

NMN and NR what are the mechanistic and benefits of each, use only clinical studies published in reputable journals, NO influencers, NO youtube, NO clinics

NMN and NR are both NAD⁺ precursors that reliably raise NAD⁺-related metabolites in humans, but clinical benefits in randomized trials are modest and endpoint-specific, with no proven effects on hard aging outcomes yet. [\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#) [\[5\]](#)

Basic mechanisms

- **Common pathway (NAD⁺ repletion)**
 - Both NMN (nicotinamide mononucleotide) and NR (nicotinamide riboside) feed into the salvage pathway to regenerate NAD⁺, which supports mitochondrial ATP production, sirtuin activity, and DNA repair. [\[6\]](#) [\[1\]](#)
 - Human supplementation consistently increases circulating NAD⁺ or NAD⁺-related metabolites such as NAAD, ADPR and methylated nicotinamide derivatives. [\[2\]](#) [\[4\]](#) [\[1\]](#)
- **NMN-specific aspects**
 - NMN is a phosphorylated intermediate that is converted to NAD⁺ mainly via NMN adenylyltransferases; in some tissues transport occurs via specific nucleotidic transporters. [\[1\]](#)
 - In human trials, oral NMN (300–900 mg/day) raises blood NAD⁺ within 30–60 days, indicating systemic engagement of this pathway. [\[7\]](#)
- **NR-specific aspects**
 - NR is taken up by cells via equilibrative nucleoside transporters and phosphorylated by NR kinases (NMRK1/2) to NMN, then converted to NAD⁺. [\[2\]](#) [\[1\]](#)
 - NR consistently elevates NAD⁺ metabolites in blood and PBMCs (e.g., ~60% NAD⁺ rise in PBMCs in 6-week supplementation; dose-dependent increases up to 1000 mg/day in larger trials). [\[4\]](#) [\[1\]](#) [\[2\]](#)

NMN: clinical benefits and limitations

Human trial profile

Key randomized, double-blind, placebo-controlled NMN trials and the 2024 systematic review:

- A 60-day multicenter trial in 80 healthy middle-aged adults (300, 600, 900 mg/day) showed:
 - Dose-dependent increase in blood NAD. [7]
 - Improved 6-minute walk distance versus placebo at all doses, greatest at 600–900 mg/day. [7]
 - Better self-reported general health (SF-36) scores in NMN groups. [7]
 - No change in HOMA-IR (insulin resistance). [7]
- A 2024 systematic review of 10 RCTs (437 participants, 150–1200 mg/day, 4–24 weeks) concluded:
 - Small, non-significant average improvements in grip strength and skeletal muscle mass index overall. [3]
 - Several individual trials showed improved gait speed, chair-stand performance, aerobic capacity at ventilatory thresholds, or six-minute walk distance, particularly at higher doses and in physically active or older cohorts. [3]
 - No serious NMN-related adverse events; reported side effects were mild and judged unrelated. [3]

Representative individual RCT findings (all double-blind, placebo-controlled): [3]

- Older adults (\approx 71 years, 250 mg/day, 12 weeks):
 - Increased gait speed and some improvement in chair-stand and grip strength versus placebo in mixed-model analyses. [3]
- Older adults (\approx 72 years, 250 mg/day, 12 weeks, AM vs PM dosing):
 - Time-of-day-dependent effects; NMN groups showed better improvement in five-times sit-to-stand and timed up-and-go versus placebo, with evening dosing performing better for some endpoints. [3]
- Recreational runners (300–1200 mg/day, 6 weeks plus training):
 - No change in $\text{VO}_{2\text{max}}$ compared with placebo;
 - Dose-dependent improvements in oxygen utilization and power at ventilatory thresholds (VT1, VT2), suggesting more efficient aerobic metabolism during submaximal exercise. [3]
- Middle-aged adults, 300–900 mg/day, 60 days:
 - 6-minute walk distance increased more in 600–900 mg groups than placebo; quality-of-life (SF-36) scores improved in all NMN groups vs placebo. [7] [3]

What NMN appears to do clinically

From human RCTs and the systematic review:^{[7] [3]}

- **Mechanistic markers**

- Increases blood NAD⁺ concentrations in a dose-dependent fashion, with 600–900 mg/day producing the largest rise.^[7]
- Suggests enhanced NAD⁺ turnover rather than dramatic changes in body composition over short follow-up.^[3]

