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Prolonged fasting (PF), defined as abstaining from energy intake for ≥4 consecutive days, has gained 32 

interest as a potential health intervention. However, the biological effects of PF on the plasma proteome 33 

are not well understood. In this study, we investigated the effects of a medically supervised water-only 34 

fast (mean duration: 9.8 ± 3.1 days), followed by 5.3 ± 2.4 days of guided refeeding, in 20 middle-aged 35 

volunteers (mean age: 52.2 ± 11.8 years; BMI: 28.8 ± 6.4 kg/m²). Fasting resulted in a 7.7% mean weight 36 

loss and significant increases in serum beta-hydroxybutyrate (BHB), confirming adherence. Untargeted 37 

high-dimensional plasma proteomics (SOMAScan, 1,317 proteins) revealed multiple adaptations to PF, 38 

including preservation of skeletal muscle and bone, enhanced lysosomal biogenesis, increased lipid 39 

metabolism via PPARα signaling, and reduced amyloid fiber formation. Notably, PF significantly reduced 40 

circulating amyloid beta proteins Aβ40 and Aβ42, key components of brain amyloid plaques. In addition, 41 

PF induced an acute inflammatory response, characterized by elevated plasma C-reactive protein (CRP), 42 

hepcidin, midkine, and interleukin 8 (IL-8), among others. A retrospective cohort analysis of 1,422 43 

individuals undergoing modified fasting confirmed increased CRP levels (from 2.8 ± 0.1 to 4.3 ± 0.2 mg/L). 44 

The acute phase response, associated with transforming growth factor (TGF)-β signaling, was 45 

accompanied by increased platelet degranulation and upregulation of the complement and coagulation 46 

cascade, validated by ELISAs in blood and urine. While the acute inflammatory response during PF may 47 

serve as a transient adaptive mechanism, it raises concerns regarding potential cardiometabolic effects 48 

that could persist after refeeding. Further investigation is warranted to elucidate the long-term molecular 49 

and clinical implications of PF across diverse populations. 50 

 51 

INTRODUCTION  52 

Prolonged fasting (PF), defined as abstaining from energy intake for ≥4 consecutive days(1), has been 53 

practiced throughout history for cultural, spiritual, and health-related reasons. Recently, it has gained 54 

renewed attention as a potential intervention to promote health and longevity by mitigating cellular 55 

aging, reducing inflammation, and lowering the risk of cardiovascular disease and cancer.(2, 3) However, 56 

the systemic biological adaptations to PF and its effects on inflammation remain unclear. Advances in 57 

high-throughput proteomics now enable the simultaneous measurement of thousands of plasma proteins 58 

with high specificity, providing a unique opportunity to investigate molecular adaptations to fasting and 59 

refeeding. Such an approach addresses the limitations of earlier studies, which were constrained to 60 

examining only a small number of specific preselected proteins. 61 

In this study, we examined 20 volunteers attending a fasting clinic before, during, and after an average 62 

10-day water-only fast, followed by an average of 5 days of supervised refeeding with a plant-based diet. 63 
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Using untargeted plasma proteomics with SOMAScan, we identified both potential benefits and 64 

drawbacks of PF and refeeding at the molecular level. PF triggered a significant shift in 6.6% of the plasma 65 

proteome; however, less than 1% of these proteins remained significantly altered after refeeding, 66 

supporting a transient effect. Contrary to our hypothesis, the primary outcome was a significant increase 67 

in inflammation and cytokine signaling via TGF-β, confirming that PF elevates inflammation. Additionally, 68 

we observed alterations in neutrophil and platelet degranulation, along with well-documented changes 69 

in IGF and PPARα signaling, key regulators of growth and lipid metabolism, respectively. Limited nutrient 70 

availability activated the PTEN, STAT3, and MAPK pathways, critical signal transducers that regulate cell 71 

proliferation in response to external stimuli. Notably, this study is the first to report that PF significantly 72 

reduced amyloid fiber formation and lowered circulating amyloid beta proteins Aβ40 and Aβ42, even 73 

though it did not affect their ratio. The findings were validated through targeted mass spectrometry and 74 

ELISAs in blood and urine samples, as well as in two external cohorts undergoing similar PF regimens. 75 

While PF is commonly associated with health benefits such as weight loss, our findings suggest its effects 76 

are more complex and multifaceted, with potential physiological benefits and drawbacks that require an 77 

individualized approach to fasting interventions. 78 

 79 

RESULTS 80 

We recruited 20 middle-aged volunteers (mean age: 52.2 ± 11.8 years; mean BMI: 28.8 ± 6.4 kg/m²), 81 

including 11 women and 9 men. Participants were approached by the study team at TrueNorth Health 82 

Center, a facility offering medically supervised fasting. The study team operated independently from the 83 

Center. Volunteers followed a fasting and refeeding regimen, consisting of an average 9.8 ± 3.1-day water-84 

only fast, followed by an average 5.3 ± 2.4 days of guided refeeding (Methods). Both fasting and refeeding 85 

procedures were based on previously established protocols.(4, 5) Blood and urine samples were collected 86 

between 6 and 8 am to minimize diurnal variability, processed immediately, and stored at -80°C for 87 

analysis. We conducted an untargeted high-dimensional proteomic analysis using SOMAScan, measuring 88 

plasma levels of 1,317 proteins. (6) In addition, targeted mass spectrometry and ELISAs were employed 89 

to quantify specific biomarkers in blood and urine. The results were compared with two independent 90 

datasets of PF and modified fasting in humans, from Pietzner et al. (2024) and Wilhelmi de Toledo et al. 91 

(2019). 92 

At baseline, the average body weight of the volunteers was 85.6 ± 25.6 kg in women and 87.9 ± 15.4 kg in 93 

men. By the end of the fasting period, participants experienced significant weight loss, with women losing 94 

6.3 ± 1.7 kg and men losing 6.9 ± 2.2 kg (p < 0.0001), corresponding to reductions of 7.6% and 7.8% of 95 
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baseline body weight, respectively. BMI decreased by an average of 2.2 ± 0.5 kg/m² (p < 0.0001), a 96 

fractional decrease of 7.6%, while waist circumference was reduced by 6% (p < 0.0001). These reductions 97 

in body weight, BMI, and waist circumference persisted through the refeeding period (Table 1). Mild 98 

adverse events were common, including headaches, weakness, fatigue, insomnia, dry mouth, and 99 

orthostatic hypotension (Fig S1), prompting the transition to a broth and/or juice fast in six participants. 100 

Other adverse events included severe abdominal pain and diarrhea (n=1), hypokalemia (n=1), arrhythmias 101 

(n=1), and dizziness and palpitations (n=1). When feasible, blood and urine samples collected before this 102 

transition were used for analysis (Fig S2). Adherence was high, with all participants exhibiting a 103 

physiological fasting response, as evidenced by significantly elevated serum beta-hydroxybutyrate (BHB) 104 

concentrations (p < 0.0001), which normalized during refeeding (Table 1). The fasting-induced increase in 105 

