the prevalence of chronic dis-

eases from birth until the end of the follow-up (slightly
more than ten years after enrollment, on average). We
represent each patient by a vector of binary variables in-
dicating the presence or absence of a disease (see Section
S.III).

Most of UK Biobank’s subjects are healthy early in life.
Hence, the states representing the presence of diseases are
initially polarized (σi = 0). Most states stay polarized
for life, with only a small fraction of patients exhibiting
depolarization transitions leading to the incidence of spe-
cific diseases. Indeed, chronic diseases are relatively in-
frequent: the most prevalent diseases are metabolic disor-
ders (with the prevalence of 15%), joint disorders (14%),
and arthrosis (12%).

The PCA of binary-valued vectors representing a
health state for the EMRs of UKB subjects at the time of
the first assessment look similar to the PCA results from
the white-blood-cells DNAm study above. This time, we
observed only two PCs significantly associated with age
(see the blue and the green lines and the respective ranges
corresponding to the mean levels and one standard devi-
ation in Fig. 2a).

The dominant aging signature, the first PC in the UKB
EMR data (EMR-PC1), evolves approximately linearly
as a function of age and is linearly associated with the to-
tal number of diagnosed diseases (Fig. 2b). Hence, in line
with the results of our DNAm analysis above, the first
PC correlates with the total number of depolarization
transitions (this time being equal to the disease burden
at the time of measurement).

As expected, the variance of EMR-PC1 increases lin-
early with age (Fig. 2c), which is a hallmark of a stochas-
tic process. This time, however, due to the longitudinal
nature of the EMR dataset, we can make a stronger claim
by computing the autocorrelation function of EMR-PC1.
We observe that the autocorrelator increases linearly as a
function of the time lag between the observations, which
is typical for a result of a stochastic process with a drift
(Fig. 2d, see discussion in the section below).

B. Aging in a complex regulatory network

To explain the key features of aging signatures, let us
consider an organism as a network of interacting func-
tional units (FU). Each of the units can be observed in
multiple states of varying physiological capacity. We have
already presented examples of such microscopic states
corresponding to the different methylation levels of par-
ticular CpGs or disease states. However, the language
may be used to describe other situations involving, e.g.,
mutations or conformation changes in biomolecules.

For any given FU i, we will focus on the two most-
occupied microscopic states (Fig. 3a) corresponding to
two adjacent potential wells in the free energy landscape
shaped by regulatory interactions. We encode the pair of
states by a binary variable σi taking values of σi = 0 and
σi = 1, respectively. At the end of development, most
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FIG. 3. Basic features of the proposed aging model: (a) Schematic representation of relaxation dynamics of a functional
unit (FU) i residing in a potential well (the blue curve). The subsequent metastable states are labeled by the ”polarization”
σi = 0 and σi = 1 (the red arrows indicates thermally activated configuration transition between the microscopic states). The
initial, “polarized” state is protected by the activation barrier characterized by the activation energy Uact

i . The configuration
transition rates Ri are presumed small and depend exponentially on the effective temperature T . (b) Human organism consists
of a macroscopically large number N of FUs. We classify them according to the mean activation rates Ri. Most configuration
transitions are very rare (Rit̄ � 1). (c) Dynamics of the “soft” FUs with low activation barriers Rit̄ ∼ 1. Aging drift causes
the reduced resilience and diverging variance of physiological state fluctuations, all proportional to the overall number of the
configuration transitions to date Zt ≈ NRt.

FUs are polarized, so that most of the subjects occupy
one of the selected states.

Initially polarized states are not necessarily ground
states. Hence, over time, the organism state relaxes to-
wards thermal equilibrium via a series of configuration
transitions – fluctuations drive the depolarization tran-
sitions between the microscopic states. Both the DNAm
and EMR data suggest that, in most cases, the configu-
ration transitions are rare: on average, we observe fewer
than a single transition between the states over the life-
time t̄ of an organism. In other words, the corresponding
transition rates Ri are very small (Rit̄� 1, see Fig. 3b).