- **Physical function / performance**

- Small to moderate improvements in:
 - Gait speed and chair-stand performance in older adults.
 - Six-minute walk distance and submaximal exercise efficiency in middle-aged adults/runners.
- Little to no effect on maximal strength (1-RM) or VO₂max across trials.^[3]

- **Metabolic / other endpoints**

- No meaningful effect on insulin sensitivity (HOMA-IR or clamp-derived indices) in available trials.^{[7] [3]}
- Some improvement in self-reported fatigue and general health/quality-of-life scores in several studies.^{[3] [7]}
- No serious safety signals up to 900–1200 mg/day for up to ≈12–24 weeks.^{[7] [3]}

NR: clinical benefits and limitations

Human trial profile

Key NR RCTs in reputable journals:

- Healthy middle-aged/older adults (2×6-week randomized, double-blind, placebo-controlled crossover):
 - NR increased NAD⁺ metabolism (NAD⁺ and NAAD in blood/urine).^[4]
 - In participants with baseline systolic BP 120–139 mmHg, NR (1000 mg/day) reduced systolic BP by about 8 mmHg and decreased carotid-femoral pulse wave velocity (arterial stiffness) versus placebo.^{[8] [9] [4]}
 - NR was well tolerated.^[4]
- Obese insulin-resistant men (40 participants, 2000 mg/day for 12 weeks vs placebo):
 - No improvement in insulin sensitivity (gold-standard clamp), endogenous glucose production, or glucose oxidation.^{[5] [6]}
 - No effect on resting energy expenditure, lipolysis, or body composition.^{[5] [6]}
 - Safety profile was acceptable with no serious NR-related adverse events.^[5]

- Heart failure with reduced ejection fraction (small RCT, 2000 mg/day):
 - Increased whole-blood NAD⁺ but did not improve 6-minute walk distance or quality-of-life endpoints vs placebo. [10]
- Emerging cardiovascular trials (elevated BP, with or without exercise):
 - Protocols and pilot data support that NR can reduce BP and arterial stiffness over 3 months in older adults with elevated systolic BP, with ongoing larger studies and combination with exercise. [9] [11] [8]
- Narrative/systematic review of 25 NR human studies (2023):
 - Confirms robust increases in NAD⁺ metabolites across doses up to 2000 mg/day. [2]
 - Functional benefits are inconsistent: some signals in BP/arterial stiffness and possibly neurodegenerative biomarkers; many trials neutral on insulin sensitivity, energy expenditure, and performance endpoints. [2]

What NR appears to do clinically

- **Mechanistic markers**
 - Increases NAD⁺ and related metabolites (NAAD, ADPR, Me4PY) in blood and PBMCs, often within hours to days, sustained with daily dosing. [1] [4] [2]
 - Confirms engagement of the NAD⁺ salvage pathway without major changes in classical vitamin B3-like side effect patterns at studied doses. [5] [2]
- **Cardiovascular outcomes**
 - In older adults with elevated/stage-1 hypertension, NR lowered systolic BP (~8 mmHg) and improved arterial stiffness indices vs placebo in pilot work, prompting ongoing larger RCTs. [8] [9] [4]
 - These changes are clinically relevant magnitudes if replicated but are not yet linked to long-term cardiovascular event reduction.
- **Metabolic endpoints**
 - No improvement in insulin sensitivity, hepatic fat, or whole-body substrate metabolism in obese insulin-resistant men despite marked NAD⁺ metabolite increases. [6] [5]
 - Neutral effects on body weight and body fat in most trials. [2] [5]
- **Physical function / neurologic markers**
 - In heart failure patients, increased NAD⁺ without better six-minute walk distance suggests that NAD⁺ repletion alone is insufficient for functional gain in advanced disease over short periods. [10]
 - Some smaller studies suggest modulation of inflammatory and interferon-related gene expression in immune cells, implying possible neuro- or immunomodulatory effects, but hard clinical endpoints remain unproven. [2]
- **Safety**
 - NR up to 2000 mg/day for 8–12 weeks shows good tolerability, with mostly mild gastrointestinal or nonspecific adverse events similar to placebo. [5] [2]

NMN vs NR in humans (clinical evidence only)