BHB and its normalization with refeeding were significantly correlated with changes in inflammatory 106 

markers (midkine and IL-8), metabolic regulators (FGF19, leptin receptor, chemerin, growth hormone 107 

receptor), and MAPK signaling, a crucial mediator of cell proliferation (Fig S3). 108 

 109 

Proteomics adaptations to prolonged fasting in humans 110 

We found that 6.6% of protein targets (n = 86/1317) exhibited significant changes by the end of fasting 111 

(adjusted p < 0.05), with 74 proteins decreasing and 12 increasing (Figure 1A). However, after five days of 112 

gradual refeeding, only 12 proteins (<1%) remained significantly altered, indicating that most fasting-113 

induced proteomic changes are transient. The most significantly reduced proteins included key regulators 114 

of muscle homeostasis, such as inhibin beta A (INHBA, -3.3 fold, adjusted p = 9.07E-05), myostatin (-2 fold, 115 

adjusted p = 0.000466), and GDF11/8 (-1.6 fold, adjusted p = 0.000757), all members of the TGF-β 116 

superfamily (Figure 1B). These proteins are vital for muscle regulation, likely reflecting the body's adaptive 117 

response to fasting, balancing muscle preservation with tissue repair during nutrient deprivation.(7) 118 

Interestingly, inhibiting GDF11 and myostatin has been linked to increased bone density and strength 119 

through enhanced osteoblast activity and suppressed osteoclastogenesis.(8, 9) Consistent with this, 120 

plasma parathyroid hormone (PTH) levels decreased by 2.1-fold (adjusted p = 0.0045), suggesting a 121 

compensatory hormonal adjustment during fasting to slow bone loss. Under conditions of energy 122 

deprivation, the insulin-sensitizing adipokine adiponectin also decreased from 5643 ± 3282 ng/mL to 4275 123 

± 2519 ng/mL (p < 0.0001) (Figure 1C). 124 

 125 

In contrast, proteins involved in energy, glucose, and bile acid metabolism significantly increased, with 126 

PPARα emerging as a key activated pathway (Figure 1D, Fig S4). Regulated by free fatty acids, PPARα 127 
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drives hepatic lipid metabolism and ketogenesis, a vital fasting adaptation. Another major fasting-128 

activated pathway was the CLEAR (Coordinated Lysosomal Expression and Regulation) network, which 129 

governs lysosomal biogenesis and function. This pathway is crucial for autophagy and exocytosis, both 130 

essential for cellular maintenance and adaptation to nutrient scarcity. The gut hormone FGF19 also 131 

increased 1.8-fold (adjusted p = 0.048) (Figure 1B), playing a crucial role in energy metabolism by 132 

regulating bile acid synthesis, enhancing glucose utilization, and promoting hepatocyte proliferation.(10) 133 

In addition, the soluble leptin receptor increased significantly (2.2-fold, adjusted p = 0.002), facilitating 134 

appetite regulation by regulating leptin bioavailability in the bloodstream.(11, 12) The significant 135 

increases in FGF19 and the soluble leptin receptor were previously reported in an independent cohort 136 

undergoing a 7-day water-only fast by Pietzner et al. (2024). (13) This comparative cohort of 12 137 

participants experienced an average weight loss of 5.7±0.8 kg, representing a 7.4% reduction in baseline 138 

body weight. Comparative proteomics analysis of both cohorts at the 7-day endpoint identified an overlap 139 

of 44 significantly decreased and 5 significantly increased proteins, with no discrepancies between studies 140 

(Fig S5). Despite methodological differences (Olink vs. SOMAScan), Reactome pathway enrichment 141 

analysis revealed that most altered pathways were common to both datasets, particularly those related 142 

to neutrophil and platelet degranulation, as well as interleukin, MAPK, and PI3K/AKT signaling (Fig S6). 143 

The findings highlight the highly conserved and universal nature of the physiological response to water-144 

only PF. 145 

 146 

Additionally, PF was associated with a reduction in synaptogenesis pathways and amyloid fibril formation 147 

(Figure 1D, Fig S4). An increasing trend in brain-derived neurotrophic factor (BDNF) levels was observed 148 

(1.32-fold, adjusted p = 0.18), which may support previous evidence of fasting’s neuroprotective 149 

effects.(14) While the predicted decrease in fibrillar formation was not specific to amyloid beta proteins, 150 

we hypothesize that it could reflect lower circulating amyloid beta levels. To investigate this, plasma levels 151 

of amyloid beta (Aβ) 42, 40, and the Aβ42/Aβ40 ratio - a diagnostic biomarker for brain amyloid plaques 152 

(15)- were measured using mass spectrometry. (16, 17) Interestingly, PF significantly reduced plasma 153 

concentrations of both Aβ42 and Aβ40 (Figure 1E-G), suggesting either a decreased production rate or 154 

accelerated degradation of these amyloid peptides during fasting, with levels returning to baseline after 155 

refeeding. Even though the reduction in individual Aβ components may have potential beneficial 156 

implications for amyloidosis, the Aβ42/Aβ40 ratio, which is the validated biomarker used clinically to 157 

identify individuals with brain amyloid plaques (18, 19), remained unchanged. 158 

  159 
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Prolonged fasting increases inflammation 160 

The primary outcome of our study was inflammation. SOMAScan plasma proteomics analysis revealed 161 

significant increases in well-established inflammatory markers, including hepcidin, ferritin, midkine, 162 

matrix metalloproteinase 9, IL-8, and platelet-activating factor acetylhydrolase (PAFAH or PLA2G7) (Figure 163 

2A-B). Contrary to our initial hypothesis that fasting would exert an anti-inflammatory effect, PF led to a 164 

pronounced 129% increase in circulating high-sensitivity C-reactive protein (hsCRP) levels measured by 165 

ELISA (Wilcoxon’s p = 0.0004, ANOVA p = 0.0070), with levels returning to baseline after refeeding in all 166 

but one participant (Table 1, Figure 2C). The significant rise in hsCRP was positively correlated with C5 167 

(involved in inflammation) and LILRB2 (regulating inflammation and axonal regeneration), and negatively 168 

associated with PCI (SERPINA5), hemojuvelin, and MED1 (adipogenesis) (Figure 2D). At the pathway level, 169 

CRP was significantly associated with the TGF-β signaling pathway and the complement and coagulation 170 

cascade (Figure 2E), suggesting that PF may activate the innate immune response through inflammation. 171 

To validate these findings in a broader population, we retrospectively analyzed data from 1,422 individuals 172 

who underwent medically supervised modified fasting at the Buchinger-Wilhelmi Clinic in Germany.(5)  In 173 

this comparative cohort, the average fasting duration was 8.2 ± 0.1 days, with an average weight loss of 174 

