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Prolonged fasting (PF), defined as abstaining from energy intake for 24 consecutive days, has gained
interest as a potential health intervention. However, the biological effects of PF on the plasma proteome
are not well understood. In this study, we investigated the effects of a medically supervised water-only
fast (mean duration: 9.8 + 3.1 days), followed by 5.3 + 2.4 days of guided refeeding, in 20 middle-aged
volunteers (mean age: 52.2 + 11.8 years; BMI: 28.8 + 6.4 kg/m?). Fasting resulted in a 7.7% mean weight
loss and significant increases in serum beta-hydroxybutyrate (BHB), confirming adherence. Untargeted
high-dimensional plasma proteomics (SOMAScan, 1,317 proteins) revealed multiple adaptations to PF,
including preservation of skeletal muscle and bone, enhanced lysosomal biogenesis, increased lipid
metabolism via PPARa signaling, and reduced amyloid fiber formation. Notably, PF significantly reduced
circulating amyloid beta proteins AB40 and AB42, key components of brain amyloid plaques. In addition,
PF induced an acute inflammatory response, characterized by elevated plasma C-reactive protein (CRP),
hepcidin, midkine, and interleukin 8 (IL-8), among others. A retrospective cohort analysis of 1,422
individuals undergoing modified fasting confirmed increased CRP levels (from 2.8 £ 0.1 to 4.3 £ 0.2 mg/L).
The acute phase response, associated with transforming growth factor (TGF)-B signaling, was
accompanied by increased platelet degranulation and upregulation of the complement and coagulation
cascade, validated by ELISAs in blood and urine. While the acute inflammatory response during PF may
serve as a transient adaptive mechanism, it raises concerns regarding potential cardiometabolic effects
that could persist after refeeding. Further investigation is warranted to elucidate the long-term molecular

and clinical implications of PF across diverse populations.

INTRODUCTION

Prolonged fasting (PF), defined as abstaining from energy intake for 24 consecutive days(1), has been
practiced throughout history for cultural, spiritual, and health-related reasons. Recently, it has gained
renewed attention as a potential intervention to promote health and longevity by mitigating cellular
aging, reducing inflammation, and lowering the risk of cardiovascular disease and cancer.(2, 3) However,
the systemic biological adaptations to PF and its effects on inflammation remain unclear. Advances in
high-throughput proteomics now enable the simultaneous measurement of thousands of plasma proteins
with high specificity, providing a unique opportunity to investigate molecular adaptations to fasting and
refeeding. Such an approach addresses the limitations of earlier studies, which were constrained to
examining only a small number of specific preselected proteins.

In this study, we examined 20 volunteers attending a fasting clinic before, during, and after an average

10-day water-only fast, followed by an average of 5 days of supervised refeeding with a plant-based diet.
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Using untargeted plasma proteomics with SOMAScan, we identified both potential benefits and
drawbacks of PF and refeeding at the molecular level. PF triggered a significant shift in 6.6% of the plasma
proteome; however, less than 1% of these proteins remained significantly altered after refeeding,
supporting a transient effect. Contrary to our hypothesis, the primary outcome was a significant increase
in inflammation and cytokine signaling via TGF-B, confirming that PF elevates inflammation. Additionally,
we observed alterations in neutrophil and platelet degranulation, along with well-documented changes
in IGF and PPARa signaling, key regulators of growth and lipid metabolism, respectively. Limited nutrient
availability activated the PTEN, STAT3, and MAPK pathways, critical signal transducers that regulate cell
proliferation in response to external stimuli. Notably, this study is the first to report that PF significantly
reduced amyloid fiber formation and lowered circulating amyloid beta proteins AB40 and AB42, even
though it did not affect their ratio. The findings were validated through targeted mass spectrometry and
ELISAs in blood and urine samples, as well as in two external cohorts undergoing similar PF regimens.
While PF is commonly associated with health benefits such as weight loss, our findings suggest its effects
are more complex and multifaceted, with potential physiological benefits and drawbacks that require an

individualized approach to fasting interventions.

RESULTS

We recruited 20 middle-aged volunteers (mean age: 52.2 + 11.8 years; mean BMI: 28.8 + 6.4 kg/m?),
including 11 women and 9 men. Participants were approached by the study team at TrueNorth Health
Center, a facility offering medically supervised fasting. The study team operated independently from the
Center. Volunteers followed a fasting and refeeding regimen, consisting of an average 9.8 + 3.1-day water-
only fast, followed by an average 5.3 + 2.4 days of guided refeeding (Methods). Both fasting and refeeding
procedures were based on previously established protocols.(4, 5) Blood and urine samples were collected
between 6 and 8 am to minimize diurnal variability, processed immediately, and stored at -80°C for
analysis. We conducted an untargeted high-dimensional proteomic analysis using SOMAScan, measuring
plasma levels of 1,317 proteins. (6) In addition, targeted mass spectrometry and ELISAs were employed
to quantify specific biomarkers in blood and urine. The results were compared with two independent
datasets of PF and modified fasting in humans, from Pietzner et al. (2024) and Wilhelmi de Toledo et al.
(2019).

