

ORIGINAL ARTICLE

Effects of telmisartan on the cerebral circulation of hypertensive patients with chronic-stage stroke

This article has been corrected since Advance Online Publication, and a corrigendum is also printed in this issue.

Ichiro Deguchi, Daisuke Furuya, Takuya Fukuoka and Norio Tanahashi

This prospective study examined the effects of telmisartan, an angiotensin II type I receptor blocker with peroxisome proliferator-activated receptor gamma agonistic action, on blood pressure (BP) control and cerebral circulation in hypertensive patients with chronic-stage stroke. Telmisartan (40 mg per day) was administered to 10 patients with systolic BP (SBP) ≥ 140 mm Hg and diastolic BP (DBP) ≥ 90 mm Hg at least 4 weeks after lacunar or atherothrombotic infarction. Casual BP and resting cerebral blood flow (CBF) were evaluated at baseline and week 12 using technetium-99 m ethyl cysteinate dimer single-photon emission computed tomography. Both SBP and DBP declined significantly from 156.4 ± 17.0 to 127.4 ± 6.6 mm Hg and 84.2 ± 14.5 to 74.2 ± 5.2 mm Hg, respectively ($P < 0.05$). Mean CBF (mCBF) in both the left and right cerebral hemispheres did not change, and the mCBF of both the impaired and unimpaired sides of supratentorial lesion patients ($n = 6$) did not change. Investigation of regional CBF in all patients revealed significant increases in the callosomarginal, precentral, central, parietal, temporal, posterior cerebral, lenticular nucleus, thalamic and hippocampal regions at week 12 ($P < 0.05$). Telmisartan showed good antihypertensive activity in hypertensive patients with chronic-stage stroke without affecting hemispheric blood flow, and it even increased regional CBF in most regions examined.

Hypertension Research (2012) **35**, 1171–1175; doi:10.1038/hr.2012.105; published online 5 July 2012

Keywords: cerebral blood flow; chronic-stage stroke; peroxisome proliferator-activated receptor gamma (PPAR γ) agonist; telmisartan

INTRODUCTION

In patients with a history of stroke, hypertension represents the greatest risk factor for stroke recurrence.¹ Therefore, blood pressure (BP) control is essential in the treatment of patients with chronic-stage stroke. The Japanese Guidelines for the Management of Stroke recommend a systolic BP/diastolic BP (SBP/DBP) target of $< 140/90$ mm Hg for chronic-stage stroke patients.² Several large-scale clinical studies have demonstrated that angiotensin II type I receptor blockers (ARBs) in particular are very effective antihypertensive agents in secondary, as well as primary, stroke prevention.^{3–5} In addition to their antihypertensive action, ARBs are also noted for their effects on the cerebral circulation. Several studies have described the effects of the ARBs losartan, valsartan and olmesartan in maintaining and increasing cerebral blood flow (CBF) and improving cerebral perfusion reserve capacity in chronic-stage stroke patients.^{6–9} Although previous studies on telmisartan have reported reduced infarct size^{10–12} and increased CBF¹³ in mouse and rat cerebral ischemia models, there have not been any clinical studies on the effects of telmisartan on cerebral circulation in chronic-stage stroke patients.

In the present study, the effects of telmisartan, an ARB with peroxisome proliferator-activated receptor gamma (PPAR γ) agonist

action, on BP control and cerebral circulation were prospectively examined in hypertensive patients with chronic-stage stroke.

METHODS

The patients' demographics are shown in Table 1. The subjects were 10 hypertensive ($\geq 140/90$ mm Hg) patients (six men and four women; mean age \pm s.d.: 64 ± 6.8 years) who had suffered a lacunar or atherothrombotic stroke at least 4 weeks prior and had provided their written, informed consent to participate in the study. Exclusion criteria were: (1) concomitant atrial fibrillation, (2) pregnancy or possibility of pregnancy, (3) serious biliary excretion dysfunction (≥ 2.0 mg dl $^{-1}$) or hepatic/renal disorder (aspartate aminotransferase or alanine aminotransferase ≥ 100 IU l $^{-1}$; Cr ≥ 3.0 mg dl $^{-1}$), (4) hyperkalemia, (5) current treatment with antihypertensive agents or pioglitazone and (6) history of allergy to ARBs. Seven patients had lacunar infarcts (four supratentorial and three subtentorial) and three patients had atherothrombotic infarcts (two supratentorial and one subtentorial). Magnetic resonance angiography findings of main trunk lesions were seen in two patients with left middle cerebral artery stenosis and one patient with left vertebral artery occlusion. After measuring casual BP and CBF in the sitting position at least 4 weeks after stroke onset, oral treatment with 40 mg once daily of telmisartan was started on the same day. If patients had not reached the BP-reduction goal (SBP < 140 mm Hg or DBP < 90 mm Hg) at week 4, the dosage was increased to 80 mg per day. BP and CBF were measured again at