4.3 ± 2.0 kg. Notably, 66.6% of participants experienced a significant increase in plasma CRP levels (Figure 175 

2F), confirming the acute inflammatory effect of PF across a larger cohort. Importantly, this increase in 176 

CRP was observed regardless of fasting duration (5, 10, 15, or 20 days). 177 

 178 

We also observed a significant increase in liver transaminases AST and ALT during fasting, with levels rising 179 

by 65% and 64%, respectively, and remaining elevated during refeeding (Table 1). This elevation in liver 180 

enzymes, indicative of hepatic stress, was also observed in the Buchinger-Wilhelmi Clinic validation cohort 181 

(Fig S7). The concurrent rise in liver enzymes and inflammatory markers highlights the need for medical 182 

monitoring of individuals undergoing PF interventions. 183 

 184 

Fasting and refeeding elevate biomarkers of platelet activation and degranulation 185 

An unexpected finding was the observed increase in biomarkers and pathways associated with platelet 186 

activity during PF (Figure 3). Reactome pathway enrichment analysis of the SOMAScan data revealed that 187 

PF influenced platelet degranulation, a process that facilitates thrombin generation by releasing 188 

fibrinogen and von Willebrand factor (vWF) from alpha granules at injury sites.(20) Even though 189 

prothrombin levels remained unchanged (1-fold, adjusted p = 0.85), vWF and its receptor, soluble 190 

glycoprotein Ib alpha (GP1Bα), were mildly increased (Figure 3A), correlating with elevated chemokines 191 
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(e.g., IL-8, CCL7, CCL11) (Figure 3B). To confirm platelet degranulation, we measured urinary 11-dehydro-192 

TXB2 levels via ELISA, an enzymatic product in the TXA2/TXB2 pathway primarily derived from activated 193 

platelets via cyclooxygenase-1 activity. Surprisingly, 11-dehydro-TXB2 levels rose by 21% during fasting 194 

and 36% post-refeeding (Figure 3C), with no change in platelet counts (Figure 3D), indicating that 195 

increased degranulation, rather than heightened platelet production, drove the effect.(21) Urinary 11-196 

dehydro-TXB2 is a gold standard biomarker of platelet activation and cardiovascular risk.(22) The 197 

Framingham study highlights its predictive value for all-cause mortality, cardiovascular death, and major 198 

arterial events.(23) In the ASCEND trial, it was significantly associated with future vascular events in nearly 199 

8,000 diabetic participants.(24, 25) Therefore, our findings reveal a PF-induced phenotype characterized 200 

by interconnected inflammation and platelet activation, potentially affecting thrombotic risk in individuals 201 

with pre-existing conditions. 202 

 203 

Prolonged fasting affects cardiometabolic biomarkers 204 

In our study, PF induced significant changes in lipid profiles, including increases in plasma total cholesterol, 205 

non-HDL cholesterol, LDL cholesterol, and the total cholesterol/HDL ratio, all of which reversed after 206 

refeeding (Table 1). Plasma triglycerides steadily increased, peaking with a 32% rise post-refeeding. 207 

Proteomics analysis revealed a significant 1.49-fold reduction in proprotein convertase subtilisin/kexin 208 

type 9 (PCSK9) (adjusted p = 0.008) at the end of fasting (Figure 1B). This reduction likely decreased PCSK9 209 

binding to LDL receptors, thereby preventing their degradation in liver cells.(26)  210 

 211 

In addition to lipid changes, serum glucose levels decreased from 85.7 mg/dL to 70.3 mg/dL (18%) during 212 

fasting (Table 1), reflecting the rewiring of whole-body metabolism upon depletion of glucose stores. 213 

Similarly, the adipokines chemerin (-1.7-fold, adjusted p = 0.0002) and fetuin B (FETUB) (-1.8-fold, 214 

adjusted p = 6.05E-05) were also decreased (Figure 1A-B).(25, 26) During refeeding, glucose levels and 215 

HOMA-IR, an indicator of insulin resistance, increased significantly, reflecting enhanced glucose 216 

availability with the reintroduction of food. 217 

 218 

Fasting and refeeding do not induce systemic changes in oxidation status 219 

While fasting has been suggested to reduce oxidative stress in animal models (27), our proteomic analysis 220 

revealed a decrease in superoxide dismutase 3 (SOD3) levels (-1.3-fold, adjusted p = 0.003), an 221 

extracellular antioxidant enzyme crucial for redox balance. Additionally, the expected improvements in in 222 

vivo oxidation status were not observed. Using the validated urinary biomarker of lipid oxidation 8-iso-223 
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prostaglandin F2α (25, 28), we found a heterogeneous oxidative response to fasting and refeeding. The 224 

result suggests that PF does not universally reduce oxidative stress in humans (Fig S8). 225 

 226 

DISCUSSION 227 

Throughout human evolution, extended periods of food scarcity were common, shaping metabolic 228 

flexibility as a survival mechanism. In the context of the global obesity epidemic, fasting has resurged as 229 

a popular, sometimes extreme, weight-loss strategy. (2, 29)  However, the body’s adaptations to PF and 230 

its potential health effects remain poorly understood. Our study offers a comprehensive proteomic 231 

analysis of the responses to PF and refeeding, uncovering both beneficial and potentially detrimental 232 

effects. Consistent with previous research (13), we uncovered changes in multiple proteins involved in 233 

skeletal muscle and bone homeostasis (INHBA, myostatin, GDF11/8, PTH). Interestingly, exogenous 234 

GDF11 has been shown to function as a calorie restriction mimetic in mice, stimulating adiponectin 235 

secretion and improving insulin sensitivity(30). The acute inflammatory response triggered by PF warrants 236 

further investigation to clarify its clinical significance, and it is consistent with a clinical study 237 

demonstrating that a 10-day water-only fast triggers an inflammatory transcriptional signature in adipose 238 

tissue.(31) In our study, inflammation was accompanied by evidence of platelet degranulation, raising 239 

concerns as elevated urinary TXB2 has been linked to accelerated atherogenesis and increased 240 

cardiovascular risk.(24, 32) The inflammatory profile characterized by elevated hsCRP, IL-8, and activation 241 

of TGF-β and complement pathways resembles the hallmark features of trained immunity (33), suggesting 242 

that PF may serve as an endogenous trigger for this adaptive immune mechanism. However, the immune 243 

effects of PF are complex and context-dependent, with evidence supporting fasting-induced modulation 244 

of immunosenescence and immune response during immunotherapy.(34-37) 245 

 246 

Prior studies of the adipose tissue transcriptome have linked inflammatory pathways to insulin 247 

resistance.(38-40) Consistently, our data show that PF is associated with elevated HOMA-IR. Additionally, 248 

increased triglycerides and liver transaminases suggest that prolonged nutrient deprivation, unlike 249 

moderate calorie restriction, may disrupt lipoprotein metabolism and liver function (41-44). 250 