The low transition rates indicate that the relevant ac-
tivation energies Uact

i in the free energy landscape defin-
ing the states of FUs exceed the effective temperature
T greatly and are not affected by the effects of aging.
Accordingly, we expect that the depolarization rates,
Ri ∼ exp(−Uact

i /T ), are exponentially small and age-
independent.

The effective temperature T characterizes the statisti-
cal properties of regulatory noise, which may depend on
the fidelity of regulatory interactions and the deleterious-
ness of environment [31]. The effective temperature shall
not be confused with (although maybe related to) the
body or environmental temperature (see Section S.V).

Quantitatively, stochastic forces cause configuration
transitions so that the average polarization of every FU
changes linearly over time t:

〈σi〉t = 〈σi〉t0 + εiRi(t− t0) (1)

Here the averaging 〈...〉t occurs over the samples pro-
duced at age t and εi = ±1 is the direction of a depolar-
ization transition.

The PCA of a dataset modeled by Eq. 1, would pro-
duce the first PC, which is directly proportional to the to-
tal number of configuration transitions Zt ≈ NRt, where
R is the characteristic (average) depolarization rate, and
N is the total number of FUs. It is essential to under-
stand that the total number of FUs jointly describing
the organism state, N , is practically infinite (N � 1)
and hence only a small subset of all FUs may, in prin-
ciple, be observed directly in any given experiment. We
may expect, however, that the total number of the de-
polarization transitions in any sufficiently large subset of
the data (such as DNAm or EMRs) is proportional to Zt.

The depolarization probability for each FU may be
small. However, the total number of FUs available for the
configuration transitions is huge, and their compound ef-
fect does not need to be small. Suppose the lifetime of an
organism is sufficiently large. In that case, the total num-
ber of configuration transitions Zt is also very large, and
the aging signature described by Eq. 1 should dominate
the variance in real-life biomedical data. This is exactly
what happens in the PCA of both the DNA methyla-
tion (Fig. 1a) and EMR data (Fig. 2a) above. The dis-
tribution of the first PC vector’s components would be
bi-modal according to the corresponding values of depo-
larization transition directions εi (Fig. 1e).

Under the same conditions, Zt acquire the properties
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of a random quantity, obeying a stochastic Langevin (or
diffusion) equation with a drift. This means that the
variance of Zt (and hence the first PC in the data) in
age-adjusted bins should increase linearly with age. This
was indeed observed in the DNA methylation (Fig. 1b)
and EMR (Fig. 2c) data, respectively.

More evidence in favor of the stochastic character of
Zt (and hence of the first PC scores in the data) could
be produced by the investigation of the autocorrelation
function C(τ) = 〈(Zt+τ − Zt)

2〉, where 〈...〉 stands for
the averaging, first, along the individual trajectory and,
then over all patients. The autocorrelation function of
the leading PC in the EMR data increased linearly as a
function of the time lag in the range between 2 and 10
years (Fig. 2d). The diffusion coefficient’s estimates from
the variance and autocorrelation increase turned out to
be close: 0.012 and 0.009 per year, respectively, thus
confirming the association of the leading PC score with
the increasing number of configuration transitions Zt.

a b

FIG. 4. Configuration entropy computed from the distribu-
tions of (a) the DNA methylation and (b) EMRs features in
subsequent age-matched cohorts increases linearly as a func-
tion of age after 40 years.

To highlight the stochastic character of the aging drift
in the model, let us note the relation between the num-
ber of depolarization transitions Zt and the configuration
entropy in the aging organism. Assuming that we start
from highly polarized states, 〈σi〉t ≈ 1−Rit, we find that

S(t) = N〈Rit log(1/(Rit))〉 ∼ Zt

up to a proportionality coefficient. As expected, the con-
figuration entropy increases along with the number of
depolarization transitions understood as DNAm changes
or the incidence of chronic diseases or age (Figs. 4a and
b, respectively).