Department of Neurology and Cerebrovascular Medicine, International Medical Center, Saitama Medical University, Hidaka, Hidaka, Japan

Correspondence: Dr I Deguchi, Department of Neurology and Cerebrovascular Medicine, Saitama International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka 350-1298, Japan.

E-mail: ideguchi@saitama-med.ac.jp

Received 6 January 2012; revised 15 April 2012; accepted 17 May 2012; published online 5 July 2012

Table 1 Patient's clinical characteristics

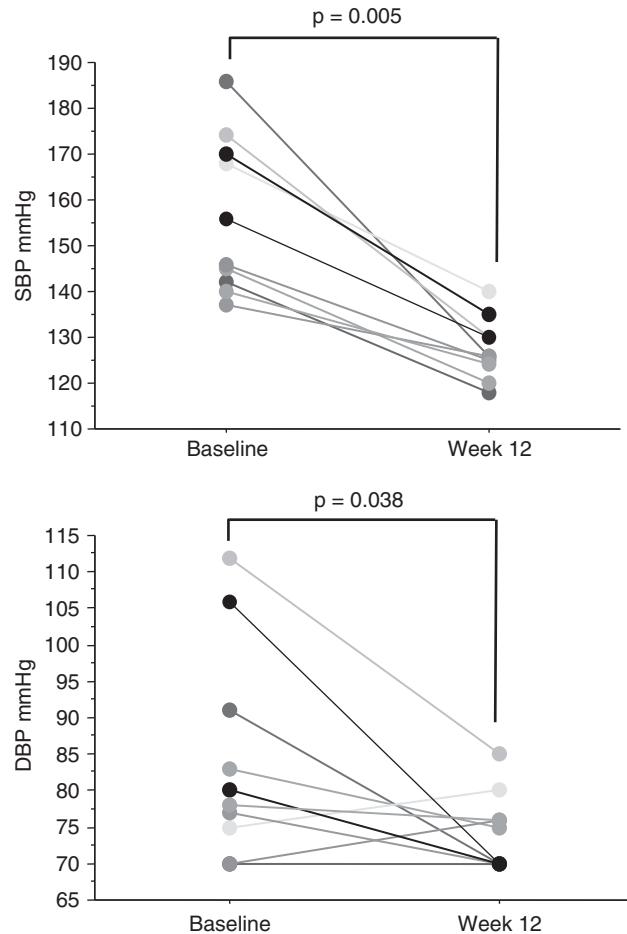
Case number	Age		Clinical type	Site of infarction	Major artery lesion on MRA	Time from onset to beginning of telmisartan (days)		Telmisartan dose (mg per day)		
	(years)/	sex				32	40	40	Hypertension	Diabetes
1	76/M	LC		Pons (Rt)	—	32	40	+	+	+
2	57/M	LC		Medulla (Rt)	—	30	40	+	—	+
3	65/M	LC		Pons (Rt)	—	30	40	+	—	+
4	67/F	AT		Temporal-parietal (Lt)	Lt.M1-s	71	40	+	—	—
5	69/M	LC		Corona radiata (Rt)	—	30	40	—	+	—
6	54/F	LC		Lentiform nucleus-corona radiata (Rt)	—	36	40	+	+	—
7	67/F	AT		Temporal-parietal (Lt)	Lt.M2-s	29	40	+	+	+
8	59/F	AT		Cerebellum (Lt)	Lt.VA-o	40	40	+	+	+
9	59/M	LC		Lentiform nucleus (Rt)	—	29	40–80	+	—	—
10	69/M	LC		Thalamus (Rt)	—	32	40	+	—	—