At baseline, the average body weight of the volunteers was 85.6 + 25.6 kg in women and 87.9 + 15.4 kg in
men. By the end of the fasting period, participants experienced significant weight loss, with women losing

6.3 + 1.7 kg and men losing 6.9 + 2.2 kg (p < 0.0001), corresponding to reductions of 7.6% and 7.8% of
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baseline body weight, respectively. BMI decreased by an average of 2.2 + 0.5 kg/m? (p < 0.0001), a
fractional decrease of 7.6%, while waist circumference was reduced by 6% (p < 0.0001). These reductions
in body weight, BMI, and waist circumference persisted through the refeeding period (Table 1). Mild
adverse events were common, including headaches, weakness, fatigue, insomnia, dry mouth, and
orthostatic hypotension (Fig S1), prompting the transition to a broth and/or juice fast in six participants.
Other adverse events included severe abdominal pain and diarrhea (n=1), hypokalemia (n=1), arrhythmias
(n=1), and dizziness and palpitations (n=1). When feasible, blood and urine samples collected before this
transition were used for analysis (Fig S2). Adherence was high, with all participants exhibiting a
physiological fasting response, as evidenced by significantly elevated serum beta-hydroxybutyrate (BHB)
concentrations (p < 0.0001), which normalized during refeeding (Table 1). The fasting-induced increase in
BHB and its normalization with refeeding were significantly correlated with changes in inflammatory
markers (midkine and IL-8), metabolic regulators (FGF19, leptin receptor, chemerin, growth hormone

receptor), and MAPK signaling, a crucial mediator of cell proliferation (Fig S3).

Proteomics adaptations to prolonged fasting in humans

We found that 6.6% of protein targets (n = 86/1317) exhibited significant changes by the end of fasting
(adjusted p < 0.05), with 74 proteins decreasing and 12 increasing (Figure 1A). However, after five days of
gradual refeeding, only 12 proteins (<1%) remained significantly altered, indicating that most fasting-
induced proteomic changes are transient. The most significantly reduced proteins included key regulators
of muscle homeostasis, such as inhibin beta A (INHBA, -3.3 fold, adjusted p = 9.07E-05), myostatin (-2 fold,
adjusted p = 0.000466), and GDF11/8 (-1.6 fold, adjusted p = 0.000757), all members of the TGF-$
superfamily (Figure 1B). These proteins are vital for muscle regulation, likely reflecting the body's adaptive
response to fasting, balancing muscle preservation with tissue repair during nutrient deprivation.(7)
Interestingly, inhibiting GDF11 and myostatin has been linked to increased bone density and strength
through enhanced osteoblast activity and suppressed osteoclastogenesis.(8, 9) Consistent with this,
plasma parathyroid hormone (PTH) levels decreased by 2.1-fold (adjusted p = 0.0045), suggesting a
compensatory hormonal adjustment during fasting to slow bone loss. Under conditions of energy
deprivation, the insulin-sensitizing adipokine adiponectin also decreased from 5643 + 3282 ng/mL to 4275

+ 2519 ng/mL (p < 0.0001) (Figure 1C).

In contrast, proteins involved in energy, glucose, and bile acid metabolism significantly increased, with

PPARa emerging as a key activated pathway (Figure 1D, Fig S4). Regulated by free fatty acids, PPARa
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drives hepatic lipid metabolism and ketogenesis, a vital fasting adaptation. Another major fasting-
activated pathway was the CLEAR (Coordinated Lysosomal Expression and Regulation) network, which
governs lysosomal biogenesis and function. This pathway is crucial for autophagy and exocytosis, both
essential for cellular maintenance and adaptation to nutrient scarcity. The gut hormone FGF19 also
increased 1.8-fold (adjusted p = 0.048) (Figure 1B), playing a crucial role in energy metabolism by
regulating bile acid synthesis, enhancing glucose utilization, and promoting hepatocyte proliferation.(10)
In addition, the soluble leptin receptor increased significantly (2.2-fold, adjusted p = 0.002), facilitating
appetite regulation by regulating leptin bioavailability in the bloodstream.(11, 12) The significant
increases in FGF19 and the soluble leptin receptor were previously reported in an independent cohort
undergoing a 7-day water-only fast by Pietzner et al. (2024). (13) This comparative cohort of 12
participants experienced an average weight loss of 5.7+0.8 kg, representing a 7.4% reduction in baseline
body weight. Comparative proteomics analysis of both cohorts at the 7-day endpoint identified an overlap
of 44 significantly decreased and 5 significantly increased proteins, with no discrepancies between studies
(Fig S5). Despite methodological differences (Olink vs. SOMAScan), Reactome pathway enrichment
analysis revealed that most altered pathways were common to both datasets, particularly those related
to neutrophil and platelet degranulation, as well as interleukin, MAPK, and PI3K/AKT signaling (Fig S6).
The findings highlight the highly conserved and universal nature of the physiological response to water-

only PF.

Additionally, PF was associated with a reduction in synaptogenesis pathways and amyloid fibril formation
(Figure 1D, Fig S4). An increasing trend in brain-derived neurotrophic factor (BDNF) levels was observed
(1.32-fold, adjusted p = 0.18), which may support previous evidence of fasting’s neuroprotective
effects.(14) While the predicted decrease in fibrillar formation was not specific to amyloid beta proteins,
we hypothesize that it could reflect lower circulating amyloid beta levels. To investigate this, plasma levels
of amyloid beta (AB) 42, 40, and the AB42/AB40 ratio - a diagnostic biomarker for brain amyloid plaques
(15)- were measured using mass spectrometry. (16, 17) Interestingly, PF significantly reduced plasma
concentrations of both AB42 and AP40 (Figure 1E-G), suggesting either a decreased production rate or
accelerated degradation of these amyloid peptides during fasting, with levels returning to baseline after
refeeding. Even though the reduction in individual AB components may have potential beneficial
implications for amyloidosis, the AB42/AB40 ratio, which is the validated biomarker used clinically to

identify individuals with brain amyloid plaques (18, 19), remained unchanged.
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Prolonged fasting increases inflammation