Let us now turn to the transitions between the micro-
scopic states separated by the smallest activation barri-
ers and hence characterized by the highest depolarization
rates (the top FUs in Fig. 3b). In Section S.V, we explain
that the interactions between such FUs can no longer be
neglected and therefore the FUs should form clusters of
co-regulated features. Formally, we expect that the joint
activation of FUs forming a cluster (or a pathway) la-
beled by A affects all other FUs i in the cluster via a
shift of regulatory fields according to δhi ≈ zAbAi , where

zA and bAi are the pathway activation strength and the
participation vectors’ components, respectively.

In Fig. 3c, the solid blue line represents the cross-
sectional view of the free energy as a function of the
pathway activation variable zA experiencing stochastic
fluctuations in response to stress factors. The dynam-
ics of the pathway activation depend on the power of
stochastic noise (which is, in turn, proportional to the
effective temperature T ) and persistent stress factors JA.
The effects of the regulatory interactions can be described
by the recovery rate, rA, which is directly related to the
curvature of the basin of attraction for zA. The recovery
rate is the inverse recovery time and characterizes the
pathway’s ability to respond to stress and relax toward
the equilibrium position after a shock.

The configuration transitions occur independently
from pathway activations. Each depolarization event ex-
erts regulatory influence and reshapes the free energy
landscape for all the other FUs (see the blue dashed line
in Fig. 3c). Since the total number of the transitions
is very large, the central limit theorem [32] ensures that
the net effect of configuration changes on any physiolog-
ical process must be proportional to the total number of
depolarization transitions Zt.

Over longer time scales, well exceeding pathway equi-
libration times ∼ r−1A , the stochastic component of zA
fluctuations averages out. The mean pathway activation
and variance are given by:

〈zA〉t ≈
βAZt + JA
rA(Zt)

, σ2
z(t) ∼ T

rA(Zt)
, (2)

respectively (see Section S.V for the details of the deriva-
tion). Here rA(Z) = r0A − r′AZ is the age-adjusted re-
covery rate, whereas βA, and r′A are small and pathway-
specific quantities characterizing the weak mode-coupling
effects leading to the compound (and hence proportional
to Zt) effect of depolarization processes on pathway ac-
tivation and resilience, respectively.

Accordingly, the fluctuations of the organism state
variables other than those described by Eq. 1 can be at-
tributed to a few clusters of co-regulated features partici-
pating in pathways characterized by the smallest recovery
rates (vanishing denominators in Eq. 2). In this case, the
participation vectors bAi and the pathway activation vari-
ables zA should approximately coincide with the leading
PC loading vectors and scores, respectively.

According to Eqs. 2, an increasing number of depolar-
ization transitions Zt causes progressive shifts in path-
way activation. Notably, this effect is indistinguishable,
albeit smaller than the effects of constant stress modeled
by JA. More subtly, aging in the form of progressive de-
polarization of an organism state measured by Zt also
affects the recovery rates in the denominator of Eq. 2.
The two effects combine and cause the mean pathway ac-
tivations and therefore the leading PC scores in the data
depend on age in a non-linear — hyperbolic fashion (see
the dynamics of DNAm-PC3 in Fig. 1c and EMR-PC2
in Fig. 2a).
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The non-linear coupling of organism-state fluctuations
with depolarization transitions may reduce one of the
smallest recovery rates to zero: r(Zt) = r0 − r′Zt =
r0(1 − t/tmax) at some point late in life at age tmax =
r0/(r′dZt/dt). The situation corresponds to the critical
point corresponding to the complete loss of resilience,
that is, the inability of the system to retain its home-
ostasis equilibrium and hence it is incompatible with sur-
vival [17].

There is no way to measure the recovery rate in cross-
sectional data. However, according to Eq. 2, the vanish-
ing recovery rate should lead to the simultaneous diver-
gence of one of the leading PC scores and its variance at
a certain advanced age. In our analysis, DNAm-PC3 in-
creases faster than linearly as a function of chronological
age. The fit of the DNAm-PC3 scores to the hyperbolic
solution for the average zA from Eq. 2 gives tmax ≈ 130
years (see the solid line in Fig. 1c and Section S.I for the
details of the calculations).