 251 

Furthermore, this study is the first to demonstrate that PF  lowers plasma Aβ42 and Aβ40, key components 252 

of amyloid plaques implicated in Alzheimer's disease pathology.(45) These findings suggest that nutrient 253 

deprivation alters amyloid precursor protein (APP) expression or processing, influencing either the 254 

production or clearance of plasma Aβ42 and Aβ40. Importantly, PF did not affect the Aβ42/40 ratio, a 255 
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validated biomarker for brain amyloid plaques (18). This supports the notion that the Aβ42/40 ratio, 256 

rather than individual concentrations, is a robust biomarker, as it accounts for inter-individual variability 257 

in pre-analytical conditions (46) and presence of comorbidities.(47)  258 

 259 

Our study has several strengths and limitations. Strengths include the use of two methodologies (mass 260 

spectrometry and ELISA) across biological samples (plasma and urine), which yielded consistent findings. 261 

Multiple biomarkers were assessed in an untargeted approach, reducing reliance on a single marker, and 262 

results were validated in two independent cohorts. Limitations include the single-arm design with a lack 263 

of control group, the small sample size, and the variability in fasting and refeeding durations decided by 264 

the volunteers. 265 

 266 

In summary, our study reveals a multifaceted proteomic response to PF, extending beyond the traditional 267 

adipose-centric or energy homeostasis framework. We identified elevated biomarkers related to muscle 268 

and bone preservation, reduced amyloid formation, increased inflammation and platelet activity, and lipid 269 

metabolism. By conducting a comparative analysis in an independent cohort, we identify a universal 270 

signature of the physiological response to water-only PF, observing no differences between studies 271 

despite variations in cohort characteristics and methodology. However, we also observed substantial 272 

inter-individual variability at the molecular level, emphasizing the need for personalized fasting regimens. 273 

In contrast, oxidation status remained unchanged, with no evidence of antioxidant effects. The acute 274 

inflammatory response, also observed in an independent cohort, may reflect a positive adaptive 275 

mechanism. However, it also raises concerns about a potentially adverse cardiometabolic phenotype, 276 

particularly for individuals with thrombotic conditions or unstable atherosclerotic plaques. This mirrors 277 

data from exercise interventions, where acute vigorous physical activity can transiently increase 278 

cardiovascular risk, particularly in untrained individuals or those with underlying conditions. However, 279 

with appropriate progressive training, long-term beneficial adaptations occur, leading to reduced 280 

cardiovascular mortality.(48) Unlike exercise, where dose-response relationships and adaptations are 281 

well-established, our understanding of how repeated PF bouts impact long-term molecular, metabolic, 282 

and clinical outcomes remains limited, highlighting the need for further research. 283 

 284 

Resource availability: All data are presented in the manuscript and supplementary materials, and are 285 

available upon reasonable request to the corresponding author. 286 
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 307 

FIGURE LEGENDS 308 

 309 

Table 1. Anthropometric measures and cardiometabolic effects of prolonged fasting in humans. Data 310 

expressed as mean ± SD. Statistical significance was calculated using paired, 2-tailed Student’s t or 311 

Wilcoxon signed rank test for non-normally distributed data. N = 20 participants, except for cholesterol 312 

measurements and triglycerides (N = 19). Significance levels are indicated as p-values. 313 

  314 

Figure 1. Proteomics adaptations to prolonged fasting in humans. (A) Volcano plot of differentially 315 

expressed SOMAScan plasma proteins during fasting from N = 15 participants. Significance cut-off 316 

adjusted p < 0.05. FC = End of Fasting / Baseline. (B) Individual changes in highlighted proteins from (A) 317 

normalized to baseline during fasting and refeeding. Each dot represents protein levels in each participant 318 

(N = 15). Adjusted p-value calculated with one-way ANOVA. (C) Absolute levels of plasma adiponectin 319 
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measured by ELISA across three time points. Each dot represents levels in each participant (N = 20). (D) 320 

Volcano plot of differentially enriched canonical pathways in IPA with predicted activation (orange) or 321 

inhibition (blue). Input = 1,255 mapped SOMAScan proteins from (A). (E-F-G) Absolute levels of plasma 322 

Aβ42, Aβ40, and their ratio measured by IP-LC-MS/MS across three timepoints. N = 20 participants. 323 

Statistical analysis is described in the Methods for each analysis. Significance levels are indicated as 324 

adjusted p-values, *p < 0.05, **p < 0.01, and ***p < 0.001. For all graphs, BL = Baseline, EF = End of Fasting, 325 

ER = End of Refeeding. 326 

  327 

Figure 2. Prolonged fasting increases inflammation. (A) All significantly upregulated SOMAScan proteins 328 

(n = 12) during fasting normalized to baseline (targets from volcano plot in Figure 2A). Pro-inflammatory 329 

proteins are shown with light red background. N = 15 participants. FC = End of Fasting / Baseline (B) 330 

Individual changes in 6 inflammatory proteins from panel A during fasting and refeeding. Each dot 331 

represents protein levels in each participant. (C) Absolute hsCRP levels in the blood of each participant (N 332 

= 20) measured by ELISA across three time points. (D) Significantly correlated proteomic targets to CRP 333 

changes during fasting and refeeding (positive effect size = same changes; negative effect size = inverse 334 

changes). (E) Significantly enriched KEGG pathways relative to CRP changes. (F) Validation of CRP changes 335 

in an independent fasting cohort of 1,422 participants. Measurements of weight and CRP at baseline (BL, 336 

blue) and end of fasting (EF, orange) timepoints. The same variables are plotted by fasting length category. 337 

5d = 5 day fast, 10d = 10 day fast, 15d = 15 day fast, 20d = 20 day fast. Median, interquartile range, and 338 

outliers are shown, with notches representing the 95% confidence intervals. Statistical analysis is 339 

described in the Methods for each analysis. Significance levels are indicated as adjusted p-values, *p < 340 

0.05, **p < 0.01, and ***p < 0.001. For all graphs, BL = Baseline, EF = End of Fasting, ER = End of Refeeding. 341 

  342 

Figure 3. Fasting and refeeding elevate biomarkers of platelet activation and degranulation. (A) 343 

Individual changes in 4 platelet-associated proteins from SOMAScan normalized to baseline during fasting 344 

and refeeding. Each dot represents protein levels in each participant (N = 15). Adjusted p-value calculated 345 

with one-way ANOVA. (B) Volcano plot of vWF (effect size) on all 1,317 SOMAScan proteins during 346 

combined fasting and refeeding. Significance cut-off adjusted p < 0.01. N = 15 participants. (C) KEGG 347 

pathway enrichment analysis for proteins associated with vWF. Fold enrichments in KEGG pathway 348 

analysis are shown relative to fold changes for vWF. (D) Absolute TXB2 levels in the urine of each 349 

participant (N = 20) across three time points. (E) Absolute platelet counts in the blood of each participant 350 