The primary outcome of our study was inflammation. SOMAScan plasma proteomics analysis revealed
significant increases in well-established inflammatory markers, including hepcidin, ferritin, midkine,
matrix metalloproteinase 9, IL-8, and platelet-activating factor acetylhydrolase (PAFAH or PLA2G7) (Figure
2A-B). Contrary to our initial hypothesis that fasting would exert an anti-inflammatory effect, PF led to a
pronounced 129% increase in circulating high-sensitivity C-reactive protein (hsCRP) levels measured by
ELISA (Wilcoxon’s p = 0.0004, ANOVA p = 0.0070), with levels returning to baseline after refeeding in all
but one participant (Table 1, Figure 2C). The significant rise in hsCRP was positively correlated with C5
(involved in inflammation) and LILRB2 (regulating inflammation and axonal regeneration), and negatively
associated with PCI (SERPINAS), hemojuvelin, and MED1 (adipogenesis) (Figure 2D). At the pathway level,
CRP was significantly associated with the TGF-B signaling pathway and the complement and coagulation
cascade (Figure 2E), suggesting that PF may activate the innate immune response through inflammation.
Tovalidate these findings in a broader population, we retrospectively analyzed data from 1,422 individuals
who underwent medically supervised modified fasting at the Buchinger-Wilhelmi Clinic in Germany.(5) In
this comparative cohort, the average fasting duration was 8.2 £ 0.1 days, with an average weight loss of
4.3 £ 2.0 kg. Notably, 66.6% of participants experienced a significant increase in plasma CRP levels (Figure
2F), confirming the acute inflammatory effect of PF across a larger cohort. Importantly, this increase in

CRP was observed regardless of fasting duration (5, 10, 15, or 20 days).

We also observed a significant increase in liver transaminases AST and ALT during fasting, with levels rising
by 65% and 64%, respectively, and remaining elevated during refeeding (Table 1). This elevation in liver
enzymes, indicative of hepatic stress, was also observed in the Buchinger-Wilhelmi Clinic validation cohort
(Fig S7). The concurrent rise in liver enzymes and inflammatory markers highlights the need for medical

monitoring of individuals undergoing PF interventions.

Fasting and refeeding elevate biomarkers of platelet activation and degranulation

An unexpected finding was the observed increase in biomarkers and pathways associated with platelet
activity during PF (Figure 3). Reactome pathway enrichment analysis of the SOMAScan data revealed that
PF influenced platelet degranulation, a process that facilitates thrombin generation by releasing
fibrinogen and von Willebrand factor (vWF) from alpha granules at injury sites.(20) Even though
prothrombin levels remained unchanged (1-fold, adjusted p = 0.85), vVWF and its receptor, soluble

glycoprotein Ib alpha (GP1Ba), were mildly increased (Figure 3A), correlating with elevated chemokines

Page 6 of 21



192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

(e.g., IL-8, CCL7, CCL11) (Figure 3B). To confirm platelet degranulation, we measured urinary 11-dehydro-
TXB2 levels via ELISA, an enzymatic product in the TXA2/TXB2 pathway primarily derived from activated
platelets via cyclooxygenase-1 activity. Surprisingly, 11-dehydro-TXB2 levels rose by 21% during fasting
and 36% post-refeeding (Figure 3C), with no change in platelet counts (Figure 3D), indicating that
increased degranulation, rather than heightened platelet production, drove the effect.(21) Urinary 11-
dehydro-TXB2 is a gold standard biomarker of platelet activation and cardiovascular risk.(22) The
Framingham study highlights its predictive value for all-cause mortality, cardiovascular death, and major
arterial events.(23) In the ASCEND trial, it was significantly associated with future vascular events in nearly
8,000 diabetic participants.(24, 25) Therefore, our findings reveal a PF-induced phenotype characterized
by interconnected inflammation and platelet activation, potentially affecting thrombotic risk in individuals

with pre-existing conditions.

Prolonged fasting affects cardiometabolic biomarkers

In our study, PF induced significant changes in lipid profiles, including increases in plasma total cholesterol,
non-HDL cholesterol, LDL cholesterol, and the total cholesterol/HDL ratio, all of which reversed after
refeeding (Table 1). Plasma triglycerides steadily increased, peaking with a 32% rise post-refeeding.
Proteomics analysis revealed a significant 1.49-fold reduction in proprotein convertase subtilisin/kexin
type 9 (PCSK9) (adjusted p = 0.008) at the end of fasting (Figure 1B). This reduction likely decreased PCSK9

binding to LDL receptors, thereby preventing their degradation in liver cells.(26)

In addition to lipid changes, serum glucose levels decreased from 85.7 mg/dL to 70.3 mg/dL (18%) during
fasting (Table 1), reflecting the rewiring of whole-body metabolism upon depletion of glucose stores.
Similarly, the adipokines chemerin (-1.7-fold, adjusted p = 0.0002) and fetuin B (FETUB) (-1.8-fold,
adjusted p = 6.05E-05) were also decreased (Figure 1A-B).(25, 26) During refeeding, glucose levels and
HOMA-IR, an indicator of insulin resistance, increased significantly, reflecting enhanced glucose

availability with the reintroduction of food.