In agreement with Eq. 2, the extrapolation shows that
the inverse variance of DNAm-PC3 hits zero and hence
the variance of DNAm-PC3 diverges at approximately
120 years (see the solid line in Fig. 1d). The estima-
tions of the limiting age from the behavior of DNAm-PC3
mean and its variance are comfortably close. Hence, our
calculations support the existence of a critical point in
the age range of 100− 150 years.

In reality, the disintegration of the organism state hap-
pens well before reaching the criticality at the limiting
age tmax. Stress factors and the depolarization of the
organism state do not merely shift the mean pathway
activation levels. Both factors may also decrease the ac-
tivation energy separating the organism state from dis-
integration and death (Fig. 3c). In the linear regime,
the activation energy linearly depends on the mean-field,
Uact(Zt) = U0

act − U ′Zt, where U ′ = dU/dZ.
The mortality in the model is nothing else but the

probability of barrier crossing per unit time: M ∼
exp(−U0

act/T ) exp(U ′Zt/T ). Therefore, the aging drift
in the form of configuration transitions registered by the
progressively increasing Zt ∼ t may drive the exponen-
tial acceleration of all-cause mortality with age: M ∼
exp(Γt). The mortality doubling rate Γ = T−1U ′dZt/dt
in the model depends on the details of the regulatory
interactions (through U ′), the rate of the aging drift
dZt/dt, and the effective temperature T .

III. DISCUSSION

We put forward a semi-quantitative model of aging in
a complex regulatory network and applied it to the anal-
ysis of human aging signatures in a cross-sectional white-
blood-cells DNAm dataset [28] and the extensive collec-
tion of longitudinal electronic medical records (EMRs)
from the UK Biobank [29]. We demonstrated that the
key features of the physiological indices dynamics may be
explained by the compound effect of massive and ther-

modynamically irreversible configuration changes accom-
panied by increasing entropy.

The data suggest that the rates characterizing tran-
sitions among the microscopic states of the methylation
status or the incidence of specific diseases are small. In
most cases, on average, fewer than a single state change
occurs throughout lifetime. However, even though the
rates of configuration changes may be low, the total num-
ber of configuration transitions between the states is vast:
no less than 25% of all methylation sites exhibited age-
related dynamics. Hence, the overall number of concur-
rently occurring transitions is large, so their compound
effects dominate the dynamics of the physiological state.

We observed that the leading aging signature, which is
the first PC score explaining most variance in the data,
increased on average linearly with age in the PCA of the
DNAm and EMR data. In both cases, the first PC score
was proportional to the total number of configuration
transitions (the number of DNAm level changes or the
total number of chronic diseases). Simultaneously, the
variance of the dominant PC score grew linearly with age
in both datasets, as is expected for a stochastic quantity,
a product of a large number of independent relaxation
transitions.

We found that in our examples the total number of con-
figuration transitions Zt, on average, increases linearly
with age and explains most of the variance of physiolog-
ical state variables. Accordingly, we propose using Zt as
a quantitative measure of the net effect of slow configu-
ration changes on the aging organism – thermodynamic
biological age (tBA ∼ Zt). The dominant aging signa-
ture in the data (the first PC score) is then an estimate of
tBA from the specific data. Most comfortably, DNAm-
PC1 and hence tBA exhibited the strongest correlation
to Horvath’s DNAm age.

The total number of transitions is large, and hence tBA
increases linearly with age to a very high degree of accu-
racy (according to the central limit theorem [32]). That
may be the mathematical reason why it is almost always
possible to build a very accurate predictor of chronolog-
ical age from different sources of biomedical data (see
examples [4, 5, 7]).