Mechanistic differences in vivo

- Both compounds ultimately increase NAD⁺ but via slightly different transport and enzymatic entry points (NMN via NMNATs, NR via NMRK → NMN). [1] [2]
- In human trials, both reliably increase systemic NAD⁺/NAD⁺ metabolites, with no clear evidence that one is categorically superior in magnitude at comparable doses and durations; differences are more in the **clinical endpoints chosen** than in NAD⁺ rise per se. [4] [1] [2] [7]

Clinical benefit pattern

Aspect	NMN (human RCT data)	NR (human RCT data)
Primary mechanistic effect	Raises blood NAD ⁺ at 300–900 mg/day over 4–12 weeks. [7] [3]	Raises NAD ⁺ and metabolites in PBMCs and blood at 100–2000 mg/day. [1] [2] [4]
Physical performance	Small improvements in gait speed, chair-stand, six-minute walk, submaximal aerobic efficiency; no consistent change in VO ₂ max or 1-RM strength. [3] [7]	Generally neutral on exercise capacity and physical function in heart failure and other cohorts; limited data in healthy athletes. [10] [2]
Metabolic endpoints	No significant improvement in HOMA-IR or clear metabolic disease markers so far. [7] [3]	No improvement in clamp-measured insulin sensitivity or REE in obese men. [5] [6]
Cardiovascular markers	Some small improvements in walking capacity; limited direct BP/arterial stiffness data. [3] [7]	Pilot work shows ~8 mmHg SBP reduction and decreased arterial stiffness in older adults with elevated BP. [4] [9] [8]
Quality of life / fatigue	Several trials report better SF-36 and fatigue scores at 300–900 mg/day. [3] [7]	Mixed; some modulation of inflammatory/immune markers, but QoL effects less consistent. [2]
Safety	Well tolerated up to 900–1200 mg/day for 8–24 weeks, no serious NMN-related AEs. [3] [7]	Well tolerated up to 2000 mg/day for 8–12 weeks, no major safety signal. [2] [5]

How to interpret this clinically

- **Mechanistic plausibility is strong, but human outcome data are still early.**
Both compounds clearly increase NAD⁺ metabolism in humans, yet RCTs show **modest, domain-specific benefits** (submaximal performance, BP/arterial stiffness, some QoL metrics) and **no evidence so far** for disease modification in diabetes, heart failure, or hard aging outcomes. [5] [2] [3] [7]
- **NMN evidence tilts toward physical function in older or active individuals**, with gains in walking tests and certain performance metrics but no major body-composition or insulin-sensitivity changes. [3] [7]

- **NR evidence tilts toward vascular effects**, particularly in older adults with elevated systolic BP, with consistent NAD⁺ increases but neutral findings on insulin sensitivity and many metabolic endpoints. [\[8\]](#) [\[6\]](#) [\[4\]](#) [\[5\]](#)
- **Safety over months appears acceptable for both**, but long-term, high-dose safety (years) is uncharacterized; most trials run ≤6 months and involve relatively small samples. [\[2\]](#) [\[5\]](#) [\[7\]](#) [\[3\]](#)

If you share your specific goal (e.g., blood pressure, endurance, metabolic markers), a more targeted summary of which compound has the stronger human data for that endpoint can be outlined.

**

Do these 2 preserve and or increase telomere length

Current human data are very limited, but there is some early evidence that NMN and NR may modestly preserve or elongate telomeres in blood cells, mainly over short time frames, with no proof yet of long-term telomere protection in humans. [\[22\]](#) [\[23\]](#) [\[24\]](#)

NMN and telomeres

- A small, non-blinded clinical study embedded in a preclinical paper gave NMN for 30 days to eight “pre-aging” men and reported increased telomere length in peripheral blood mononuclear cells by qPCR compared with baseline. [\[22\]](#)
- A review summarizing these data notes that NMN supplementation “elongated” telomeres in both pre-aging mice and human volunteers, but emphasizes the tiny sample size, short duration, and lack of randomization or placebo control. [\[25\]](#) [\[22\]](#)

Additional reports:

- A popularized summary of a 90-day NMN study in ~30 older adults claims ≈5–100% increases in leukocyte telomere length at 300 mg/day, but the available description suggests an open-label or inadequately controlled design, not a large, rigorously blinded RCT. [\[24\]](#)
- A mechanistic review on NAD-linked metabolism in short-telomere syndromes states that NAD-precursor interventions (including NMN) can reduce telomere damage and dysfunction-induced DNA damage signaling in telomerase-null mice and dyskeratosis congenita cells, but these are animal and cell models, not standard aging humans. [\[23\]](#) [\[25\]](#)

