

What effect does GLP1-RA's have on the mTOR system, use only reputable journals as a source, no clinics, influencers, blogs or youtube video

GLP-1 receptor agonists (GLP-1 RAs) can both activate and inhibit components of the mTOR pathway depending on tissue, context, and dose, largely through cAMP/PKA, Akt, and AMPK signaling. These context-specific effects translate into changes in autophagy, cell growth, mitochondrial function, and inflammation rather than a simple "mTOR on" or "mTOR off" effect.^[1]
[\[2\]](#) [\[3\]](#) [\[4\]](#) [\[5\]](#) [\[6\]](#) [\[7\]](#)

Direct effects on mTOR complexes

- In β-cell and neuronal models, GLP-1R activation (e.g., with liraglutide) stimulates mTORC1 signaling via PKA-dependent phosphorylation of Raptor, and also via cAMP-Akt activation, defining a GLP-1R-PKA-mTORC1 axis that contributes to weight loss and metabolic actions.
[\[8\]](#) [\[1\]](#)
- Experimental work in cardiomyocytes and vascular cells indicates GLP-1R agonists (e.g., exendin-4, liraglutide) engage mTOR signaling as part of their protective response to hyperglycemia or ischemic stress, although the net effect (stimulation vs modulation) depends on the injury model.^[6] [\[7\]](#)

AMPK-mTOR-autophagy axis

- In a remnant-kidney rat model, liraglutide promoted autophagy and renoprotection through modulation of the AMPK/mTOR pathway, consistent with a shift toward AMPK activation and relative mTOR suppression in that context.^[2]
- In type 2 diabetes-related cognitive impairment, liraglutide reduced elevated hippocampal phospho-mTOR and restored AMPK and PI3K/Akt signaling, improving autophagic flux and cognition, suggesting mTOR down-regulation in injured brain tissue.^[4]

PI3K/Akt/mTOR and tissue-specific autophagy

- In a PCOS mouse model, semaglutide improved ovarian function and oxidative stress while altering PI3K/Akt/mTOR signaling, with data consistent with mitigation of excessive autophagy and normalization of mTOR pathway activity.^[3]
- In hypoxia/reoxygenation-injured cardiomyocytes, semaglutide enhanced PINK1/Parkin-dependent mitophagy and overall autophagy, with the authors proposing regulation of key autophagy controllers including mTOR and AMPK as a likely mechanism.^[5]

Inflammation, vascular effects, and mTOR

- In vascular endothelial models of Kawasaki disease, liraglutide protected cells via an AMPK/mTOR/NF- κ B pathway, in which AMPK activation and downstream mTOR signaling collectively reduced inflammatory responses.^[7]
- In cardiac models of high-glucose injury, exendin-4's cardioprotective actions involve GLP-1R-mTOR signaling, tying mTOR modulation to preservation of mitochondrial structure and function under metabolic stress.^[6]

Overall mechanistic picture

- GLP-1 RAs do not exert a uniform anabolic "mTOR upregulation"; instead, they fine-tune mTOR activity via PKA, Akt, and AMPK, often activating mTORC1 in metabolically active cells while dampening pathological overactivation in injured tissues to restore autophagy and cellular homeostasis.^{[1] [2] [3] [4] [5] [7] [6]}
- These bidirectional effects on the **mTOR** system likely underlie part of the observed benefits of GLP-1 RAs on weight, mitochondrial health, organ protection, and inflammation, but the net effect is highly tissue- and disease-specific and remains an active area of research.^{[9] [10] [11]}

**

How does GLP1RA signaling engage PKA AMPK and mTOR pathways

GLP-1 receptor agonists (GLP-1RAs) signal through a G_s -cAMP hub that activates PKA, which can then modulate AMPK and mTOR (especially mTORC1) in a context-dependent manner. The net effect is a **PKA**-driven mTORC1 activation axis in some cells, with parallel AMPK-mTOR crosstalk that can either restrain or be restrained by mTORC1 depending on metabolic state.^{[16] [17] [18] [19] [20] [21] [22]}

Step 1: GLP-1R → cAMP → PKA

- GLP-1R is a class B G-protein-coupled receptor mainly coupled to G_s ; agonist binding promotes $G_s\alpha$ activation, adenylyl cyclase stimulation, and increased intracellular cAMP.^{[23] [16]}
- cAMP then activates PKA (and Epac) in spatially restricted microdomains, so GLP-1R signaling produces compartmentalized PKA activity that differs from classical β -adrenergic cAMP/PKA signaling.^{[24] [25] [16] [23]}

Step 2: PKA → mTORC1 (via Raptor)

