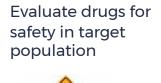

HEALTHY FOR LIFE

within this generation

Aging is not a problem

Age-related diseases are



Drug Repurposing Upside

Triple Drug Repurposing: combination & new formulation & new indication

Our way of working

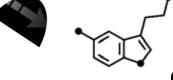
FIRST

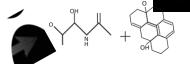
Identify drugs that restore molecular profiles

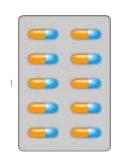
Combine:

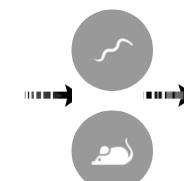
- Synergistic (MOA)
- Safe (ADME-TOX)
- Patentable (IP)

Confirm efficacy


- C. elegans
- Mouse models


Proof of concept


- Human



Investigate dysregulated genes/proteins/pathways

What is aging

Hallmarks of aging

genomic instability

telomere attrition

epigenetic alterations

loss of proteostasis

deregulated nutrient sensing

mitochondrial dysfunction

cellular senescence

stem cell exhaustion

altered intercell. communications

Age-related disease

Diabetes

Fatty liver disease

Metabolic syndrome

Sarcopenia

Osteoporosis

Cardiovascular disease

Cognitive disorders

Adapted from López-Otin et al., Cell, 2013

What about the Regulatory challenge?

We solved this by using a short term strategic solution being sarcopenia.

WHY sarcopenia?

What is sarcopenia

Hallmarks of aging

genomic instability

telomere attrition

epigenetic alterations

loss of proteostasis

deregulated nutrient sensing

mitochondrial dysfunction

cellular senescence

stem cell exhaustion

altered intercell. communications

Age-related disease

Diabetes

Fatty liver disease

Metabolic syndrome

Sarcopenia

Osteoporosis

Cardiovascular disease

Cognitive disorders

Adapted from López-Otin et al., Cell, 2013

Progressive loss of skeletal muscle mass/quality and strength.

Risk of physical disability, poor quality of life and death.

Affects 6-22% of 65+ year-olds, and 50% of 80+ year-olds.

Muscle disuse induced sarcopenia is an additional medical need: every person will be impacted in their live.

Recognized disease: ICD-10-CM (M62.84)
International diagnostic criteria
Approved endpoints