Take-home for NMN:

There is preliminary human evidence (small, uncontrolled studies) that NMN can increase average telomere length in circulating immune cells over 1–3 months, but no high-quality randomized, placebo-controlled trials have yet established durable telomere preservation or clinical benefit via telomere mechanisms. [\[23\]](#) [\[25\]](#) [\[24\]](#) [\[22\]](#)

NR and telomeres

- In telomeropathy models such as dyskeratosis congenita fibroblasts and telomerase-null mice, NR supplementation restored NAD levels, reduced telomere DNA damage, and decreased telomere dysfunction-induced foci, suggesting improved telomere integrity via enhanced SIRT and PARP activity.^[23]
- These experiments demonstrate that boosting NAD (including with NR) can alleviate telomere damage signaling and cellular senescence in short-telomere disease models, but they are preclinical and not direct measurements of telomere length in randomized human aging trials.^{[26] [23]}

Other work:

- A cybrid cell study showed that NR plus the antioxidant NAC preserved telomere length under oxidative stress, again in vitro rather than in living humans.^[27]
- A recent review on NAD precursor supplementation in human ageing notes the telomere-repair findings from preclinical work but concludes that human evidence for telomere preservation with NR is still lacking and that clinical trials have not yet incorporated telomere length as a primary outcome in typical aging populations.^{[28] [23]}

Take-home for NR:

NR clearly improves telomere *function* and reduces telomere damage in cell and animal models of short-telomere syndromes, but there are no robust randomized human trials showing that NR supplementation slows telomere shortening or lengthens telomeres in normal aging individuals.^{[26] [28] [23]}

Overall assessment

- Both NMN and NR are mechanistically plausible telomere-support interventions because higher NAD⁺ supports sirtuins, PARPs, and mitochondrial function, which collectively reduce telomere damage and cellular senescence.^{[25] [23]}
- For **telomere length per se** in humans, evidence is:
 - NMN: very small, mostly uncontrolled studies showing short-term leukocyte telomere elongation; no large, high-quality RCTs yet.^{[24] [22]}
 - NR: preclinical evidence for reduced telomere damage in telomeropathies and short-telomere models, but essentially no rigorous human telomere-length outcome data.^{[28] [26] [23]}

So at this point, it is not possible to say that either NMN or NR reliably **preserves or increases telomere length over the long term in humans**; available findings are preliminary signals that still need confirmation in larger, well-controlled clinical trials.^{[22] [28] [23]}

when taking either of both of these 2, is there an increase in telomerase

Human data directly showing increased telomerase from NMN or NR are essentially absent; current evidence for telomerase activation comes almost entirely from cell and animal studies, plus very indirect human markers. [\[37\]](#) [\[38\]](#) [\[39\]](#) [\[40\]](#)

NMN and telomerase

- In a pre-aging mouse and small human volunteer study, NMN elongated telomeres in PBMCs, but telomerase (TERT) activity was not measured, so any change in telomerase is speculative. [\[38\]](#)
- In fibroblast and liver fibrosis models, NMN increased intracellular NAD⁺, activated SIRT1, and **upregulated TERT expression**, which reduced senescence and myofibroblast differentiation, indicating NAD⁺–SIRT1–TERT coupling in vitro and in mice. [\[39\]](#) [\[37\]](#)

Implication: Mechanistically, NMN can increase TERT expression and telomerase activity in experimental systems, but this has not been demonstrated directly as increased telomerase activity in controlled human trials. [\[37\]](#) [\[39\]](#)

NR and telomerase

- In telomerase-deficient (*Tert*^{-/-}) mouse models, NR supplementation raised NAD⁺, improved telomere integrity, and reduced telomere-dysfunction-induced inflammation and hematopoietic defects, again without direct human telomerase measures. [\[40\]](#) [\[37\]](#)
- Reviews of NAD-linked metabolism in short-telomere syndromes describe NAD-precursor therapy (including NR) as reducing telomere DNA damage and dysfunction, not as proven telomerase stimulators in humans. [\[37\]](#)

Implication: NR supports telomere function and integrity in short-telomere animal models, but no clinical trial has shown that NR raises telomerase activity or TERT expression in people. [\[40\]](#) [\[37\]](#)

Overall answer for humans

- No high-quality human clinical trial has yet quantified telomerase activity (e.g., TRAP assay, TERT expression) before and after NMN or NR and shown a clear increase attributable to these supplements. [\[41\]](#) [\[38\]](#) [\[37\]](#)
- Mechanistic work indicates that raising NAD⁺ (with NMN or NR) can upregulate TERT and telomerase in cells and mice via SIRT1-dependent pathways, but translating this to real-world human telomerase activation remains unproven. [\[39\]](#) [\[40\]](#) [\[37\]](#)

So, at present, it cannot be stated that taking NMN, NR, or both **reliably increases telomerase** in humans; this is a plausible mechanism supported by preclinical data, not yet a demonstrated clinical effect.