Abbreviations: AT, atherothrombotic infarction; F, female; LC, lacunar infarction; Lt, left; M, male; M1·2-s, middle cerebral artery M1 segment, M2 segment stenosis; MRA, magnetic resonance angiography; Rt, right; VA-o, vertebral artery occlusion.

week 12. The mean time from stroke onset to commencement of telmisartan therapy was 36 ± 13 days. The daily dosage was increased to 80 mg in one patient. Measurement of CBF was performed at baseline and week 12 using single-photon emission computed tomography (Symbia T6; Siemens AG, Munich, Germany) technetium-99 m ethyl cysteinate dimer was used as the tracer, and mean CBF (mCBF) was determined based on Patlak plot analysis. Regional CBF of 12 segments (callosomarginal, precentral, central, parietal, angular, temporal, posterior cerebral, pericallosal, lenticular nucleus, thalamus, hippocampus and cerebellar hemispheric) was calculated using a three-dimensional stereotaxic region of interest (ROI) template.

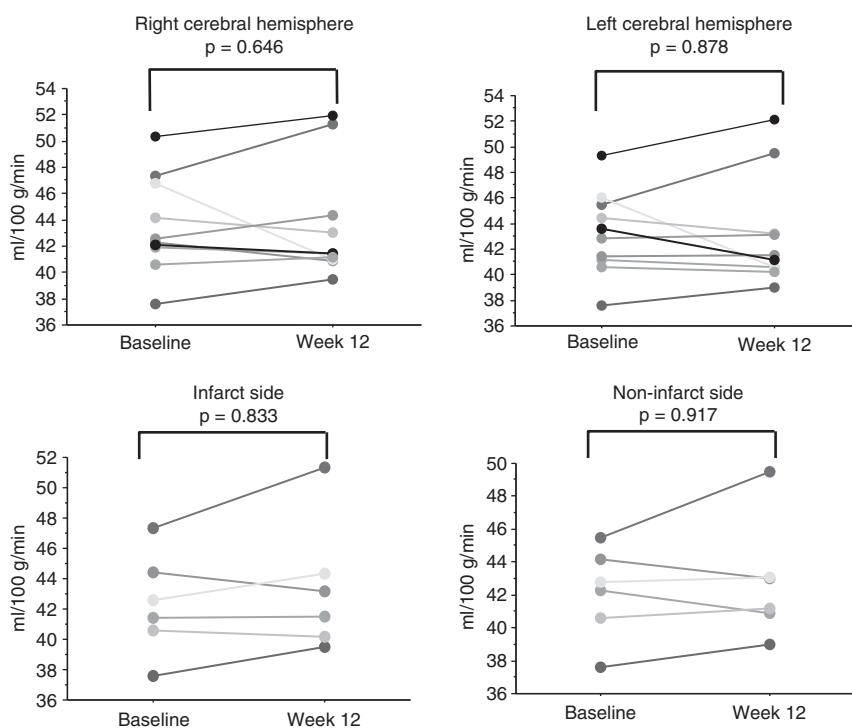
This study was approved by the Institutional Review Board at the Saitama Medical University International Medical Center.

Statistical analysis


Statistical analysis of data was performed using PASW statistics software (Version 18; SPSS, Inc., Chicago, IL, USA). Changes in BP and CBF before and after telmisartan therapy were tested using the Wilcoxon signed-rank test. For each analysis, a *P*-value <0.05 was considered a significant difference.