What are the Mechanisms involved in sarcopenia

Neuromuscular junction

Decreased neurotransmission

Compromised mitochondria

Skeletal muscle

Enhanced muscular inflammation

Reduced autophagy

Mitochondrial dysfunction

Attenuated angiogenesis

Reduced nutrient signaling

Circulation

Inflammaging

RJx-01 targets overlapping & distinct processes of sarcopenia

Neuromuscular junction

Decreased neurotransmission Compromised mitochondria

Skeletal muscle

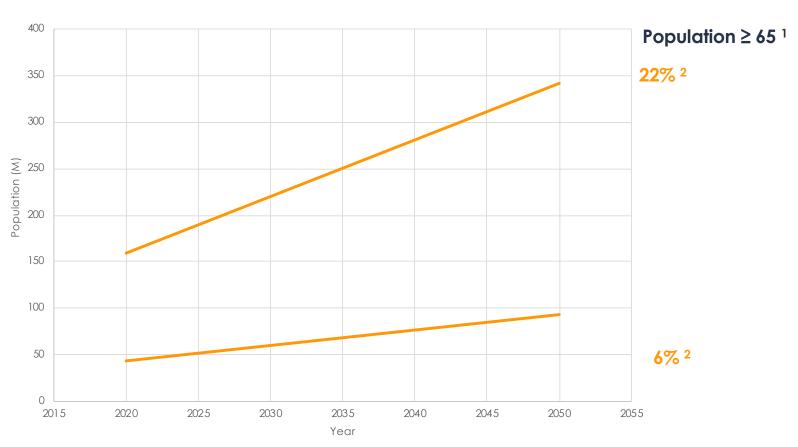
Enhanced muscular inflammation

Reduced autophagy

Mitochondrial dysfunction

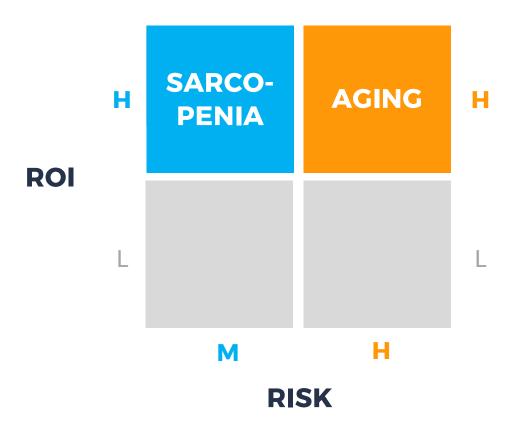
Attenuated angiogenesis

Reduced nutrient signaling


Circulation

Inflammaging

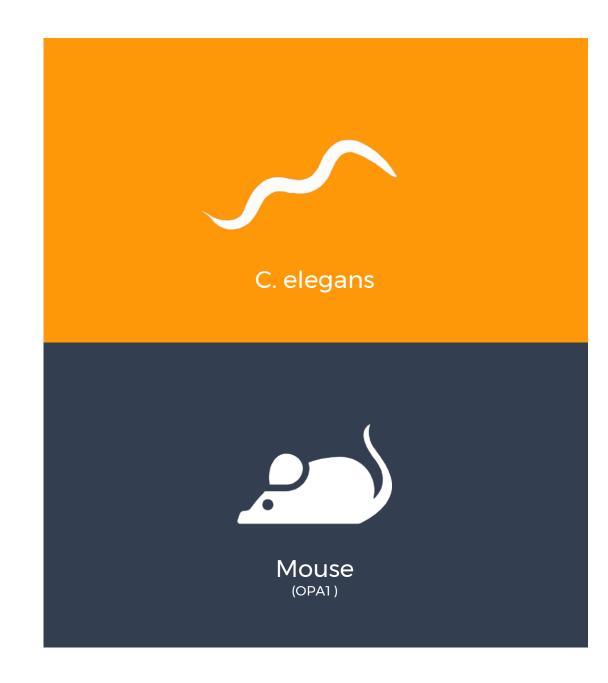
Reiuvenate


Anticipated global sarcopenia patient population in M

¹ www.populationpyramid.net

² Dent et al., J Nutr Health Aging, 2018

Balanced strategy



Sarcopenia landscape

RejuvenateBiomed	Small molecule	Phase Ib	Repurposing	RJx-01
biophytis	Small molecule	Phase II	NME	BIO-101
Faraday	Small molecule	Phase II	NME	FDY-5301
ARMGO * SERVIER	Small molecule	Phase I	NME	ARM-210
OPKO	Small molecule	Phase I	NME	OPK-88004
U NOVARTIS REGENERON SANOFI	Large molecule	Discontinued		is: Strategic decision eron: insufficient efficacy

18 NMEs in Preclinical Phase

RJx-01 Effective in established aging models

RJx-01 Effective in established aging models

- 1. increases lifespan
- 2. enhances activity
- 3. protects muscle integrity

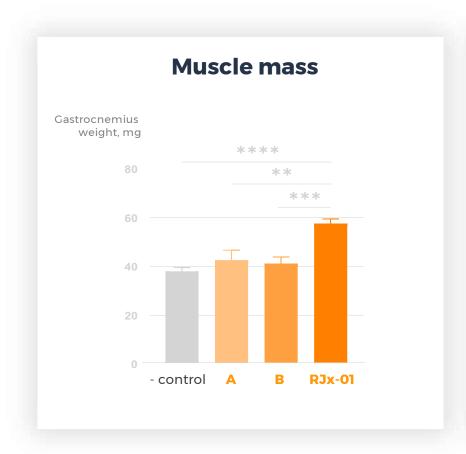
Mouse (OPAT)