Are there benefits of higher levels of telomerase

Higher telomerase activity can be beneficial in very specific contexts (stem cells, tissue repair, some age-related diseases), but chronic high telomerase in somatic cells is also a core mechanism that allows many cancers to become immortal, so the net effect depends on where and how it is increased. [\[53\]](#) [\[54\]](#) [\[55\]](#)

Potential benefits

- **Maintaining tissue regeneration and stem cells**
 - Telomerase maintains telomere length in stem and germ cells, supporting ongoing cell division and tissue repair; telomerase-deficient mice show accelerated aging with impaired wound healing, osteoporosis, and organ decline. [\[54\]](#) [\[56\]](#)
 - Transgenic mice with controlled TERT overexpression show extended healthspan, delayed onset of age-related diseases, and better cardiovascular, neural, and metabolic function without increased cancer in carefully designed models. [\[54\]](#)
- **Genomic stability and lower risk from very short telomeres**
 - Short telomeres are linked to genomic instability, higher all-cause mortality, and greater risk of cardiovascular and infectious disease. [\[57\]](#) [\[58\]](#) [\[59\]](#)
 - Maintaining adequate telomerase activity helps prevent critically short telomeres that trigger DNA damage responses and senescence, which can contribute to organ failure and some cancers. [\[58\]](#) [\[53\]](#)
- **Association with healthy aging in humans**
 - Centenarians who age well often have longer telomeres and better-preserved telomerase activity than less healthy peers, suggesting moderate telomerase maintenance may support healthier aging. [\[60\]](#) [\[61\]](#)

Risks and trade-offs

- **Cancer promotion when dysregulated**
 - Most advanced human cancers (around 85–90%) show telomerase activation, allowing cells to bypass replicative limits and divide indefinitely. [\[62\]](#) [\[55\]](#) [\[53\]](#)
 - Reviews emphasize that while telomerase prevents telomere-driven genomic instability, excessive or unregulated activation in somatic cells can facilitate tumor initiation and progression, especially when tumor-suppressor pathways are already compromised. [\[63\]](#) [\[56\]](#) [\[62\]](#)
- **Complex balance in humans**
 - Epidemiologic studies indicate that short telomeres associate with higher mortality and age-related disease, but very long telomeres in some genetic backgrounds can also associate with increased risk of certain cancers, underscoring a "U-shaped" risk curve. [\[61\]](#) [\[57\]](#)

- Reviews of telomerase in aging and cancer frame it as a “double-edged sword”: some telomerase activity is necessary for tissue maintenance, but broad pharmacologic upregulation in all somatic cells could increase oncogenic potential.^{[56] [63] [53]}

Practical interpretation

- Moderate, properly regulated telomerase activity in stem and progenitor cells appears beneficial for maintaining tissue function and may support healthier aging.^{[61] [54]}
- Non-targeted, chronic telomerase activation across somatic tissues carries theoretical cancer risk, which is why current pharmacologic telomerase-boosting strategies are being explored cautiously and often in highly specific clinical or gene-therapy contexts rather than general anti-aging use.^{[55] [63] [62]}

**

reevaluate all questions using nicotinic acid

For nicotinic acid (niacin), there is **no strong human clinical evidence** that standard supplemental doses meaningfully increase telomerase or preserve/increase telomere length, and its benefits are quite different from NMN/NR despite all being NAD⁺ precursors.^{[68] [69] [70]}

Mechanism of nicotinic acid as an NAD⁺ precursor

- Nicotinic acid enters the **Preiss-Handler pathway**, being converted to NAMN → NAAD → NAD⁺, mainly in liver, and then influences systemic NAD⁺ pools.^[69]
- Its established clinical use is cardiovascular: high-dose niacin improves lipids (\uparrow HDL, \downarrow TG, \downarrow LDL) but is limited by flushing and other side effects, not by telomere biology.^[69]