Fasting and refeeding do not induce systemic changes in oxidation status

While fasting has been suggested to reduce oxidative stress in animal models (27), our proteomic analysis
revealed a decrease in superoxide dismutase 3 (SOD3) levels (-1.3-fold, adjusted p = 0.003), an
extracellular antioxidant enzyme crucial for redox balance. Additionally, the expected improvements in in

vivo oxidation status were not observed. Using the validated urinary biomarker of lipid oxidation 8-iso-
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prostaglandin F2a (25, 28), we found a heterogeneous oxidative response to fasting and refeeding. The

result suggests that PF does not universally reduce oxidative stress in humans (Fig S8).

DISCUSSION

Throughout human evolution, extended periods of food scarcity were common, shaping metabolic
flexibility as a survival mechanism. In the context of the global obesity epidemic, fasting has resurged as
a popular, sometimes extreme, weight-loss strategy. (2, 29) However, the body’s adaptations to PF and
its potential health effects remain poorly understood. Our study offers a comprehensive proteomic
analysis of the responses to PF and refeeding, uncovering both beneficial and potentially detrimental
effects. Consistent with previous research (13), we uncovered changes in multiple proteins involved in
skeletal muscle and bone homeostasis (INHBA, myostatin, GDF11/8, PTH). Interestingly, exogenous
GDF11 has been shown to function as a calorie restriction mimetic in mice, stimulating adiponectin
secretion and improving insulin sensitivity(30). The acute inflammatory response triggered by PF warrants
further investigation to clarify its clinical significance, and it is consistent with a clinical study
demonstrating that a 10-day water-only fast triggers an inflammatory transcriptional signature in adipose
tissue.(31) In our study, inflammation was accompanied by evidence of platelet degranulation, raising
concerns as elevated urinary TXB2 has been linked to accelerated atherogenesis and increased
cardiovascular risk.(24, 32) The inflammatory profile characterized by elevated hsCRP, IL-8, and activation
of TGF-B and complement pathways resembles the hallmark features of trained immunity (33), suggesting
that PF may serve as an endogenous trigger for this adaptive immune mechanism. However, the immune
effects of PF are complex and context-dependent, with evidence supporting fasting-induced modulation

of immunosenescence and immune response during immunotherapy.(34-37)

Prior studies of the adipose tissue transcriptome have linked inflammatory pathways to insulin
resistance.(38-40) Consistently, our data show that PF is associated with elevated HOMA-IR. Additionally,
increased triglycerides and liver transaminases suggest that prolonged nutrient deprivation, unlike

moderate calorie restriction, may disrupt lipoprotein metabolism and liver function (41-44).

Furthermore, this study is the first to demonstrate that PF lowers plasma AB42 and AB40, key components
of amyloid plaques implicated in Alzheimer's disease pathology.(45) These findings suggest that nutrient
deprivation alters amyloid precursor protein (APP) expression or processing, influencing either the

production or clearance of plasma AP42 and AB40. Importantly, PF did not affect the AP42/40 ratio, a
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validated biomarker for brain amyloid plaques (18). This supports the notion that the AB42/40 ratio,
rather than individual concentrations, is a robust biomarker, as it accounts for inter-individual variability

in pre-analytical conditions (46) and presence of comorbidities.(47)

Our study has several strengths and limitations. Strengths include the use of two methodologies (mass
spectrometry and ELISA) across biological samples (plasma and urine), which yielded consistent findings.
Multiple biomarkers were assessed in an untargeted approach, reducing reliance on a single marker, and
results were validated in two independent cohorts. Limitations include the single-arm design with a lack
of control group, the small sample size, and the variability in fasting and refeeding durations decided by

the volunteers.

In summary, our study reveals a multifaceted proteomic response to PF, extending beyond the traditional
adipose-centric or energy homeostasis framework. We identified elevated biomarkers related to muscle
and bone preservation, reduced amyloid formation, increased inflammation and platelet activity, and lipid
metabolism. By conducting a comparative analysis in an independent cohort, we identify a universal
signature of the physiological response to water-only PF, observing no differences between studies
despite variations in cohort characteristics and methodology. However, we also observed substantial
inter-individual variability at the molecular level, emphasizing the need for personalized fasting regimens.
In contrast, oxidation status remained unchanged, with no evidence of antioxidant effects. The acute
inflammatory response, also observed in an independent cohort, may reflect a positive adaptive
mechanism. However, it also raises concerns about a potentially adverse cardiometabolic phenotype,
particularly for individuals with thrombotic conditions or unstable atherosclerotic plaques. This mirrors
data from exercise interventions, where acute vigorous physical activity can transiently increase
cardiovascular risk, particularly in untrained individuals or those with underlying conditions. However,
with appropriate progressive training, long-term beneficial adaptations occur, leading to reduced
cardiovascular mortality.(48) Unlike exercise, where dose-response relationships and adaptations are
well-established, our understanding of how repeated PF bouts impact long-term molecular, metabolic,

and clinical outcomes remains limited, highlighting the need for further research.

Resource availability: All data are presented in the manuscript and supplementary materials, and are

available upon reasonable request to the corresponding author.
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FIGURE LEGENDS

Table 1. Anthropometric measures and cardiometabolic effects of prolonged fasting in humans. Data
expressed as mean * SD. Statistical significance was calculated using paired, 2-tailed Student’s t or
Wilcoxon signed rank test for non-normally distributed data. N = 20 participants, except for cholesterol

measurements and triglycerides (N = 19). Significance levels are indicated as p-values.