RESULTS

Changes in BP before and after treatment with telmisartan are illustrated in Figure 1. Both SBP and DBP declined significantly from 156.4 ± 17.0 to 127.4 ± 6.6 mm Hg and 84.2 ± 14.5 to 74.2 ± 5.2 mm Hg, respectively ($P < 0.05$). No paralysis or other deterioration in clinical symptoms was observed during the study. Changes in mCBF before and after treatment with telmisartan are shown in Figures 2 and 3. The mCBF in both the left and right cerebral hemispheres did not change, and the mCBF of both the impaired and unimpaired sides of the six supratentorial lesion patients did not change. Investigation of regional CBF in all patients revealed significant increases at week 12 in the callosomarginal (44.0 ± 4.8 to 46.6 ± 6.3), precentral (43.7 ± 5.1 to 46.1 ± 6.2), central (44.0 ± 4.4 to 46.1 ± 5.7), parietal (43.3 ± 4.0 to 45.0 ± 5.4), temporal (43.0 ± 4.9 to 44.1 ± 5.6), posterior cerebral (43.0 ± 4.5 to 55.3 ± 5.9), lenticular nucleus (50.1 ± 5.7 to 53.1 ± 7.1), thalamus (38.4 ± 6.6 to 40.6 ± 7.2) and hippocampus (36.0 ± 5.6 to 38.4 ± 4.0) regions ($P < 0.05$).


DISCUSSION

The findings of the present study showed that, although telmisartan therapy had a sufficient hypotensive action on hypertensive patients with chronic-stage stroke, CBFs were maintained in the cerebral

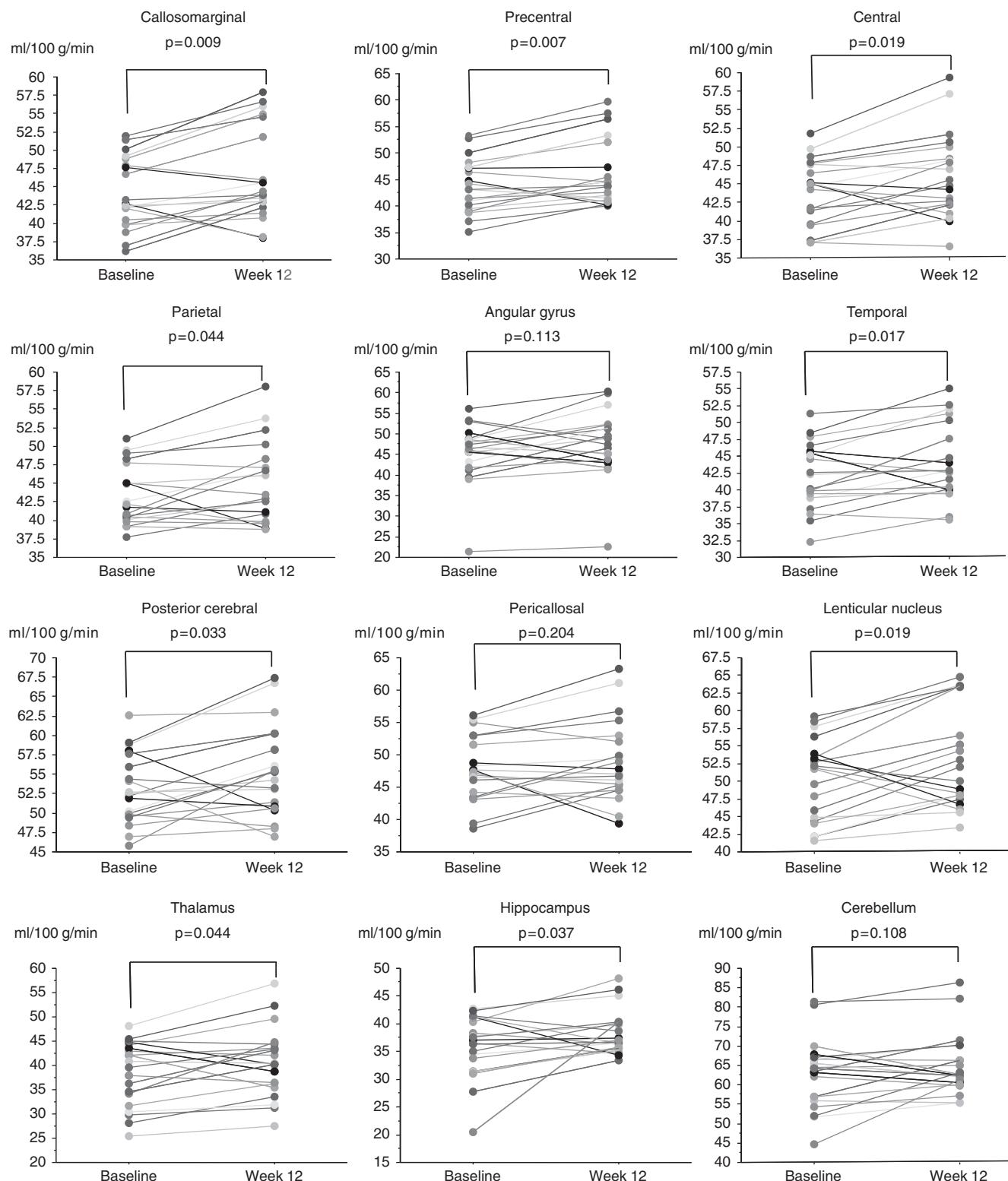
Figure 1 Change in BP before and after telmisartan therapy. Both SBP and DBP decrease significantly after 12 weeks of therapy. A full color version of this figure is available at the *Hypertension Research* journal online.