Nicotinic acid and telomere length

- A systematic review on nutrition and telomere health identified **no RCTs showing niacin alone lengthens telomeres or slows shortening in humans**; positive telomere results involved broad nutraceutical combinations where niacin was only one component and mechanisms were attributed mainly to reduced oxidative stress and inflammation.^{[71] [68]}
- Observational nutrition–telomere studies focus on overall diet quality, antioxidants, and omega-3s; niacin intake has not emerged as a specific independent driver of longer leukocyte telomeres.^[68]

Nicotinic acid and telomerase

- In a recent in-vitro leukemia-cell study, **nicotinamide** (amide form, not nicotinic acid) slightly reduced telomerase activity and telomere length in K562 cells, while a kinase inhibitor increased them; this was a cancer cell model, not a human supplementation trial, and cannot be extrapolated to oral niacin in people.^[72]

- A nutrition–telomere systematic review reports one human trial where a complex supplement cocktail increased telomerase activity without changing telomere length; niacin was again not isolated as the responsible component. [68]
- Major telomerase reviews do not list niacin/niacin therapy as a clinically validated telomerase activator; instead, they emphasize the **double-edged** nature of telomerase (regeneration vs cancer risk) and focus on other experimental activators or gene-therapy strategies. [73] [74] [75]

Telomerase: potential benefits and risks (applied to niacin)

- Benefits of **appropriately localized** telomerase: sustains stem-cell function and tissue repair, helps avoid critically short telomeres and resulting organ failure or marrow failure. [74] [75]
- Risks of **broad telomerase upregulation**: most cancers rely on high telomerase to maintain immortal growth, so systemic, non-targeted telomerase activation is viewed as oncogenic risk. [76] [73] [74]

Because nicotinic acid's proven human benefits are lipid-lowering and possibly some vascular protection, and there is **no convincing clinical evidence** that niacin at therapeutic doses significantly raises telomerase or directly modulates telomere length, it should not be considered a telomerase-targeted or telomere-targeted intervention at this time. [70] [71] [69] [68]

**

1. <https://PMC10692436/>
2. [https://www.science.org/doi/10.1126/sciadv.adi4862](https://doi.org/10.1126/sciadv.adi4862)
3. <https://PMC11365583/>
4. <https://pubmed.ncbi.nlm.nih.gov/29599478/>
5. <https://pubmed.ncbi.nlm.nih.gov/29992272/>
6. <https://PMC6509089/>
7. <https://pubmed.ncbi.nlm.nih.gov/36482258/>
8. <https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.881703/full>
9. <https://www.clinicaltrials.gov/study/NCT03821623>
10. <https://www.nature.com/articles/s41467-024-49092-5>
11. <https://PMC12638573/>
12. <https://PMC7238909/>
13. <https://www.elysiumhealth.com/blogs/aging101/nmn-and-nr>
14. <https://www.jnfiniti.com/nmn-and-nr/>
15. <https://www.insidetracker.com/a/articles/nr-supplement-and-nmn-effectiveness-do-these-compounds-work-for-human-longevity>
16. <https://www.calnutritiongroup.com/post/nmn-and-nr-what-clinical-trials-reveal-about-muscle-health>
17. <https://www.innerbody.com/nmn-vs-nr>
18. <https://www.nad.com/news/unpublished-results-show-nmn-triples-nad-in-first-human-trial>