(N = 20) across three time points. Statistical analysis is described in the Methods for each analysis. 351 
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Significance levels are indicated as adjusted p-values, *p < 0.05, **p < 0.01, and ***p < 0.001. For all 352 

graphs, BL = Baseline, EF = End of Fasting, ER = End of Refeeding. 353 

  354 

Supplementary Table 1. Inclusion and exclusion criteria. 355 

 356 

Supplementary Table 2. Medications. 357 

  358 

Supplementary Figure 1. Adverse Events (AEs) during fasting and refeeding. AEs were assessed by a 359 

qualified medical practitioner. 360 

  361 

Supplementary Figure 2. Sample collection time points. Blood and urinary samples were collected at 362 

baseline (BL), End of Fasting (EF), and End of Refeeding (ER) timepoints. Six participants (IDs 1, 6, 7, 12, 363 

13, 21) switched from water-only fasting to juice and/or broth fasting following medical advice. For these 364 

participants, except for ID13, samples for End of Fasting were collected prior to the switch. Three 365 

participants (IDs 8, 14, 20) consumed 1-2 juice and/or vegetable broth during the fast. One participant 366 

(ID5) consumed juice daily during the fast. 367 

 368 

Supplementary Figure 3. BHB association with inflammatory markers and cytokine and MAPK 369 

signalling. Volcano plots of BHB (effect size) on all 1,317 SOMAScan proteomics variables during (A) 370 

fasting and (B) combined fasting and refeeding. Significance cut-off adjusted p < 0.01. N = 15 participants. 371 

(C-D) KEGG pathway enrichment analysis for proteins associated with BHB. Fold enrichments in KEGG 372 

pathway analysis are shown relative to fold changes for BHB. 373 

  374 

Supplementary Figure 4. Full list of IPA canonical pathways. Volcano plot of differentially enriched 375 

canonical pathways with predicted activation (orange) or inhibition (blue) using proteomics input from 376 

Figure 2A. 377 

 378 

Supplementary Figure 5. Comparative proteomics between the SOMAScan dataset and the Olink 379 

dataset by Pietzner et al. (2024). (A) Venn diagram of shared proteins present in both datasets. (B) 380 

Significantly altered proteins in each dataset, according to each study’s statistical methods. (C) List of 381 

significantly altered shared proteins (44 decreased in blue and 5 increased in red). 382 

  383 
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Supplementary Figure 6. Comparative Reactome pathway analysis between the SOMAScan dataset and 384 

the Olink dataset by Pietzner et al. (2024). Reactome pathway analysis comparison between (A) 385 

SOMAScan and (B) Olink proteomics datasets at fasting day 7 using Uniprot as the reference dataset 386 

(accessed October 2024). Pathways are colour matched. BH corrected p-values are shown (grey line). 387 

  388 

Supplementary Figure 7. Hepatic markers during fasting by Wilhelmi de Toledo et al. (2019). Validation 389 

of ALT and AST changes in an independent fasting cohort of 1,422 participants. Measurements of ALT and 390 

AST at baseline (BL, blue) and end of fasting (EF, orange) timepoints. Median, interquartile range, and 391 

outliers are shown, with notches representing the 95% confidence intervals. Statistical analysis is 392 

described in the Methods for each analysis. Significance levels are indicated as adjusted p-values, *p < 393 

0.05, **p < 0.01, and ***p < 0.001. 394 

  395 

Supplementary Figure 8. Oxidative stress and lipid peroxidation status upon prolonged fasting. (A) 396 

SOD3 abundance from SOMAScan proteomics dataset across time points from N = 15 participants. (B) 397 

Absolute 8-iso-prostaglandin F2α levels in the urine of each participant (N = 20) across three timepoints. 398 

Statistical significance was calculated using Wilcoxon signed rank test for non-normally distributed data 399 

for all parameters. Dots represent study participants for all graphs. Significance levels are indicated as p-400 

values. 401 

 402 

STAR METHODS 403 

STUDY PARTICIPANT DETAILS 404 

The study protocol, approved by the institutional review board of the Marin General Hospital, Greenbrae, 405 

CA, USA, received written informed consent from volunteers. The study was performed per the principles 406 

in the Declaration of Helsinki. Volunteers were approached by the study team at TrueNorth Health Center, 407 

a private facility offering medically supervised fasting. The study team operated independently from the 408 

Center. Individuals at the Center were given the opportunity to volunteer for the study, and those 409 

interested were screened for eligibility. Out of 168 individuals screened for eligibility, 33 met the inclusion 410 

criteria, encompassing individuals of both genders, aged 18 or older, with a body mass index (BMI) of ≥ 411 

20 kg/m2. Exclusion criteria included any history of chronic disease, physical or psychiatric conditions, use 412 

of medications incompatible with fasting, or other factors such as alcoholism or life situations that could 413 

interfere with the intervention or compliance (Supplementary Table 1). Twenty participants (N = 20), with 414 

a baseline BMI of 28.8±6.4 kg/m2 (range 21.1-50.3 kg/m2) consented to and commenced the medically 415 
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supervised water-only fasting. Their average age was 52.2±11.8 years (range 31–72 years), with eleven 416 

being women. Detailed baseline characteristics are provided in Table 1. Before the study, ten individuals 417 

were not taking any medications, nine were using medications listed in Supplementary Table 2, and one 418 

used a CPAP at night. All individuals on medications (except volunteer 17, who continued using an 419 

estrogen cream) stopped their medications 1-4 days prior to the fast to allow baseline samples to be 420 

collected after the medication was discontinued. During fasting, two volunteers took medications 421 

prescribed by their doctor (fexofenadine, dichloralphenazone, acetaminophen, isometheptene) as 422 

needed, while 18 volunteers did not. During refeeding, one volunteer took medication (tamsulosin) for 423 

urinary pain. Therefore, the majority of samples were obtained without medication. However, we 424 

acknowledge that the pause in medication intake prior to baseline sample collection could have 425 

influenced the data. Fourteen individuals were non-smokers, five were former smokers, and one was a 426 

current smoker (volunteer 20, who smoked 4-5 times per week for 20 years). The former smokers include 427 

volunteer 04 (smoked for 4 years, 10 cigarettes/day, quit 10 years ago), volunteer 05 (smoked for 6 428 

months, 1-2 cigarettes/day, quit 21 years ago), volunteer 06 (smoked for 10 years, 15 cigarettes/day, quit 429 

19 years ago), volunteer 12 (smoked for 30 years, 10 cigarettes/day, quit 12 years ago), and volunteer 13 430 