Configuration transitions do not only provide a natu-
ral clock in aging humans, but also the thermodynamic
arrow of time. Our model suggests that tBA is directly
related to configuration entropy produced and hence in-
formation regarding the healthy state lost in the course
of aging. The relationship between tBA and entropy can
be understood since the biological age is a single number
capturing the result of a large number of independent in-
dividual transitions. Particular depolarization patterns
may differ in various cells of one subject or among dif-
ferent subjects of the same age. In contrast, the total
number of transitions should be similar and hence char-
acterize the overall state of an organism in relation to
aging.

Due to limited data availability, we could only ana-
lyze aging signatures in DNAm states and chronic dis-
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eases. However, we expect that present findings should
be universal and generalize to other examples of func-
tional units experiencing configuration changes over time.
We may think about (but not limit ourselves to) con-
formation or chemical modifications of macromolecules,
including DNA damage, etc. Since all the configuration
changes happen simultaneously and increment tBA, we
must not consider any single kind of them as causing the
aging drift.

Configuration transitions change the organism’s state
and affect all biological processes. Since the number of
configuration changes is large, the details of individual
transitions are not important. The compound effect of
the aging drift manifests itself as a ”mean-field” caus-
ing the shift of physiological indices that is proportional
to the number of configuration transitions to date (and
hence to tBA itself).

The mean-field theory is a powerful approximation for
understanding the behavior of interacting systems first
developed in physical sciences (see, e.g., [33]) and since
then applied in statistical inference [34] in general and
in specific applications (see, e.g. protein structure pre-
diction [35, 36]). In the present work, we substitute the
overwhelming complexity of actual interactions between
FUs for a much simpler picture, where each of the FUs
or large clusters of FUs operate independently and ex-
perience the average effects of the behaviour of all other
FUs quantified by tBA.

The mean-field produced by the configuration transi-
tions yields the strongest effects on the large clusters of
FUs characterized by long recovery times and hence ex-
hibiting strong fluctuations and dominating the leading
PCs other than PC1 ∼ tBA in biological signals. We
show that the effect of the aging drift on such modules
or pathways is similar to the effects of stresses (such as
smoking or diet). Since the BA increases linearly with
age, we expect that, in the first approximation, all path-
ways “follow” the aging process by increasing (or decreas-
ing) activations linearly with age.

The proposed model provides a good semi-quantitative
explanation how the increasing mean field and the non-
linearity of regulatory interactions produce significant de-
viations of mean pathway activations from a simple linear
age-dependence of non-dominant PC scores in biomedi-
cal data (see DNAm-PC3 and EMR-PC2 in the PCA of
DNA methylation and EMR data, respectively).

Nonlinear regulatory interactions let the configuration
changes (but not stresses) affect the resilience understood
as the ability of a cluster of interacting FUs to respond to
a perturbation and relax to the equilibrium afterwards.
If the recovery rate is particularly small, this may lead
to the divergence of organism state fluctuations at some
advanced age corresponding to the critical point, where
the recovery rate vanishes. This happens with the cluster
of DNAm levels associated with the DNAm-PC3. By ex-
trapolation, we observed both the mean and the variance
of DNAm-PC3 diverging at the age close to tmax ≈ 130.

Gene set enrichment analysis (GSEA) of genes regu-

lated by CpG sites involved in DNAm-PC3 reveals associ-
ation with innate immunity. Recently, we demonstrated
that linear log-mortality predictors built from complete
blood counts (CBC) and physical activity [17] also exhib-
ited diverging fluctuations and a vanishing recovery rate
at about the same limiting age tmax ≈ 130 years. We,
therefore, infer that the white-blood-cells DNA methy-
lation, blood composition and even physical activity all
substantially depend on a common factor related to in-
nate immunity and all-cause mortality.