19. <https://www.forbes.com/health/supplements/nicotinamide-mononucleotide/>
20. <https://pubmed.ncbi.nlm.nih.gov/39228730/>
21. <https://researchprofiles.ku.dk/en/publications/a-randomized-placebo-controlled-clinical-trial-of-nicotinamide-ri/>
22. <https://pmc.ncbi.nlm.nih.gov/articles/PMC8667784/>
23. <https://www.frontiersin.org/journals/aging/articles/10.3389/fragi.2021.785171/full>
24. <https://purovitalis.com/lengthening-telomeres-and-slowing-aging-a-promising-study-on-nmn/>
25. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10917541/>
26. <https://investors.chromadex.com/news/news-details/2020/New-Study-from-NIH-Finds-Nicotinamide-Riboside-Helps-Improve-Telomere-Dysfunction-in-Human-Cells-Mice/default.aspx>
27. <https://www.nad.com/news/new-study-combining-nr-with-nac-may-slow-telomere-shortening>
28. <https://pubmed.ncbi.nlm.nih.gov/41083806/>
29. <https://www.nmn.com/news/nmn-improves-telomere-length-blood-cells-middle-aged-people>
30. <https://www.nad.com/news/nad-precursors-and-aging>
31. <https://www.truNiagen.com/blogs/tru-niagen-labs/the-science-behind-telomeres-and-aging>
32. <https://pmc.ncbi.nlm.nih.gov/articles/PMC12727671/>
33. <https://onlinelibrary.wiley.com/doi/10.1111/acel.70093>
34. <https://www.nature.com/articles/s42003-025-08567-x>
35. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10604757/>
36. <https://clinicaltrials.gov/study/NCT04110028>
37. <https://pmc.ncbi.nlm.nih.gov/articles/PMC9261345/>
38. <https://pmc.ncbi.nlm.nih.gov/articles/PMC8667784/>
39. <https://www.aging-us.com/article/203246/text>
40. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10651621/>
41. <https://pubmed.ncbi.nlm.nih.gov/41083806/>
42. <https://www.science.org/doi/10.1126/sciadv.adr1538>
43. <https://www.nad.com/news/new-study-combining-nr-with-nac-may-slow-telomere-shortening>
44. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10917541/>
45. <https://www.biorxiv.org/content/10.1101/2021.10.05.462047v1.full-text>
46. <https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056589>
47. <https://www.sciencedirect.com/science/article/pii/S2468501118300063>
48. <https://clinicaltrials.gov/study/NCT04823260>
49. <https://pmc.ncbi.nlm.nih.gov/articles/PMC10721522/>
50. <https://clinicaltrials.gov/study/NCT06907329>
51. <https://www.nad.com/news/unpublished-results-show-nmn-triples-nad-in-first-human-trial>
52. <https://www.nmn.com/human-trials>
53. <https://pmc.ncbi.nlm.nih.gov/articles/PMC4893918/>
54. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11313618/>
55. <https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2025.1542930/full>

56. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7411297/>
57. <https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2788295>
58. <https://pmc.ncbi.nlm.nih.gov/articles/PMC3370421/>
59. <https://www.aging-us.com/article/100007/text>
60. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7377891/>
61. <https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2020.630186/full>
62. <https://www.nature.com/articles/s41419-024-06454-7>
63. <https://pmc.ncbi.nlm.nih.gov/articles/PMC5026584/>
64. <https://www.sciencedirect.com/science/article/pii/S101684782313723X>
65. <https://www.lidsen.com/journals/geriatrics/geriatrics-05-01-156>
66. <https://www.aacr.org/blog/2022/09/16/the-end-game-targeting-telomere-processing-in-cancer/>
67. <https://aacrjournals.org/clincancerres/article/25/2/760/127349/Telomerase-Activation-and-ATRX-Mutations-Are>
68. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7231592/>
69. <https://pmc.ncbi.nlm.nih.gov/articles/PMC6342515/>
70. <https://www.sciencedirect.com/science/article/pii/S0022316622066287>
71. <https://www.spandidos-publications.com/10.3892/ijmm.2019.4191>
72. <https://journal.unisza.edu.my/ajmb/index.php/ajmb/article/download/744/525/>
73. <https://pmc.ncbi.nlm.nih.gov/articles/PMC5026584/>
74. <https://pmc.ncbi.nlm.nih.gov/articles/PMC4893918/>
75. <https://pmc.ncbi.nlm.nih.gov/articles/PMC11313618/>
76. <https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2025.1542930/full>
77. <https://pmc.ncbi.nlm.nih.gov/articles/PMC9261345/>
78. <https://www.nature.com/articles/s41467-023-36543-8>
79. <https://www.sciencedirect.com/science/article/pii/S2161831323013595>
80. <https://www.frontiersin.org/journals/aging/articles/10.3389/fragi.2021.785171/full>
81. <https://www.science.org/doi/10.1126/sciadv.adr1538>
82. <https://www.nmn.com/news/nmn-improves-telomere-length-blood-cells-middle-aged-people>
83. <https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056589>
84. <https://aacrjournals.org/mct/article/8/4/725/93557/Niacin-status-and-treatment-related>
85. <https://www.nad.com/news/nad-precursors-and-aging>
86. <https://pubmed.ncbi.nlm.nih.gov/16939485/>