(smoked for 20 years, 15 cigarettes/day, quit 40 years ago). The primary objective was to determine 431 

whether PF significantly reduces inflammation, a process deeply involved in the pathogenesis of multiple 432 

age-associated chronic diseases and in the biology of aging itself. The primary outcome measure was 433 

circulating C-reactive protein (CRP) levels and other inflammatory markers at baseline and during fasting 434 

and refeeding phases.  435 

 436 

Medically supervised, water-only fasting and refeeding protocol. The water-only fasting and refeeding 437 

protocol was conducted at TrueNorth Health Center in Santa Rosa, California, a specialized medical facility 438 

for prolonged water-only fasting. The protocol was administered by physicians who thoroughly examined 439 

participants' physical, neurological, and psychological health. However, all the data and measurements 440 

were independently collected by Dr. Serena Commissati from May to December 2017. Participants 441 

underwent a medical history review, urinalysis, complete blood count with differentials, and a 442 

comprehensive metabolic panel. Before fasting, participants consumed a diet of fresh raw fruits and 443 

steamed vegetables for at least two days. During fasting, participants remained at the facility, consuming 444 

a minimum of 1182 mL of water per day. Participants were instructed to avoid strenuous exercise, with 445 

only minimal physical activity (such as light walks and stretching) allowed. Medical staff closely monitored 446 

vital signs and symptoms twice daily, repeating urinalysis and blood tests weekly or as directed. Sample 447 
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collection was optimized to minimize heterogeneity in fasting duration as volunteers decided the number 448 

of fasting days, ranging from 7 to 16 days. Samples were collected at baseline, fasting day 7, last day of 449 

fasting, and last day of refeeding for each participant (Supplementary Figure 2). Fasting was discontinued 450 

based on symptom stabilization, patient request, or medical necessity. Gradual refeeding began post-451 

fasting, starting with juice consumption on the first day, gradually introducing solid, whole-plant foods 452 

without added sugar, oil, and salt. Moderate exercise was reintroduced gradually, with clinicians providing 453 

twice-daily monitoring during the refeeding phase. 454 

 455 

METHOD DETAILS 456 

Anthropometrics. Anthropometric measurements included height, measured without shoes to the 457 

nearest 0.1 cm, and body weight, obtained on a balance scale in the morning after a 12-hour fast. Body 458 

Mass Index (BMI) was calculated by dividing body weight (in kilograms) by the square of height (in meters). 459 

Waist circumference was measured to the nearest 0.1 cm at the iliac crest level during minimal 460 

respiration.  461 

 462 

Blood analyses. Venous blood was sampled after an overnight fast, and processed for storage at –80°C. 463 

The Core Laboratory for Clinical Studies at Washington University in St. Louis analyzed all serum samples. 464 

Technicians, unaware of the timepoint assignment, conducted assessments. High-sensitivity C-reactive 465 

protein (hsCRP) was measured using a particle-enhanced immunoturbidimetric assay (Roche cobas c501). 466 

Commercial Enzyme-Linked Immunosorbent Assay (ELISA) Quantikine kits (R&D System Inc, Minneapolis, 467 

MN) were used for measuring other hormones.  468 

 469 

Proteomics. Blood proteome was conducted on a subset of 15 individuals arbitrarily selected using the 470 

SOMAScan protein array platform at baseline (BL), during fasting (day 7 and end of fasting (EF)), and after 471 

refeeding (ER). Plasma samples were processed by SomaLogics technicians following recommended 472 

standard protocols for SOMAScan Assay Human Plasma, as described elsewhere.(49, 50) A SOMAScan 473 

Quality Statement was provided for normalization and calibration. The assay profiled 1,317 protein 474 

analytes. 475 

 476 

Plasma Aβ42 and Aβ40 quantitation.   This immunoprecipitation liquid chromatography-tandem mass 477 

spectrometry (IP-LC-MS/MS) assay has been clinically and analytically validated (15-17, 19) and is 478 

performed in a CLIA-certified, CAP-accredited, ISO 13485-compliant laboratory at C2N Diagnostics (St. 479 
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Louis, MO, USA).  Briefly, plasma samples are spiked with known quantities of stable isotope labeled 480 

internal standard Aβ42 and Aβ40 proteins (r-Peptide, Watkinsville, GA), plasma Aβ isoforms are 481 

immunoprecipitated, enzymatically digested into Aβ42- and Aβ40-specific peptides that are separated 482 

using micro-flow liquid chromatography (Waters Corp., Milford, MA, USA), and sprayed into the source of 483 

a Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Waltham, MA). Fragment ions formed from 484 

endogenous and exogenous Aβ42 and Aβ40 peptides are monitored, their peak areas are quantified and 485 

compared to the same peak areas monitored in a series of four calibrators formulated in human serum 486 

albumin, processed and analysed (as above) in parallel with the human plasma samples. In plasma, the 487 

peak area ratios for endogenous and internal standard peptides are compared to the same for the 488 

calibration standard curve, and plasma Aβ42 and Aβ40 concentrations are obtained from the respective 489 

standard curve.  Plasma Aβ42/40 ratio is calculated by dividing the plasma Aβ42 concentration by the 490 

Aβ40 concentration (both in pg/mL).  491 

 492 

Urine measurements. The 11-dehydro-thromboxane(TX)B2 is one of the major urinary enzymatic 493 

metabolite of TXA2/TXB2 in humans and an index of in vivo platelet activation(22). The urinary 8-iso-494 

prostaglandin (PG)F2α is a non-enzymatic, oxidation product of arachidonic acid and an in vivo biomarker 495 

of lipid peroxidation(51). Briefly, urine samples were thawed, centrifuged, 2000 cpm of 3H-PGE2 (3.70-496 

6.86 TBq/mmol, Perkin Elmer, Boston, USA) were added to 1 mL-urine samples that were loaded onto a 1 497 

mL/50 mg C18 column (BakerbondTM-spe, J.T.Baker, Gliwice, Poland) and eluted with 2.5 mL of 498 

isooctane/ethyl acetate (1:1, vol/vol). The eluate was then transferred to a 1 mL/100 mg SiOH column 499 

(BakerbondTM-spe, J.T.Baker) and eluted with 2 mL of ethyl acetate/methanol (60:40, vol/vol), dried and 500 

resuspended in 1 mL of PBS/0.1% BSA buffer for subsequent immunoassay and recovery count. 501 

Biomarkers were measured with a standard ELISA as previously described(52) using specific 502 

antibodies(53). Urinary creatinine was measured with a commercial kit (Creatinine Colorimetric Detection 503 

Kit; Enzo Life Sciences, Farmingdale, NY). The final value of each biomarker was corrected for the 504 

percentage of recovery based on the 3H-PGE2 cpm and expressed as pg/mg of creatinine.  505 

 506 

Buchinger-Wilhelmi Clinic study participants. The Buchinger-Wilhelmi Clinic (BWC) study, as outlined by 507 

Wilhelmi de Toledo et al. in 2019,(5) involved 1422 participants aged 18-99 years. Ethics approval for the 508 

original study (German Clinical Trials Register ID: DRKS00010111) was obtained by Wilhelmi de Toledo et 509 

al., with approval granted by the medical council of Baden-Württemberg and the Ethics Committee of the 510 