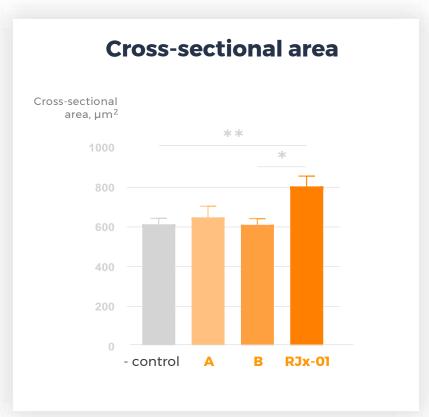
increases physical performance in old mice

RJx-01 Effective in established aging models

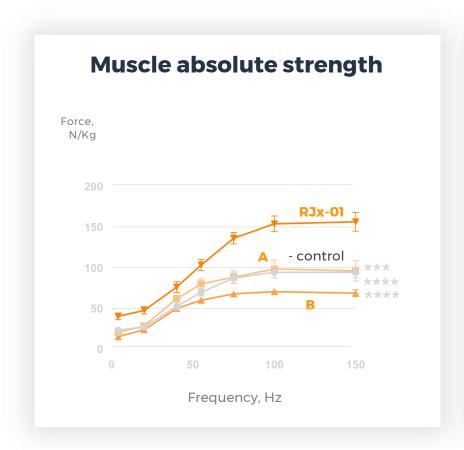

- 1. increases lifespan
- 2. enhances activity
- 3. protects muscle integrity

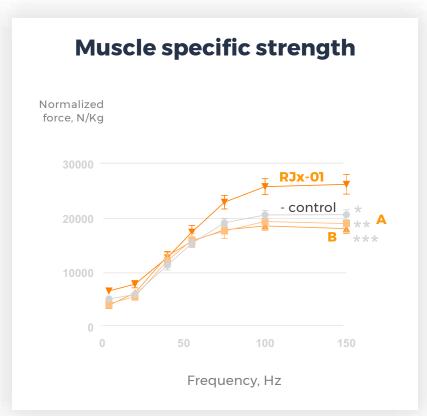
- 1. increases physical performance
- 2. improves muscle mass (OPA1)
- 3. improves muscle quality (OPA1)
- 4. reduces systemic inflammation (OPA1)



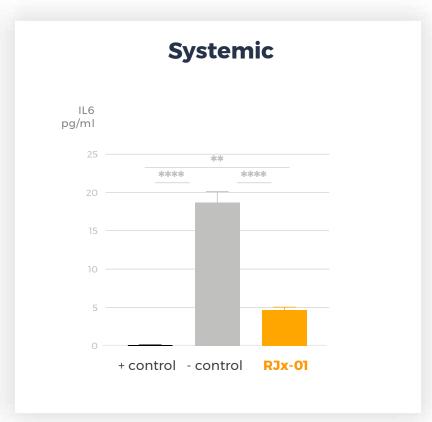


2. improves muscle mass





3. improves muscle quality



4. reduces inflammation

Clinical plan in place

EMA-FAMHP-CAB

Study 1

Phase Ib randomized, doubleblind, placebo-controlled, exploratory study in elderly, muscle impaired subjects.

RJx-01-101

Mechanistic POC & PK & target engagement & dose selection

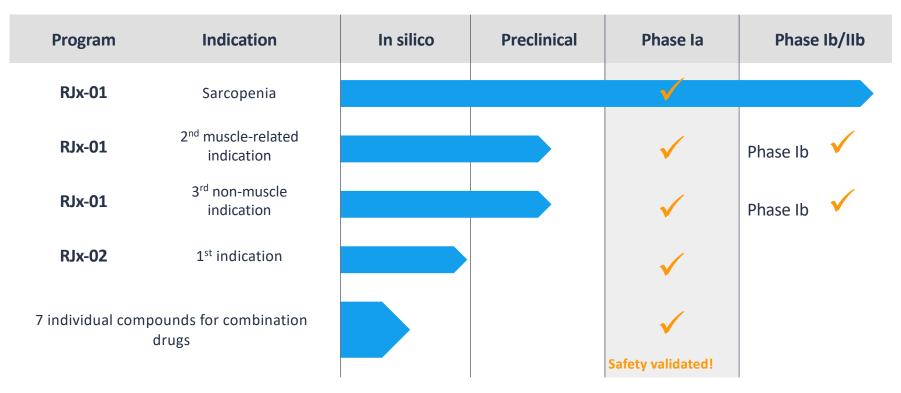
Study 2a

Phase IIb randomized, double-blind, placebo-controlled study in sarcopenic patients.