Figure 1. Proteomics adaptations to prolonged fasting in humans. (A) Volcano plot of differentially
expressed SOMAScan plasma proteins during fasting from N = 15 participants. Significance cut-off
adjusted p < 0.05. FC = End of Fasting / Baseline. (B) Individual changes in highlighted proteins from (A)
normalized to baseline during fasting and refeeding. Each dot represents protein levels in each participant

(N = 15). Adjusted p-value calculated with one-way ANOVA. (C) Absolute levels of plasma adiponectin
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measured by ELISA across three time points. Each dot represents levels in each participant (N = 20). (D)
Volcano plot of differentially enriched canonical pathways in IPA with predicted activation (orange) or
inhibition (blue). Input = 1,255 mapped SOMAScan proteins from (A). (E-F-G) Absolute levels of plasma
AB42, AB40, and their ratio measured by IP-LC-MS/MS across three timepoints. N = 20 participants.
Statistical analysis is described in the Methods for each analysis. Significance levels are indicated as
adjusted p-values, *p <0.05, **p <0.01, and ***p <0.001. For all graphs, BL = Baseline, EF = End of Fasting,
ER = End of Refeeding.

Figure 2. Prolonged fasting increases inflammation. (A) All significantly upregulated SOMAScan proteins
(n =12) during fasting normalized to baseline (targets from volcano plot in Figure 2A). Pro-inflammatory
proteins are shown with light red background. N = 15 participants. FC = End of Fasting / Baseline (B)
Individual changes in 6 inflammatory proteins from panel A during fasting and refeeding. Each dot
represents protein levels in each participant. (C) Absolute hsCRP levels in the blood of each participant (N
= 20) measured by ELISA across three time points. (D) Significantly correlated proteomic targets to CRP
changes during fasting and refeeding (positive effect size = same changes; negative effect size = inverse
changes). (E) Significantly enriched KEGG pathways relative to CRP changes. (F) Validation of CRP changes
in an independent fasting cohort of 1,422 participants. Measurements of weight and CRP at baseline (BL,
blue) and end of fasting (EF, orange) timepoints. The same variables are plotted by fasting length category.
5d =5 day fast, 10d = 10 day fast, 15d = 15 day fast, 20d = 20 day fast. Median, interquartile range, and
outliers are shown, with notches representing the 95% confidence intervals. Statistical analysis is
described in the Methods for each analysis. Significance levels are indicated as adjusted p-values, *p <

0.05, **p <0.01, and ***p <0.001. For all graphs, BL = Baseline, EF = End of Fasting, ER = End of Refeeding.

Figure 3. Fasting and refeeding elevate biomarkers of platelet activation and degranulation. (A)
Individual changes in 4 platelet-associated proteins from SOMAScan normalized to baseline during fasting
and refeeding. Each dot represents protein levels in each participant (N = 15). Adjusted p-value calculated
with one-way ANOVA. (B) Volcano plot of vVWF (effect size) on all 1,317 SOMAScan proteins during
combined fasting and refeeding. Significance cut-off adjusted p < 0.01. N = 15 participants. (C) KEGG
pathway enrichment analysis for proteins associated with vVWF. Fold enrichments in KEGG pathway
analysis are shown relative to fold changes for vWF. (D) Absolute TXB2 levels in the urine of each
participant (N = 20) across three time points. (E) Absolute platelet counts in the blood of each participant

(N = 20) across three time points. Statistical analysis is described in the Methods for each analysis.
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Significance levels are indicated as adjusted p-values, *p < 0.05, **p < 0.01, and ***p < 0.001. For all

graphs, BL = Baseline, EF = End of Fasting, ER = End of Refeeding.

Supplementary Table 1. Inclusion and exclusion criteria.

Supplementary Table 2. Medications.

Supplementary Figure 1. Adverse Events (AEs) during fasting and refeeding. AEs were assessed by a

qualified medical practitioner.

Supplementary Figure 2. Sample collection time points. Blood and urinary samples were collected at
baseline (BL), End of Fasting (EF), and End of Refeeding (ER) timepoints. Six participants (IDs 1, 6, 7, 12,
13, 21) switched from water-only fasting to juice and/or broth fasting following medical advice. For these
participants, except for 1D13, samples for End of Fasting were collected prior to the switch. Three
participants (IDs 8, 14, 20) consumed 1-2 juice and/or vegetable broth during the fast. One participant

(ID5) consumed juice daily during the fast.

Supplementary Figure 3. BHB association with inflammatory markers and cytokine and MAPK
signalling. Volcano plots of BHB (effect size) on all 1,317 SOMAScan proteomics variables during (A)
fasting and (B) combined fasting and refeeding. Significance cut-off adjusted p < 0.01. N = 15 participants.
(C-D) KEGG pathway enrichment analysis for proteins associated with BHB. Fold enrichments in KEGG

pathway analysis are shown relative to fold changes for BHB.

Supplementary Figure 4. Full list of IPA canonical pathways. Volcano plot of differentially enriched
canonical pathways with predicted activation (orange) or inhibition (blue) using proteomics input from

Figure 2A.

Supplementary Figure 5. Comparative proteomics between the SOMAScan dataset and the Olink
dataset by Pietzner et al. (2024). (A) Venn diagram of shared proteins present in both datasets. (B)
Significantly altered proteins in each dataset, according to each study’s statistical methods. (C) List of

significantly altered shared proteins (44 decreased in blue and 5 increased in red).
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Supplementary Figure 6. Comparative Reactome pathway analysis between the SOMAScan dataset and
the Olink dataset by Pietzner et al. (2024). Reactome pathway analysis comparison between (A)
SOMAScan and (B) Olink proteomics datasets at fasting day 7 using Uniprot as the reference dataset

(accessed October 2024). Pathways are colour matched. BH corrected p-values are shown (grey line).