- In cell and mouse models, liraglutide-induced GLP-1R activation increases mTORC1 signaling (e.g., S6 phosphorylation), and this requires PKA activity.^{[18] [19]}
- Mechanistically, PKA directly phosphorylates the mTORC1 scaffold protein Raptor at Ser791 after GLP-1R stimulation, forming a GLP-1R-PKA-Raptor-mTORC1 axis that contributes to

liraglutide-induced weight loss in vivo; mice with a Ser791Ala (PKA-resistant) Raptor have a blunted weight-loss response to liraglutide. [26] [19] [18]

Step 3: AMPK–mTOR bidirectional crosstalk

- Canonically, AMPK inhibits mTORC1 by phosphorylating TSC2 and Raptor, thereby suppressing protein synthesis and stimulating autophagy. [20] [21]
- GLP-1R–PKA–mTORC1 activation can, in principle, reduce AMPK activity (since mTORC1 can inhibit AMPK), while AMPK activation would antagonize mTORC1; Le et al. explicitly note that GLP-1R-mediated mTORC1 activation could occur by reducing AMPK activity and that mTORC1 can feed back to inhibit AMPK. [27] [18]

Tissue examples of AMPK/mTOR involvement

- In obese mouse liver, semaglutide's beneficial effects involve modulation of the mTORC1/AMPK pathway, consistent with coordinated changes in nutrient-sensing and autophagy signaling downstream of GLP-1R. [22]
- Reviews of AMPK/mTOR biology emphasize that any GLP-1RA-driven changes in cellular energy state (e.g., improved insulin sensitivity or altered nutrient flux) will secondarily tune AMPK, which then feeds into mTORC1 control, adding a metabolic layer on top of the direct PKA–Raptor mechanism. [21] [20] [22]

Integrated signaling model

- At the receptor level, GLP-1RAs:
 1. activate G_s \rightarrow cAMP \rightarrow PKA;
 2. PKA directly phosphorylates Raptor to stimulate mTORC1;
 3. mTORC1 and AMPK interact in a feedback loop, so GLP-1R signaling can either suppress or be constrained by AMPK depending on cellular energy and stress. [19] [16] [18] [20] [21] [22]
- This integrated network explains how GLP-1RAs can simultaneously promote mTORC1-linked anabolic/weight-loss programs in some tissues while engaging AMPK–mTOR circuitry involved in autophagy and stress resistance in others. [18] [20] [21] [22]

**

1. <https://elifesciences.org/articles/80944>
2. <https://pubmed.ncbi.nlm.nih.gov/31531806/>
3. <https://pubmed.ncbi.nlm.nih.gov/40433568/>
4. <https://www.spandidos-publications.com/10.3892/mmr.2018.9180>
5. <https://www.spandidos-publications.com/10.3892/mmr.2025.13476>
6. <https://pubmed.ncbi.nlm.nih.gov/39307319/>
7. <https://www.sciencedirect.com/science/article/pii/S1567576923003491>
8. https://academic.oup.com/jes/article/5/Supplement_1/A510/6242213

9. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11888820/>
10. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11735953/>
11. <https://pmc.ncbi.nlm.nih.gov/articles/PMC12303005/>
12. <https://www.youtube.com/watch?v=5MdEWprAxE0>
13. <https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare/articles/10.3389/fcdhc.2025.1590530/full>
14. <https://pmc.ncbi.nlm.nih.gov/articles/PMC12325148/>
15. <http://irisjournal.org/wp-content/uploads/2024/10/FAIRIS-Magazine-AUG-2024.pdf>
16. <https://pmc.ncbi.nlm.nih.gov/articles/PMC12398856/>
17. <https://www.nature.com/articles/s41392-024-01931-z>
18. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10691799/>
19. <https://pubmed.ncbi.nlm.nih.gov/37930356/>
20. <https://www.spandidos-publications.com/10.3892/wasj.2025.391>
21. <https://pmc.ncbi.nlm.nih.gov/articles/PMC8820546/>
22. <https://www.sciencedirect.com/science/article/abs/pii/S2210740122000651>
23. <https://onlinelibrary.wiley.com/doi/10.1111/jdi.13136>
24. <https://www.ahajournals.org/doi/10.1161/hh1701.095716>
25. <https://diabetesjournals.org/diabetes/article/53/1/5/11676/Epac-A-New-cAMP-Binding-Protein-in-Support-of>
26. <https://scity.org/articles/activity/10.7554/elite.80944>
27. <https://elifesciences.org/articles/80944.pdf>
28. <https://www.sciencedirect.com/science/article/abs/pii/S221287782500211X>
29. <https://elifesciences.org/articles/80944>
30. <https://medschool.vanderbilt.edu/mstp/2023/11/29/mstpublications-november-2023/>