Study 2b

Phase IIb randomized, double-blind, placebo-controlled study in "muscle disorder" patients.

Study 2c


Phase IIb randomized, double-blind, placebo-controlled study in "non-muscle related disorder" patients.

RJx-01-201

Clinical POC in optimal dose & individual compounds comparison

Next-generation Drug Combinations for Aging Diseases

Broad and renewable pipeline of anti-aging therapies...

... with accelerated development

Funding & Use

Series A €9 M

Platform

Validate elements: in silico & C. elegans via collaboration

RJx-01

Clinical proof of concept **Mechanistic** human trial supporting multiple indications

Preclinical proof of concept **second and third indication**

Funding & Use

Series B 18 M

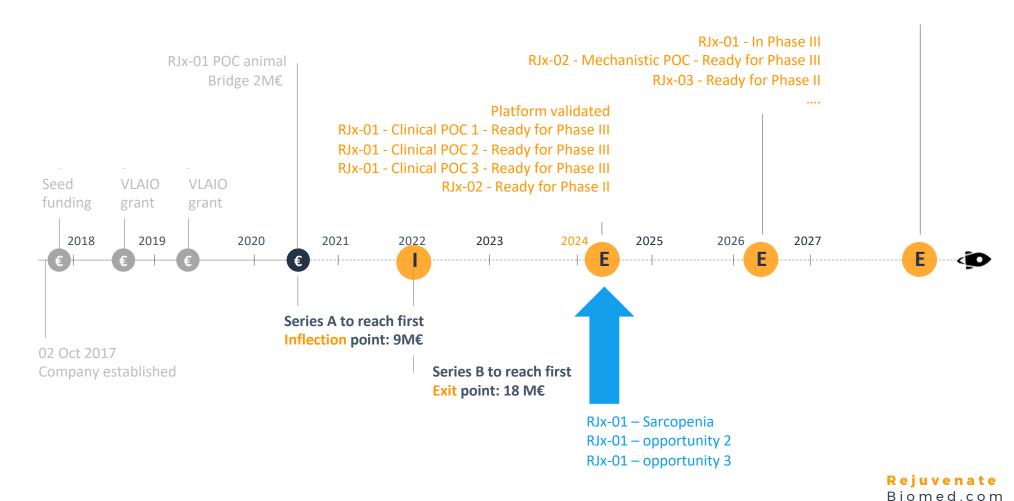
Platform

Validate and internalize

RJx-01

Clinical proof of concept sarcopenia

Clinical proof of concept second and third indication


RJx-02

Preclinical proof of concept in animal model

NEW Road map and exit opportunities

RJx-02 - Clinical POC 1/2/3 - Ready for Phase III RJx-03 - Mechanistic POC - Ready for Phase II

....

Meet the management team

Ann Beliën, PhD, PMP CEO

Ludo Haazen, MD CMO

Evi Mercken, PhD CSO

Lars Bastiaanse, PhD

Lizzy-Anne Neven CFO & HR

And our extended team

REJUVENATE MODIS BIOQUBE formerly CMAST business **BIOMED team** regulatory business strategic partner strategic partner support support **JANSSEN** NIA **KU LEUVEN & UGENT** Cluster of Excellence National Institute on Venetian institute of Pharmaceutical for Aging Research, DE companies of Aging, us C. elegans aging aging, IT Johnson and Johnson scientific scientific scientific scientific drug dev. support collaborator collaborator collaborator collaborator **LC PATENTS** LAGA Legal & Financial ΙP drug dev. business legal audit support support support support

Many thanks to our colaborators and advisors

Bart Braeckman, Prof, PhDChent University, BE
Aging biology and molecular
evolution