Supplementary Figure 7. Hepatic markers during fasting by Wilhelmi de Toledo et al. (2019). Validation
of ALT and AST changes in an independent fasting cohort of 1,422 participants. Measurements of ALT and
AST at baseline (BL, blue) and end of fasting (EF, orange) timepoints. Median, interquartile range, and
outliers are shown, with notches representing the 95% confidence intervals. Statistical analysis is
described in the Methods for each analysis. Significance levels are indicated as adjusted p-values, *p <

0.05, **p <0.01, and ***p < 0.001.

Supplementary Figure 8. Oxidative stress and lipid peroxidation status upon prolonged fasting. (A)
SOD3 abundance from SOMAScan proteomics dataset across time points from N = 15 participants. (B)
Absolute 8-iso-prostaglandin F2a levels in the urine of each participant (N = 20) across three timepoints.
Statistical significance was calculated using Wilcoxon signed rank test for non-normally distributed data
for all parameters. Dots represent study participants for all graphs. Significance levels are indicated as p-

values.

STAR METHODS

STUDY PARTICIPANT DETAILS

The study protocol, approved by the institutional review board of the Marin General Hospital, Greenbrae,
CA, USA, received written informed consent from volunteers. The study was performed per the principles
in the Declaration of Helsinki. Volunteers were approached by the study team at TrueNorth Health Center,
a private facility offering medically supervised fasting. The study team operated independently from the
Center. Individuals at the Center were given the opportunity to volunteer for the study, and those
interested were screened for eligibility. Out of 168 individuals screened for eligibility, 33 met the inclusion
criteria, encompassing individuals of both genders, aged 18 or older, with a body mass index (BMI) of >
20 kg/m?. Exclusion criteria included any history of chronic disease, physical or psychiatric conditions, use
of medications incompatible with fasting, or other factors such as alcoholism or life situations that could
interfere with the intervention or compliance (Supplementary Table 1). Twenty participants (N = 20), with

a baseline BMI of 28.8+6.4 kg/m? (range 21.1-50.3 kg/m?) consented to and commenced the medically
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supervised water-only fasting. Their average age was 52.2+11.8 years (range 31-72 years), with eleven
being women. Detailed baseline characteristics are provided in Table 1. Before the study, ten individuals
were not taking any medications, nine were using medications listed in Supplementary Table 2, and one
used a CPAP at night. All individuals on medications (except volunteer 17, who continued using an
estrogen cream) stopped their medications 1-4 days prior to the fast to allow baseline samples to be
collected after the medication was discontinued. During fasting, two volunteers took medications
prescribed by their doctor (fexofenadine, dichloralphenazone, acetaminophen, isometheptene) as
needed, while 18 volunteers did not. During refeeding, one volunteer took medication (tamsulosin) for
urinary pain. Therefore, the majority of samples were obtained without medication. However, we
acknowledge that the pause in medication intake prior to baseline sample collection could have
influenced the data. Fourteen individuals were non-smokers, five were former smokers, and one was a
current smoker (volunteer 20, who smoked 4-5 times per week for 20 years). The former smokers include
volunteer 04 (smoked for 4 years, 10 cigarettes/day, quit 10 years ago), volunteer 05 (smoked for 6
months, 1-2 cigarettes/day, quit 21 years ago), volunteer 06 (smoked for 10 years, 15 cigarettes/day, quit
19 years ago), volunteer 12 (smoked for 30 years, 10 cigarettes/day, quit 12 years ago), and volunteer 13
(smoked for 20 years, 15 cigarettes/day, quit 40 years ago). The primary objective was to determine
whether PF significantly reduces inflammation, a process deeply involved in the pathogenesis of multiple
age-associated chronic diseases and in the biology of aging itself. The primary outcome measure was
circulating C-reactive protein (CRP) levels and other inflammatory markers at baseline and during fasting

and refeeding phases.

Medically supervised, water-only fasting and refeeding protocol. The water-only fasting and refeeding
protocol was conducted at TrueNorth Health Center in Santa Rosa, California, a specialized medical facility
for prolonged water-only fasting. The protocol was administered by physicians who thoroughly examined
participants' physical, neurological, and psychological health. However, all the data and measurements
were independently collected by Dr. Serena Commissati from May to December 2017. Participants
underwent a medical history review, urinalysis, complete blood count with differentials, and a
comprehensive metabolic panel. Before fasting, participants consumed a diet of fresh raw fruits and
steamed vegetables for at least two days. During fasting, participants remained at the facility, consuming
a minimum of 1182 mL of water per day. Participants were instructed to avoid strenuous exercise, with
only minimal physical activity (such as light walks and stretching) allowed. Medical staff closely monitored

vital signs and symptoms twice daily, repeating urinalysis and blood tests weekly or as directed. Sample
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collection was optimized to minimize heterogeneity in fasting duration as volunteers decided the number
of fasting days, ranging from 7 to 16 days. Samples were collected at baseline, fasting day 7, last day of
fasting, and last day of refeeding for each participant (Supplementary Figure 2). Fasting was discontinued
based on symptom stabilization, patient request, or medical necessity. Gradual refeeding began post-
fasting, starting with juice consumption on the first day, gradually introducing solid, whole-plant foods
without added sugar, oil, and salt. Moderate exercise was reintroduced gradually, with clinicians providing

twice-daily monitoring during the refeeding phase.