hemispheres and did not decline, even on the infarct side. Examination of CBF by region also indicated increases in most regions. The mechanism behind this sustained CBF despite the decline in BP is

Figure 2 Change in mCBF before and after telmisartan therapy. Upper graphs: No significant changes in mCBF are observed in either the left or right cerebral hemisphere after 12 weeks of therapy. Lower graphs: No significant changes in mCBF are observed in either the infarct or non-infarct side after 12 weeks of therapy. A full color version of this figure is available at the *Hypertension Research* journal online.

thought to involve the PPAR γ agonist action of telmisartan, as well as its effects as an ARB.^{14,15}

The angiotensin II receptor-blocking effects of telmisartan include its action on autoregulation of cerebral circulation. This autoregulation function is known to shift rightwards in hypertensive patients. It has been suggested that, in hypertensive animal models, telmisartan causes a leftward shift in the autoregulation curve similar to that of candesartan and valsartan, thus enabling CBF to be maintained even in a hypotensive state,^{16–19} and this was also considered to be a factor in maintaining CBF in the present study.


An additional mechanism of telmisartan is its effect on the vascular endothelium. A study of hypertensive rats by Saavedra *et al.*²⁰ found that blockade of AT1 receptors increases expression of AT2 receptors, leading to enhanced endothelial nitric oxide synthase activity and nitric oxide production in vascular endothelium. Meanwhile, Nagata *et al.*²¹ reported that olmesartan therapy in elderly patients with hypertension improved cerebral hypoperfusion by boosting nitric oxide concentration. Telmisartan, with its high AT1 receptor affinity, likely exhibited this same mechanism to maintain and increase CBF in the present study. In addition to its AT1 receptor-blocking action, telmisartan is also thought to have changed cerebral perfusion due to its PPAR γ agonist action. In two separate studies on the effects of telmisartan therapy on cerebrovascular blood flow in mice, the activation of PPAR γ by telmisartan was partly responsible for the resultant increase in cerebral perfusion due to its beneficial effect on vascular endothelial function, which in turn enhanced endothelial synthesis of nitric oxide.^{11,22} Administration of pioglitazone, another PPAR- γ agonist, reportedly improved pulsatility

index (cerebrovascular resistance) and CBF.^{23,24} As an ARB with particularly high lipid solubility and PPAR γ -activating effects, telmisartan is therefore capable of significantly influencing CBF, given its outstanding ability to penetrate the blood–brain barrier. Telmisartan is also said to help restore the vascular structure (restoration of vascular remodeling) by inhibiting superoxides,¹⁹ and this action was also thought to have a part in sustaining and increasing CBF in the present study.

A recent study has also reported that ARBs have a beneficial effect on cognitive function.²⁵ Kume *et al.*²⁶ demonstrated that telmisartan improved cognitive function in Alzheimer's disease patients with hypertension more than amlodipine, although the difference was not significant, whereas Imabayashi *et al.*²⁷ found that it controlled declining glucose metabolism in the olfactory tract of patients with Alzheimer's disease. The present study did not undertake a detailed investigation of cognitive and other higher-order brain functions. Accordingly, it is possible that improvement in higher-order brain function resulting from telmisartan therapy may have influenced the single-photon emission computed tomography findings of sustained cerebral hemispheric perfusion and increased regional flows. Small sample size and the lack of other clinical evaluations, such as of higher-order brain function, were limitations of the present study. Further study based on a large number of patients is warranted.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Figure 3 Change in regional CBF (rCBF) before and after telmisartan therapy. Significant increases in rCBF are observed in the callosomarginal, precentral, central, parietal, temporal, posterior cerebral, lenticular nucleus, thalamus, and hippocampus regions after 12 weeks of therapy. A full color version of this figure is available at the *Hypertension Research* journal online.