Charité-University Medical Center, Berlin. The original study was performed following the Declaration of 511 
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Helsinki and written informed consent was obtained from participants. The individuals, without 512 

predefined contraindications to Buchinger fasting, voluntarily joined the clinic for preventive or 513 

therapeutic fasting. Fasting durations ranged from 4 to 21 days, with participants categorized into fasting 514 

lengths of 5, 10, 15, and 20 days for analysis. Fasting guidelines included a daily intake of 200–250 kcal 515 

and 25–35 g of carbohydrates, obtained from fruit juice and vegetable soup, along with 3 liters of water 516 

or non-caloric herbal teas. This study independently analyzed published, publicly available data from the 517 

original study.  518 

 519 

QUANTIFICATION AND STATISTICAL ANALYSIS  520 

Statistical analysis. The SOMAScan proteomics dataset included N = 15 participants at baseline, fasting 521 

day 7, and last day of fasting and refeeding. All other assays reported in this manuscript included N = 20 522 

participants. Statistical analyses for all variables were performed using pairwise differences between 523 

baseline, fasting (either day 7 or last day of fasting), and last day of refeeding assessed using Student’s t-524 

test (2 timepoints, normal data), Wilcoxon signed-rank test (non-normally distributed data), and one-way 525 

ANOVA (3 timepoints). Changes were expressed as absolute quantities, relative quantities normalized to 526 

baseline, or fold-change (FC) relative to baseline. All statistical tests were two-tailed, and significance was 527 

considered at adjusted p-value < 0.05, unless specified otherwise. The same statistical approach was 528 

applied to analyze data from the previously published Buchinger-Wilhelmi cohort. Data were analyzed 529 

and visualizations were produced with GraphPad Prism (version 10), QIAGEN IPA (QIAGEN Inc., 530 

https://digitalinsights.qiagen.com/IPA, accessed October 2024), FunRich: Functional Enrichment analysis 531 

tool (version 3.1.4, FunRich :: Functional Enrichment Analysis Tool :: Home), and Excel. 532 

The correlation between BHB, CRP, and vWF with the circulating SOMAScan proteome was examined 533 

using mixed-effect regression models for longitudinal data, with individuals as the random effect. A False 534 

Discovery Rate (FDR) correction for multiple testing was applied to control for the type I error rate. 535 

Pathway enrichment analyses utilized the pathfindR package,(54) mapping significant (p < 0.01) proteins 536 

into active sub-networks based on the reference protein-protein interaction database. The active 537 

subnetworks were filtered based on the number of significant genes and their interaction likelihood 538 

scores. Finally, the list of subnetworks was used as the input for the enrichment analyses. We used the 539 

BioGrid (https://thebiogrid.org/) database as the reference for protein-protein interactions, and the KEGG 540 

database (https://www.genome.jp/kegg/) for biological pathways. We defined pathways with FDR-541 

adjusted p < 0.01 as statistically significant. All analyses and graphs were performed using the open-source 542 

R software version 4.2.1 and RStudio. 543 
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 544 

Ingenuity Pathway Analysis. Alterations in canonical pathways were generated with IPA software 545 

(QIAGEN Inc., https://www.qiagenbio informatics.com/products/ingenuity-pathway-analysis, October 546 

2024) using the SOMAScan proteomics dataset as an input (n = 1,317 proteins), including protein 547 

identifiers (Uniprot), fold-changes (fasting/baseline), and adjusted p-values. IPA mapped 1,255 entities 548 

(1,255/1,317 = 95%) that were analyzed using Core Analysis Expression Analysis based on log2(FC) values. 549 

The adjusted p-value cutoff was 0.05, producing 82 analysis-ready molecules (71 downregulated and 11 550 

upregulated). The full list of significantly altered canonical pathways and details of synaptogenesis and 551 

amyloid fiber formation are presented in Supplementary Material. 552 

 553 

Reactome pathway analysis. Alterations in Reactome pathways were generated with FunRich software 554 

(FunRich :: Functional Enrichment Analysis Tool :: Home, October 2024) using the SOMAScan proteomics 555 

dataset (n = 1,255 proteins) as an input, including protein identifiers (Uniprot), fold-changes 556 

(fasting/baseline), and adjusted p-values. The Reactome pathways database mapped 1,081 proteins and 557 

calculated the percentage of proteins per pathway (No. of genes in the dataset divided by No. of genes in 558 

the Uniprot background dataset) and the -log10(adjusted p-value). Significance threshold < 0.05. 559 

 560 
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Table 1.

Baseline 
Mean SD

Fasting 
Mean SD

P-value 
(Fasting vs 
Baseline)

Refeeding 
Mean SD

P-value
(Refeeding 

vs 
Baseline)

Sex, Female (%) 11 (55%) - - - - - - -
Age (years) 52.2 11.8 - - - - - -
Height (cm) 173.4 10.8 - - - - - -
Weight (kg) 86.6 20.6 80.0 19.5 <0.0001 80.5 18.9 <0.0001

BMI (kg/m2) 28.8 6.4 26.6 6.2 <0.0001 26.7 6.0 <0.0001
Waist (cm) 96.4 12.7 90.6 12.9 <0.0001 90.7 11.7 <0.0001

DPB (mmHg) 72.1 8.7 64.5 6.7 0.0030 67.7 7.3 0.1857
SBP (mmHg) 123.9 10.2 118.1 12.4 0.0301 116.8 12.1 0.0296

ß-hydroxybutyrate (mmol/L) 0.6 0.9 5.0 1.0 <0.0001 0.4 0.3 0.6215
Glucose (mg/dL) 85.7 10.4 70.3 10.5 0.0002 92.8 9.7 0.0155

HOMA-IR 1.7 1.5 0.8 1.1 0.0006 2.2 1.4 0.0266
C-reactive protein (mg/dL) 1.7 1.5 3.9 3.8 0.0004 3.4 9.9 0.6542

Total cholesterol (mg/dL) 192.0 33.5 216.6 47.8 0.0327 168.2 34.5 0.0006
HDL cholesterol (mg/dL) 56.8 19.2 47.8 12.3 0.0015 44.6 10.9 0.0007

Triglycerides (mg/dL) 102.8 46.2 125.4 37.4 0.0745 135.2 47.2 0.0008
LDL cholesterol (mg/dL) 108.4 37.4 131.6 55.5 0.0898 96.7 30.4 0.041

Non-HDL cholesterol (mg/dL) 135.3 34.0 168.8 47.9 0.0061 123.6 33.5 0.0523
Total cholesterol:HDL ratio 3.8 1.5 4.8 1.5 0.0024 4.0 1.1 0.6152

ALT (IU/L) 21.9 11.4 35.9 20.3 0.0003 34.4 19.4 0.0006
AST (IU/L) 22.8 8.5 37.6 17.2 <0.0001 31.5 17.9 0.0350
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Figure 1.