METHOD DETAILS

Anthropometrics. Anthropometric measurements included height, measured without shoes to the
nearest 0.1 cm, and body weight, obtained on a balance scale in the morning after a 12-hour fast. Body
Mass Index (BMI) was calculated by dividing body weight (in kilograms) by the square of height (in meters).
Waist circumference was measured to the nearest 0.1 cm at the iliac crest level during minimal

respiration.

Blood analyses. Venous blood was sampled after an overnight fast, and processed for storage at —80°C.
The Core Laboratory for Clinical Studies at Washington University in St. Louis analyzed all serum samples.
Technicians, unaware of the timepoint assignment, conducted assessments. High-sensitivity C-reactive
protein (hsCRP) was measured using a particle-enhanced immunoturbidimetric assay (Roche cobas c501).
Commercial Enzyme-Linked Immunosorbent Assay (ELISA) Quantikine kits (R&D System Inc, Minneapolis,

MN) were used for measuring other hormones.

Proteomics. Blood proteome was conducted on a subset of 15 individuals arbitrarily selected using the
SOMAScan protein array platform at baseline (BL), during fasting (day 7 and end of fasting (EF)), and after
refeeding (ER). Plasma samples were processed by Somalogics technicians following recommended
standard protocols for SOMAScan Assay Human Plasma, as described elsewhere.(49, 50) A SOMAScan
Quality Statement was provided for normalization and calibration. The assay profiled 1,317 protein

analytes.
Plasma AB42 and AB40 quantitation. This immunoprecipitation liquid chromatography-tandem mass

spectrometry (IP-LC-MS/MS) assay has been clinically and analytically validated (15-17, 19) and is

performed in a CLIA-certified, CAP-accredited, ISO 13485-compliant laboratory at C;N Diagnostics (St.
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Louis, MO, USA). Briefly, plasma samples are spiked with known quantities of stable isotope labeled
internal standard AP42 and AP40 proteins (r-Peptide, Watkinsville, GA), plasma AR isoforms are
immunoprecipitated, enzymatically digested into AB42- and AB40-specific peptides that are separated
using micro-flow liquid chromatography (Waters Corp., Milford, MA, USA), and sprayed into the source of
a Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Waltham, MA). Fragment ions formed from
endogenous and exogenous AB42 and AB40 peptides are monitored, their peak areas are quantified and
compared to the same peak areas monitored in a series of four calibrators formulated in human serum
albumin, processed and analysed (as above) in parallel with the human plasma samples. In plasma, the
peak area ratios for endogenous and internal standard peptides are compared to the same for the
calibration standard curve, and plasma AB42 and AB40 concentrations are obtained from the respective
standard curve. Plasma AB42/40 ratio is calculated by dividing the plasma AB42 concentration by the
AB40 concentration (both in pg/mL).

Urine measurements. The 11-dehydro-thromboxane(TX)B, is one of the major urinary enzymatic
metabolite of TXA,/TXB, in humans and an index of in vivo platelet activation(22). The urinary 8-iso-
prostaglandin (PG)F,, is @ non-enzymatic, oxidation product of arachidonic acid and an in vivo biomarker
of lipid peroxidation(51). Briefly, urine samples were thawed, centrifuged, 2000 cpm of 3H-PGE, (3.70-
6.86 TBg/mmol, Perkin Elmer, Boston, USA) were added to 1 mL-urine samples that were loaded ontoa 1
mL/50 mg C18 column (BakerbondTM-spe, J.T.Baker, Gliwice, Poland) and eluted with 2.5 mL of
isooctane/ethyl acetate (1:1, vol/vol). The eluate was then transferred to a 1 mL/100 mg SiOH column
(BakerbondTM-spe, J.T.Baker) and eluted with 2 mL of ethyl acetate/methanol (60:40, vol/vol), dried and
resuspended in 1 mL of PBS/0.1% BSA buffer for subsequent immunoassay and recovery count.
Biomarkers were measured with a standard ELISA as previously described(52) using specific
antibodies(53). Urinary creatinine was measured with a commercial kit (Creatinine Colorimetric Detection
Kit; Enzo Life Sciences, Farmingdale, NY). The final value of each biomarker was corrected for the

percentage of recovery based on the *H-PGE, cpm and expressed as pg/mg of creatinine.

Buchinger-Wilhelmi Clinic study participants. The Buchinger-Wilhelmi Clinic (BWC) study, as outlined by
Wilhelmi de Toledo et al. in 2019,(5) involved 1422 participants aged 18-99 years. Ethics approval for the
original study (German Clinical Trials Register ID: DRKS00010111) was obtained by Wilhelmi de Toledo et
al., with approval granted by the medical council of Baden-Wirttemberg and the Ethics Committee of the

Charité-University Medical Center, Berlin. The original study was performed following the Declaration of
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Helsinki and written informed consent was obtained from participants. The individuals, without
predefined contraindications to Buchinger fasting, voluntarily joined the clinic for preventive or
therapeutic fasting. Fasting durations ranged from 4 to 21 days, with participants categorized into fasting
lengths of 5, 10, 15, and 20 days for analysis. Fasting guidelines included a daily intake of 200-250 kcal
and 25-35 g of carbohydrates, obtained from fruit juice and vegetable soup, along with 3 liters of water
or non-caloric herbal teas. This study independently analyzed published, publicly available data from the

original study.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis. The SOMAScan proteomics dataset included N = 15 participants at baseline, fasting
day 7, and last day of fasting and refeeding. All other assays reported in this manuscript included N = 20
participants. Statistical analyses for all variables were performed using pairwise differences between
baseline, fasting (either day 7 or last day of fasting), and last day of refeeding assessed using Student’s t-
test (2 timepoints, normal data), Wilcoxon signed-rank test (non-normally distributed data), and one-way
ANOVA (3 timepoints). Changes were expressed as absolute quantities, relative quantities normalized to
baseline, or fold-change (FC) relative to baseline. All statistical tests were two-tailed, and significance was
considered at adjusted p-value < 0.05, unless specified otherwise. The same statistical approach was
applied to analyze data from the previously published Buchinger-Wilhelmi cohort. Data were analyzed
and visualizations were produced with GraphPad Prism (version 10), QIAGEN IPA (QIAGEN Inc.,

https://digitalinsights.qiagen.com/IPA, accessed October 2024), FunRich: Functional Enrichment analysis

tool (version 3.1.4, FunRich :: Functional Enrichment Analysis Tool :: Home), and Excel.