- 1 Kannel WB, Wolf PA, McGee DL, Dawber TR, McNamara P, Castelli WP. Systolic blood pressure, arterial rigidity, and risk of stroke. The Framingham Study. *JAMA* 1981; **245**: 1225–1229.
- 2 Shinohara Y, Ogawa A, Suzuki N, Katayama Y, Kimura A. *Japanese Guidelines for the Management of Stroke—the Joint Committee on Guidelines for the Management of Stroke*. Kyowa Kikaku: Tokyo, 2009, pp 85–86.
- 3 Schrader J, Lüders S, Kulschewski A, Hammersen F, Plate K, Berger J, Zidek W, Dominiak P, Diener HC, MOSES Study Group. Morbidity and mortality after stroke, eprosartan compared with nitrindipine for secondary prevention: principal results of a prospective randomized controlled study (MOSES). *Stroke* 2005; **36**: 1218–1226.
- 4 Yusuf S, Diener HC, Sacco RL, Cotton D, Ounpuu S, Lawton WA, Palesch Y, Martin RH, Albers GW, Bath P, Bornstein N, Chan BP, Chen ST, Cunha L, Dahlöf B, De Keyser J, Donnan GA, Estol C, Gorelick P, Gu V, Hermansson K, Hilbrich L, Kaste M, Lu C, Machnig T, Pais P, Roberts R, Skvortsova V, Teal P, Toni D, VanderMaelen C, Voigt T, Weber M, Yoon BW, PRoFESS Study Group. Telmisartan to prevent recurrent stroke and cardiovascular events. *N Engl J Med* 2008; **359**: 1225–1237.
- 5 Schrader J, Lüders S, Kulschewski A, Berger J, Zidek W, Treib J, Einhäupl K, Diener HC, Dominiak P. Acute Candesartan Cilexetil Therapy in Stroke Survivors Study Group. The ACCESS Study: evaluation of acute candesartan cilexetil therapy in stroke survivors. *Stroke* 2003; **34**: 1699–1703.
- 6 Hong KS, Kang DW, Bae HJ, Kim YK, Han MK, Park JM, Rha JH, Lee YS, Koo JS, Cho YJ, Kwon SU, Kim SE, Park SH. Effect of cilnidipine vs losartan on cerebral blood flow in hypertensive patients with a history of ischemic stroke: a randomized controlled trial. *Acta Neurol Scand* 2010; **121**: 51–57.
- 7 Moriwaki H, Uno H, Nagakane Y, Hayashida K, Miyashita K, Naritomi H. Losartan, an angiotensin II (AT1) receptor antagonist, preserves cerebral blood flow in hypertensive patients with a history of stroke. *J Hum Hypertens* 2004; **18**: 693–699.
- 8 Kimura Y, Kitagawa K, Oku N, Kajimoto K, Kato H, Tanaka M, Sakaguchi M, Hougaku H, Sakoda S, Hatazawa J. Blood pressure lowering with valsartan is associated with maintenance of cerebral blood flow and cerebral perfusion reserve in hypertensive patients with cerebral small vessel disease. *J Stroke Cerebrovasc Dis* 2010; **19**: 85–91.
- 9 Matsumoto S, Shimodozo M, Miyata R, Kawahira K. Benefits of the angiotensin II receptor antagonist olmesartan in controlling hypertension and cerebral hemodynamics after stroke. *Hypertens Res* 2009; **32**: 1015–1021.
- 10 Haraguchi T, Takasaki K, Naito T, Hayakawa K, Katsurabayashi S, Mishima K, Iwasaki K, Fujiwara M. Cerebroprotective action of telmisartan by inhibition of macrophages/microglia expressing HMGB1 via a peroxisome proliferator-activated receptor gamma-dependent mechanism. *Neurosci Lett* 2009; **464**: 151–155.
- 11 Iwanami J, Mogi M, Tsukuda K, Min LJ, Sakata A, Jing F, Iwai M, Horiuchi M. Low dose of telmisartan prevents ischemic brain damage with peroxisome proliferator-activated receptor-gamma activation in diabetic mice. *J Hypertens* 2010; **28**: 1730–1737.