The prediction of mortality (or the remaining lifespan)
in humans hence requires an estimate for tBA ∼ Zt and
for a few most crucial pathway activations (also, on av-
erage, depending on Zt). Hence, no single biological age
measure fully describes longevity in humans. We expect
that the biological age models trained to predict chrono-
logical age should yield better estimates of tBA. On the
other hand, the models trained to predict the remaining
lifespan (such as PhenoAge [8], GrimAge [9], DOSI [17],
etc.) should return a combination of pathway activations
associated with the prevalence of diseases and accelerated
mortality [12] and hence better suited for the detection
of reversible effects of diseases, lifestyles and medical in-
terventions [37].

PCA of human data is peculiar since it produces more
than a single age-dependent feature. This is not the
case in simpler animals such as worms [38], flies [39] or
mice [40], where aging could be explained by a simple
dynamic instability leading to the exponential disinte-
gration of an organism state [39, 41]. We expect that the
entropic contribution to aging has no time to develop in
such cases. The biological age is then a dynamic factor,
and the effects of aging may be reversible [40].

This work along with the direct dynamics stabil-
ity analysis of organism state fluctuations in longitudi-
nal biomedical data [15, 17] support the idea that hu-
mans (and probably other long-lived mammals, such as
naked mole-rats) evolved so that fully grown subjects are
metastable until very late in life. The loss of stability is
the result of a loss of resilience due to a combined effect of
a vast number of independent configuration transitions.

We put forward arguments suggesting that human ag-
ing may have a very significant entropic component.
Our approach is, therefore, in line with Hayflick’s pro-
posal [42] that distinguishes the genetic determinism of
longevity from the stochasticity of the aging process. If
the proposition is accurate, we must expect that although
the hallmarks of aging (features or activations of spe-
cific pathways leading to mortality and morbidity accel-
eration [1]) can, in principle, be reverted, the expected
effects on lifespan may be transient and limited. Any
attempts to reduce the dominant aging signature, tBA,
would run against the tendency of complex systems to
increase their entropy. Any working strategy would re-
quire the availability and timely application of an im-
mense number of precise interventions. This is, to say the
least, technologically challenging. Accordingly, we must
think that aging in humans can be reversed only par-
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tially. For example, recent epigenetic reprogramming ex-
periments [43–45] lead to the reversal of epigenetic clock
readouts. The fact that the process of aging is entropic
does not necessarily mean that one cannot reset some
of the organismal subsystems closer to a younger state.
The entropic character of aging implies that age-reversal
would be limited to a specific organismal subsystem with-
out a full rejuvenation of the whole organism.

Achieving strong and lasting rejuvenation effects in hu-
man may thus remain a remote perspective. Our model,
however, suggests that there must be a practical way to
intercept aging, that is to reduce the rate of aging dra-
matically. The rates controlling configuration transitions
between any two states depend exponentially on the ef-
fective temperature. Hence, even minor alterations of
the parameter may cause a dramatic drop in the rate
of aging. In condensed matter physics, this situation is
known as glass transition, where the viscosity and relax-
ation times may grow by ten to fifteen orders of magni-
tude in a relatively small temperature range [46–53]. We
note, of course, that living organisms are non-equilibrium
open systems, and hence the effective temperature must
not coincide with body or environment temperatures.
Rather, the effective temperature is a measure of dele-
teriousness of the environment [31].

We speculate that the evolution of long-lived mammals
may have provided an example of tuning the effective
temperature. Naked mole rats are known for their ex-
ceptional stress resistance, DNA repair efficacy [54–57],
and translational fidelity [58, 59]. Those factors should
reduce noise in regulatory circuits and lower the effec-
tive temperature of the system. One example of such
tuning may be used to explain the recent studies in-
dicating that naked mole-rats breeders age slower than
their non-breeding peers, at least according to the DNAm
clock [24].

Social status and mental health also impact the aging
rate measured by DNAm and other clocks in humans [60,
61], possibly via neuroendocrine system. Higher so-
cioeconomic status, somewhat counter-intuitively, signif-
icantly increases the mortality doubling rate and simulta-
neously reduces age-independent mortality in such a way
that mortality in the highest and lowest income groups
converge at an age close to our tmax estimates [62]. Such
a behavior of mortality is consistent with a reduction of
the effective temperature in the higher-income cohorts in
our model.