The correlation between BHB, CRP, and vWF with the circulating SOMAScan proteome was examined
using mixed-effect regression models for longitudinal data, with individuals as the random effect. A False
Discovery Rate (FDR) correction for multiple testing was applied to control for the type | error rate.
Pathway enrichment analyses utilized the pathfindR package,(54) mapping significant (p < 0.01) proteins
into active sub-networks based on the reference protein-protein interaction database. The active
subnetworks were filtered based on the number of significant genes and their interaction likelihood
scores. Finally, the list of subnetworks was used as the input for the enrichment analyses. We used the
BioGrid (https://thebiogrid.org/) database as the reference for protein-protein interactions, and the KEGG
database (https://www.genome.jp/kegg/) for biological pathways. We defined pathways with FDR-
adjusted p < 0.01 as statistically significant. All analyses and graphs were performed using the open-source

R software version 4.2.1 and RStudio.
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Ingenuity Pathway Analysis. Alterations in canonical pathways were generated with IPA software
(QIAGEN Inc., https://www.giagenbio informatics.com/products/ingenuity-pathway-analysis, October
2024) using the SOMAScan proteomics dataset as an input (n = 1,317 proteins), including protein
identifiers (Uniprot), fold-changes (fasting/baseline), and adjusted p-values. IPA mapped 1,255 entities
(1,255/1,317 = 95%) that were analyzed using Core Analysis Expression Analysis based on log2(FC) values.
The adjusted p-value cutoff was 0.05, producing 82 analysis-ready molecules (71 downregulated and 11
upregulated). The full list of significantly altered canonical pathways and details of synaptogenesis and

amyloid fiber formation are presented in Supplementary Material.

Reactome pathway analysis. Alterations in Reactome pathways were generated with FunRich software

(FunRich :: Functional Enrichment Analysis Tool :: Home, October 2024) using the SOMAScan proteomics

dataset (n = 1,255 proteins) as an input, including protein identifiers (Uniprot), fold-changes
(fasting/baseline), and adjusted p-values. The Reactome pathways database mapped 1,081 proteins and
calculated the percentage of proteins per pathway (No. of genes in the dataset divided by No. of genes in

the Uniprot background dataset) and the -log10(adjusted p-value). Significance threshold < 0.05.
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P-value

Baseline Fasting P-value  Refeeding (Refeedin
Mean SD Mean  SD (Fastingvs  Mean SD s g
Baseline) Baseline)

Sex, Female (%) 11 (55%) - - - - - - -
Age (years) 52.2 11.8 - - - - - -
Height (cm) 173.4 10.8 - - - - -
Weight (kg) 866 206 800 195 <0.0001 80.5 189  <0.0001

BMI (kg/m2) 28.8 6.4 26.6 6.2 <0.0001 26.7 6.0 <0.0001
Waist (cm) 96.4 12.7 90.6 12.9 <0.0001 90.7 11.7 <0.0001

DPB (mmHg) 72.1 8.7 64.5 6.7 0.0030 67.7 7.3 0.1857

SBP (mmHg) 1239 10.2 118.1 12.4 0.0301 116.8 12.1 0.0296
R-hydroxybutyrate (mmol/L) 0.6 0.9 5.0 1.0 <0.0001 0.4 0.3 0.6215
Glucose (mg/dL) 85.7 104 70.3 10.5 0.0002 92.8 9.7 0.0155

HOMA-IR 1.7 15 0.8 11 0.0006 2.2 14 0.0266

C-reactive protein (mg/dL) 1.7 15 3.9 3.8 0.0004 34 9.9 0.6542
Total cholesterol (mg/dL) 192.0 335 216.6 478 0.0327 168.2 345 0.0006
HDL cholesterol (mg/dL) 56.8 19.2 47.8 12.3 0.0015 44.6 10.9 0.0007
Triglycerides (mg/dl) ~ 102.8 462 1254 374 0.0745 1352 472 0.0008

LDL cholesterol (mg/dL) 108.4 374 1316 555 0.0898 96.7 304 0.041
Non-HDL cholesterol (mg/dL) 135.3 34.0 168.8 479 0.0061 123.6 335 0.0523
Total cholesterol:HDL ratio 3.8 15 4.8 1.5 0.0024 4.0 1.1 0.6152
ALT (1U/L) 21.9 114 35.9 20.3 0.0003 34.4 194 0.0006

AST (1U/L) 22.8 8.5 37.6 17.2 <0.0001 31.5 17.9 0.0350

Table 1.
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Prolonged water-only fasting induces weight loss, metabolic ketosis, and enhances lipid
metabolism in volunteers.

Prolonged fasting reduces circulating amyloid beta proteins, a key component of brain amyloid
plaques.

Prolonged fasting triggers inflammation and platelet activation, potentially impacting
cardiometabolic health.
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