- 12 Kasahara Y, Taguchi A, Uno H, Nakano A, Nakagomi T, Hirose H, Stern DM, Matsuyama T. Telmisartan suppresses cerebral injury in a murine model of transient focal ischemia. *Brain Res* 2010; **1340**: 70–80.
- 13 Dupuis F, Vincent JM, Limiñana P, Chillon JM, Capdeville-Atkinson C, Atkinson J. Effects of suboptimal doses of the AT1 receptor blocker, telmisartan, with the angiotensin-converting enzyme inhibitor, ramipril, on cerebral arterioles in spontaneously hypertensive rat. *J Hypertens* 2010; **28**: 1566–1573.
- 14 Schupp M, Janke J, Clasen R, Unger T, Kintscher U. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. *Circulation* 2004; **109**: 2054–2057.
- 15 Benson SC, Pershad Singh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. *Hypertension* 2004; **43**: 993–1002.
- 16 Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT. Angiotensin II AT (1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. *Stroke* 2000; **31**: 2478–2486.
- 17 Takada J, Ibayashi S, Ooboshi H, Ago T, Ishikawa E, Kamouchi M, Kitazono T, Iida M. Valsartan improves the lower limit of cerebral autoregulation in rats. *Hypertens Res* 2006; **29**: 621–626.
- 18 Dupuis F, Atkinson J, Limiñana P, Chillon JM. Comparative effects of the angiotensin II receptor blocker, telmisartan, and the angiotensin-converting enzyme inhibitor, ramipril, on cerebrovascular structure in spontaneously hypertensive rats. *J Hypertens* 2005; **23**: 1061–1066.
- 19 Kumai Y, Ooboshi H, Ago T, Ishikawa E, Takada J, Kamouchi M, Kitazono T, Ibayashi S, Iida M. Protective effects of angiotensin II type 1 receptor blocker on cerebral circulation independent of blood pressure. *Exp Neurol* 2008; **210**: 441–448.
- 20 Saavedra JM, Benicky J, Zhou J. Mechanisms of the anti-ischemic effect of angiotensin II AT(1) receptor antagonists in the brain. *Cell Mol Neurobiol* 2006; **26**: 1099–1111.
- 21 Nagata R, Kawabe K, Olmesartan Ikeda K. An angiotensin II receptor blocker, restores cerebral hypoperfusion in elderly patients with hypertension. *J Stroke Cerebrovasc Dis* 2010; **19**: 236–240.
- 22 Tsukuda K, Mogi M, Iwanami J, Min LJ, Sakata A, Jing F, Iwai M, Horiuchi M. Cognitive deficit in amyloid-beta-injected mice was improved by pretreatment with a low dose of telmisartan partly because of peroxisome proliferator-activated receptor-gamma activation. *Hypertension* 2009; **54**: 782–787.
- 23 Park JS, Cho MH, Lee KY, Kim CS, Kim HJ, Nam JS, Ahn CW, Cha BS, Lim SK, Kim KR, Lee HC. The effects of pioglitazone on cerebrovascular resistance in patients with type 2 diabetes mellitus. *Metabolism* 2007; **56**: 1081–1086.
- 24 Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. *Neurobiol Aging* 2011; **32**: 1626–1633.
- 25 Mogi M, Horiuchi M. Effects of angiotensin II receptor blockers on dementia. *Hypertens Res* 2009; **32**: 738–740.
- 26 Kume K, Hanyu H, Sakurai H, Takada Y, Onuma T, Iwamoto T. Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer's disease. *Geriatr Gerontol Int* 2011; **12**: 207–214.
- 27 Imabayashi E, Matsuda H, Yoshimaru K, Kuji I, Seto A, Shimano Y, Ito K, Kikuta D, Shimazu T, Araki N. Pilot data on telmisartan short-term effects on glucose metabolism in the olfactory tract in Alzheimer's disease. *Brain and Behavior* 2011; **1**: 63–69.