A D

E F G

-2 -1 10

log2(FC)

0

2

4

6

-l
o

g
1
0
(a

d
ju

s
te

d
 P

 v
a
lu

e
)

THBS4

FETUB

MED1

RARRES2

SERPINA4

MAP2K4

SERPINA5

MSTN

CCL25

KLK8

PTH  APOE
LEPR

MDK ACY1

ROR1
INHBA

CST5

BMP6

HAMP
RAN

EPHA1
NAGK

MMP9

-3.2 -3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.2

1.4

1.8

1.6

2.2

2.6

2.8

3.0

3.2

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4 STAT3 Pathway

Synaptogenesis Signaling Pathway

Regulation of IGF

IL-15 Production

3.4 Post-translational protein phosphorylation

2.4 Amyloid fiber formation

2.0 Neutrophil degranulation

CLEAR Signaling Pathway

PTEN Signaling

PPARα/RXRα Activation

-l
o
g
1
0
(a

d
ju

s
te

d
 p

-v
a
lu

e
)

BL EF ER
0

200

400

600

800

β
-a

m
y
lo

id
 4

0
 (

p
g
/m

L
)

<0.0001

0.9351

0.0002

BL EF ER
0

20

40

60

β
-a

m
y
lo

id
 4

2
 (

p
g
/m

L
)

<0.0001

0.9281

0.0001

BL EF ER
0.08

0.09

0.10

0.11

0.12

0.13

A
β
4
2
/A
β
4
0

0.4291

0.9936

0.6875

BL EF ER
-5000

0

5000

10000

15000

20000

A
d
ip

o
n
e
c
ti
n

 
(m

g
/m

L
)

0.0001

0.9168

0.0013

Z score canonical pathways

C

BL  EF  ER

0

5000

10000

15000

F
G

F
1
9

✱✱  ✱✱

ns

BL  EF  ER

0

2000

4000

6000

M
y
o
s
ta

ti
n

✱✱✱✱

✱

✱

BL  EF  ER

200

400

600

800

1000

IN
H

B
A

✱✱

ns

✱✱✱

BL  EF  ER

0

2000

4000

6000

s
L
e
p
ti
n
 r

e
c
e
p
to

r

✱✱✱

✱

✱✱✱

BL  EF  ER

1000

2000

3000

4000

F
E

T
U

B

✱✱✱✱

✱✱

✱✱

BL  EF  ER

200

400

600

G
D

F
1
1
/8

✱✱✱✱

✱✱

✱✱✱

BL  EF  ER

200

400

600

800

P
C

S
K

9

✱✱

✱✱

✱✱✱✱

B

z-score

Negative

Positive 

Zero value

No activity

Number of 

genes that 

overlap the 

pathway

1

5.5

Jo
urn

al 
Pre-

pro
of



BL EF ER

-5

0

5

10

15

50

30

20

H
ig

h
 s

e
n

s
it
iv

it
y
 C

-r
e

a
c
ti
v
e

 p
ro

te
in

 (
m

g
/d

L
)

0.0070

0.6999

0.9644

Entrez 

Gene 

Symbol

Protein Name (week 1 vs 

baseline)

Fold Change Adjusted

p-value

2.35

2.26

P62826 

P48357 

Q03154

RAN 

LEPR 

ACY1

GTP-binding nuclear protein Ran 

Leptin receptor

Aminoacylase-1 2.11

P81172 HAMP Hepcidin 1.93

1.82

1.71

1.55

1.52

1.46

O95750 FGF19 Fibroblast growth factor 19

P02794 P02792 FTH1 FTL Ferritin heavy chain / Ferritin light chain 

P21741 MDK Midkine

Q9UJ70 NAGK  N-acetylglucosamine kinase 

P14780 MMP9 Matrix metalloproteinase 9 

P20810 CAST Calpastatin 1.39

P10145 

Q13093

CXCL8 

PLA2G7

Interleukin-8

Platelet-activating factor acetylhydrolase (PAFAH)

1.30

1.28

0.0331

0.0028

0.0307

0.0391

0.0487

0.0496

0.0162

0.0098

0.0411

0.0048

0.0418

0.0386

A UniProt

W
e
ig

h
t 

(k
g
)

W
e
ig

h
t 

(k
g
)

C
-r

e
a
c
ti
v
e
 p

ro
te

in
 (

m
g
/d

L
)

C
-r

e
a
c
ti
v
e
 p

ro
te

in
 (

m
g
/d

L
)

BL EF

BL EF

B

C

DBL EF ER

-1

0

1

2

3

4

M
id

ki
n
e

✱✱✱✱

✱

✱

BL EF ER

-1

0

1

2

3

4

5

H
e
p
ci

d
in

✱✱✱✱

ns

✱✱✱

BL EF ER

0

5000

15000

10000

20000

25000

M
M

P
9

✱✱✱

ns

✱✱✱✱

BL EF ER

0

500

1000

1500

P
L
A

2
G

7
 (
P

A
F
A

H
) ✱✱   ✱✱

ns

BL EF ER

0

1

2

3

IL
-8

✱✱✱✱

✱✱✱

ns

BL EF ER

-1

0

1

2

3

4

F
e
rr

iti
n

Figure 2

✱✱✱✱

✱✱✱

✱✱

EF
Effect size (CRP)

Jo
urn

al 
Pre-

pro
of



C

A

B

BL EF ER

0.5

1.0

1.5

2.0

G
P

1
B

A
 (

G
ly

c
o
p
ro

te
in

 I
b
 P

la
te

le
t 
S

u
b
u
n
it
 A

lp
h
a
)

<0.0001

0.0014

0.9987

BL EF ER

-2

0

2

4

6

v
W

F
 (

v
o
n
 W

ill
e
b
ra

n
d

 F
a
c
to

r)

0.0005

0.0075

0.0078

BL EF ER

-1000

0

1000

2000

3000

4000

5000

1
1
-d

e
h
y
d
ro

-T
X

B
2
 (

p
g
/m

g
 c

re
a
ti
n
in

e
)

0.0229

0.3597

0.2896

BL EF ER

0

200

400

600

P
la

te
le

ts
 (
1
0
^9

/L
)

0.2262

0.0089

0.8338

BL EF ER

0.6

0.8

1.0

1.2

1.4

F
ib

ri
n
o
g
e
n

0.3814

0.0935

0.0016

BL

0.0

0.5

1.0

1.5

2.0

F
ib

ri
n
o
g
e
n
 g

a
m

m
a
 c

h
a
in

0.0007

0.2741

0.0102

ED

EF ER

Figure 3

Effect size (vWF)Jo
urn

al 
Pre-

pro
of



• Prolonged water-only fasting induces weight loss, metabolic ketosis, and enhances lipid 

metabolism in volunteers. 

• Prolonged fasting reduces circulating amyloid beta proteins, a key component of brain amyloid 

plaques. 

• Prolonged fasting triggers inflammation and platelet activation, potentially impacting 

cardiometabolic health. 
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