Future studies should help establish the best ways to
“cool down” the organism state and reduce the rate of
aging in humans. The simple linear PCA exemplified
here may only help gain a qualitative understanding of
underlying processes. We expect that increasing avail-
ability of high-quality longitudinal biomedical data will
lead to a better understanding of the most critical fac-
tors behind the kinetics of aging and diseases, including
those controlling entropy production in the course of ag-
ing. This should lead to a discovery of actionable targets
influencing the rate of aging, help slow down aging and

thus produce a dramatic extension of human healthspan.
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MATERIALS AND METHODS

S.I. PCA OF THE DNA METHYLATION DATA

We took the white-blood-cells methylation data from
GSE87571 dataset [28]. It contains 729 samples (more
than 440k features each) collected from patients of both
genders (341 males and 388 females) covering the age
range between 14 and 94 years of age.

To focus the analysis on aging, we filtered out the pa-
tients younger than 20 y.o. (620 samples remaining). We
filtered out the CpG sites according to Pearson’s correla-
tion between the DNA methylation levels and the chrono-
logical age at the level of p < 0.005/N (where N is the
total number of the reported features), thus obtaining
96536 sites. We performed and reported the results of
the PCA on the resulting data.

We computed Horvarth’s methylation age as described
in [4]. A few CpG sites (cg17099569, cg00431549,
cg11025793, and cg14409958) were not present in the
data, and hence we had to exclude them from the cal-
culation.

DNAm-PC3 increased with age at a faster than lin-
ear pace. We collected all the pairs of the DNAm-PC3
scores and the chronological age for every patient n in
the dataset and used the available age-range to produce
a fit of the data to average from Eq. 2:

DNAm− PC3n ≈ a

tmax − tn
+ b · tn + c

with the uniform Gaussian error and tmax, a, b and c
being the parameters of the fit. The calculation returned
tmax = 129.9 years. We also performed the linear fit of
the inverse variance of DNAm-PC3 and obtained 90% CI
[114.5, 122.2] for tmax.
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FIG. S.1. Association of the PC scores in regulatory fields with chronological age.

FIG. S.2. Association of the PC scores in regulatory fields with Horvath’s methylation clock (DNAm age).

S.II. GENE SET ENRICHMENT ANALYSIS

We collected the CpG sites best associated with
DNAm-PC1 and DNAm-PC3 according to the values of
the respective vector components. We retrieved the gene
IDs from Illumina’s 450k methylation arrays documen-
tation. Finally, we performed Gene Ontology (GO) and
disease ontology (DO) enrichment with the help of the R
”clusterProfiler4.0” package [63].

S.III. PRE-PROCESSING OF EMRS FROM UK
BIOBANK

To avoid using the disease labels corresponding to
the transient diseases, we selected 111 chronic diseases
diagnoses using Chronic Condition Indicators for ICD-
10 [64]. Overall, in the EMR dataset are 389494 pa-
tients, of mostly Caucasian origin (366715 or 94%), of
both sexes (179032 males and 210462 females) in the age
range 38− 74).

S.IV. ENTROPY/ENTROPY PRODUCTION
RATE DETERMINATION

For the practical calculation of entropy, we used a
Python library scipy.stats.entropy [65], which was ap-
plied to the individual distributions of methylation levels
and to the distributions of EMR vectors averaged over
the population in age-binned cohorts.

S.V. THEORY: AGING IN A COMPLEX
REGULATORY NETWORK

We propose to model the effect of the interactions
among FUs with the help of the auxiliary variables –
the effective “regulatory fields” hi evolving over time ac-
cording to

ḣi =
∑
j

kijσj +
∑
jk

gijkσjσk + J
(0)
i + fi, (S.1)

where kij and gikj describe the first linear and first order
non-linear interaction between the individual units. The
force terms J

(0)
i and fi represent the effects of constant

(such as smoking or diets) and stochastic (social status,
deleteriousness of the environment [31]) factors, respec-
tively. For simplicity, we assume that the noise factors
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have zero mean and are not correlated over time. The
states of individual FUs i can be observed depending on
the regulatory field hi according to the Boltzmann distri-
bution: σ̄i = (1+exp(−hi/T ))−1, where T is the effective
temperature.