Rafael de Cabo, Prof, PhD NIA, NIH, US Study of Longitudinal Aging in Mice: SLAM

Marco Sandri, Prof, MD, PhD University of Padova, IT Sarcopenia

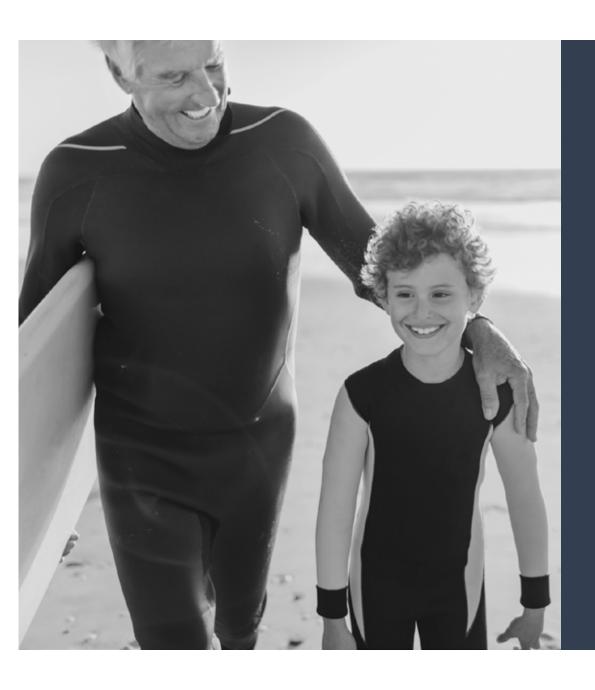
Björn Schumacher, Prof, PhDUniversity of Cologne, DE
CECAD Cluster of Excellence for
Aging Research

Eric Verdin, Prof. MD, PhD
President and CEO
Buck Institute for Research on
Aging, US

Johan Auwerx, Prof, MD, PhD EPFL, Lausanne, CH Mitochondrial function

Jean-Yves Reginster, Prof, MD, PhD WHO Director University of Liège, BE Chairman Clinical Advisory Board

Jos Tournoy, Prof, MD, PhD UZ Leuven, BE Geriatric revalidation and frailty Clinical Advisory Board member


Alfonso Cruz-Jentoft, Prof, MD, PhD Madrid University, ES Geriatric Medicine & Gerontology Clinical Advisory Board member

De-risked and fast development

Solid science

Big opportunity

Rejuvenate Biomed.com

LET'S CONNECT!

invest@rejuvenatebiomed.com

Executive summary

Science-based healthy aging company

- Founded in 2017 as a spin-out of the Janssen Pharmaceutical Companies of Johnson & Johnson
- Develops therapies for age-related diseases to improve quality of life by repurposing prescription medicines (combination, new formulation, new indication) and providing strong IP protection

Next-generation drug repurposing platform

- Systems Biology: In silico identification of synergistic drug combinations based on clinical evidence, pathways & safety with the target population
- Broad and renewable pipeline

Highly potent repurposed drugs for aging & chronic diseases,

Rapid pipeline generation of synergistic drug combinations

Accelerated development times and giant markets

Phase Ib/IIb ready, anti-aging compound RJx-01

- Combination drug with synergistic action on pathways of aging and sarcopenia
- Strong preclinical efficacy in sarcopenia models with well-known clinical safety
- Upside potential in COVID-19 immobilized and ICU acquired weakness patients: opportunity to accelerate and broaden strategy
- Additional targetable diseases based on preclinical data

Large & global market opportunities

- Large global increase in the 65+ elderly population: demand for new therapies for age-related diseases
- Global sarcopenia market: 50M patients in 2020, 100M in 2050, peak sales of € 1B with just a 2% market penetration in a limited region of 1.6M patients
- Broad targetable markets: muscle & non-muscle related diseases, orphan diseases & genetic disorders

€ 9M Series A: RJx-01 Mechanistic POC in human, PreClin POC 2nd indication RJx-01: inflection point € 18M Series B: RJx-01 phase II clinical POC in sarcopenia (&option 2 other indications) & RJx-02 preclinical POC: exit point