We start from Eqs. S.1 and observe, that the regulatory
fields change over time in response to the deterministic
(the direct linear and the higher-order non-linear interac-
tions between the units) and stochastic forces fi. We nat-
urally assume that the stochastic force terms are not cor-
related over long time intervals: 〈f(t)f(t′)〉 = Bδ(t− t′)
with B is the power of the stochastic noise, 〈...〉 stands
for the averaging along the individual trajectory and over
all specimen, and δ(t) is the Dirac delta-function.

In spite of apparent simplicity, the Eqs. S.1 are non-
linear and may have highly non-trivial solutions leading
to applications in condensed matter physics [66] and neu-
rophysiology [67]. For our discussion, it is important that
the stochastic noise drives the system towards equilib-
rium at an effective temperature controlled by the power
of the noise T ∼ B.

The data suggests that there is a large “bulk” of units
characterized by excessive lifetimes. Mechanistically this
may be explained by operating within a vicinity of a
metastable state with a very high activation energy Uact

relative to the effective temperature, Uact � T (Fig. 3a).
We will assume that the effects of aging are small

on the scale of Uact and hence the depolarization rates
Ri ∼ Uact/T are not only very small, but also do not con-
siderably depend on age. Accordingly, the depolarization
is on average a linear function of age and the total num-
ber of configuration transitions Zt: 〈∆σi〉 = Rit ∝ Zt
and 〈∆σ2

i 〉 ∝ Rit ∝ Zt.
Let us think that the aging drift in the form of simul-

taneously occurring configuration transitions progresses
slowly compared to fast functional responses in the or-
ganism. We linearize the equations for the regulatory
fields next to the youthful state h̄i:

δ̇hi =
∑
j

Kijδhj+

+
∑
j

Kij〈∆σj〉+
∑
j

gijk〈∆σ2
j 〉+

+
∑
j,k

gijk
dσj
dhj

δhj〈∆σk〉+ J
(0)
i + fi,

(S.2)

where δhi = hi−h̄i and ∆σj variables describe the devia-
tions of the fields and depolarization of the units, whereas
the averages 〈...〉 involve the averaging over the “bulk”
uncorrelated states only.

The solutions of the linearized Eq. S.2 can be best
understood with the help of a linear decomposition:
δhi ≈

∑
A zAb

A
i , where zA are the pathway activations,

and bAi are the right eigenvectors of the interaction matrix
corresponding to the smallest eigenvalues rA (the matrix
K is non-symmetric and hence its complete eigensystem
must include the left, aAK = −rAaA, and the right,

KbA = −rAbA, eigenvectors). The components of the
vector bAi characterize the participation of the FU i in
the pathway A.

Substituting the solution into the equation and multi-
plying both sides by the corresponding left eigenvector,
we find, that

żA = −(rA − r′AZt)z + βAZt + JA + fA, (S.3)

where JA = aAJ , fA = aAf . The effect of aging comes
through the mean field on the pathway activation βAZt =
aAK〈∆σ〉 + O(g) and the non-linear correction to the
eigenvalue rA ≈ rA − r′AZt.

It is important to understand, that all the relevant vec-
tors and constants can not be derived and could only be
measured experimentally. The large number of configu-
ration transitions ensures by virtue of the central limit
theorem that the effect of the mean field is exactly linear
in Zt.

Qualitatively, the net effect of the rare transitions and
the associated mean field Zt together produce a persis-
tent pathway activation, on average, slowly increasing
with age. This is often referred to as an enslavement
principle: stochastic depolarization transitions produce
a slowly evolving mean field Zt that disturbs pathways
characterized by fast relaxation times having thus enough
time to adjust to its current level.
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