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Abstract

This study assessed the physiological, performance, nutritional intake, and training characteristics of a 92-yr-old four-time master
world champion indoor male rower. Body composition was assessed via bioelectrical impedance. Oxygen uptake, carbon dioxide
production, ventilation, and heart rate were measured at rest and during a 2,000-m time trial on a rowing ergometer. Maximal
power was assessed to compute anaerobic power reserve. Training included � 30 km/wk on the rowing ergometer. Herein,
70% of distances were covered at light intensities (RPE, 10–12), 20% at hard (RPE, 13–17), and 10% at near maximal or maximal
(RPE, 17–20). Resistance training was performed during � 2 sessions/wk, and involved three sets of dumbbell lunges, rows, and
curls, respectively, taken close (or to) failure. Dietary intake was high in protein [2.3 ± 0.1 g·kg�1 lean body mass (LBM)], confer-
ring a caloric intake of 33.4 ± 1.7 kcal·kg�1 LBM. The participant demonstrated muscle mass of 47.7 kg, fat mass of 9.1 kg (15.4%
body fat), forced vital capacity of 3.36 L, time constant (s) to steady state of 30.2 s, peak relative oxygen pulse of 0.18 ([mL·O2/
beats/min]/kg), peak heart rate of 153 beats/min, and maximum power of 220 W (140 W anaerobic power reserve). This 92-yr-old
athlete demonstrated remarkably fast oxygen uptake kinetics, akin to values for a healthy young adult, indicating well-developed
and/or maintained cardiopulmonary function. The high values for cardiopulmonary function, muscle mass, metabolic efficiency,
and maximum power output may infer the pliability of these systems to maintain high functionality at an advanced age.

NEW & NOTEWORTHY To our knowledge, this study is the first to characterize the physiological attributes of a competitive rower
(4-time master world champion) at an advanced age (� 85 yr). The participant demonstrated a high muscle mass (47.7 kg; 80.6% body
mass), maximal power (220 W), and exceptional oxygen uptake kinetics (s of 30.2 s), similar to values reported for healthy young adults.

aging; master athlete; oxygen kinetics; physiology

INTRODUCTION

Master athletes of advanced ages (�80 yr) who perform at
a world-class level represent a unique population providing
valuable insights into the capacity of humans to cultivate
and retain high levels of physiological function (1–3) that
exemplify a healthy aging philosophy (1, 2, 4). This paradigm
may be particularly fitting to the determinants of rowing, for
example, aerobic function, muscular power, and metabolic
thresholds (2, 5), and the subsequent multifactorial physio-
logical adaptations conferred by training for the sport (1, 5).

Notable studies to date have demonstrated that master
athlete possesses physiological attributes that are superior to
age-matched sedentary individuals (6, 7). Although causality
may not be established, the data reinforces the supposition

that training in later life appears to capitalize on the plastic-
ity of the physiological systems challenged during endur-
ance exercise, thereby stimulating, preserving, and realizing
a high-level functionality (5, 6).

Maximal oxygen consumption and oxygen uptake kinetics
are markers of cardiorespiratory fitness that underpin row-
ing performance (2, 5). Other physiological characteristics,
such as the capability of the neuromuscular system to pro-
duce mechanical power and the glycolytic and phosphagen
metabolic systems to produce energy, are also associated
with rowing performance (2, 8). Nevertheless, studies in
advanced-age populations remain scant, with data from
master athletes>90 yr of age rarer still (5, 9).

Ultimately, an integrated understanding of master ath-
letes’ physiology, and the practices they apply to maintain
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such high levels of physiological function, would elicit novel
insight and yield applicable information (1–3). To contribute
to the knowledge base, this study examined the physiologi-
cal, performance, nutritional, and training characteristics of
a 92-yr-old four-timemaster world champion indoor rower.

MATERIALS AND METHODS

Ethical approval was granted by the University of Limerick
Faculty of Education and Health Sciences research ethics
committee (Code: 2023_03_05_EHS).

Participant

Richard Morgan (RM) is a lightweight (�75 kg) 2,000-m
92-yr-old master indoor rower and four-time world cham-
pion (winning in 2007, 2017, 2021, and 2022). Of note, RM
started rowing at 73 yr of age and before this did not under-
take any structured training or exercise. Prior to retirement,
RM started his career as a baker, later working as a chemical
operator in Ireland and Japan. Presently, RM resides in
Ireland with his family.

Training Regimen

The training regimen undertaken by RM for his �20 yr
engagement in rowing could be described as pyramidal and
concurrent. On average, RM completed 1,000–1,500 km/yr
(�30 km/wk; 40 min/day) on the rowing ergometer, supple-
mented with 2–3 days/wk of resistance training. Remarkably,
RM remained uninjured for the entirety of his rowing career.

Dietary Intake

The participant reported having an extremely consistent
diet throughout his �20-yr career. A 4-day dietary recall
using the European Prospective Investigation of Cancer food
diary provided an estimate of habitual dietary intake (10).
Macronutrient composition and energy intake were deter-
mined using proprietary software (Nutritics, Ireland).

Testing Procedures

Testing was completed 3 h postprandial, and the partici-
pant arrived at the laboratory well-rested.

Anthropometry and body composition.
Height and body mass were measured using a stadiometer
(Seca 216 stadiometer, Germany), and body composition was
assessed via multifrequency bioelectrical impedance analysis
(Tanita BC 418) as per themanufacturer’s instructions (11).

Cardiopulmonary, metabolic, and power output
measurements.
Cardiopulmonary and metabolic measurement at rest and
exercise employed a gas exchange and pulmonary function
analysis system (Ultima CardiO2 System; Med graphics).
Rate of oxygen consumption (V_ O2) and carbon dioxide pro-
duction ( _Vco2), minute ventilation (V_ E), and respiratory fre-
quency were recorded throughout (8, 12) and interpreted
using 30-s rolling averages. Heart rate wasmonitored using a
Polar H10 chest strap (Polar, Finland).
Pulmonary function. A flow-volume loop ofmaximal in-

spiration and expiration was completed, with the best of
three attempts recorded.

Resting metabolic rate. Following 20 min at rest, a face
mask (Hans Rudolph) was placed over the mouth and nose.
Expired gas was captured using an indirect calorimeter for
10min at rest.
Maximal peak power output. The participant per-

formed a 5-min warm-up with a rowing ergometer (Concept
2) at a self-selected pace of 75 W. After 3 min rest, the partici-
pant performed six “introductory” and six “all-out” strokes
at the same resistance to determinemaximum power (13).
Metabolic testing during exercise. A 2,000-m rowing

time trial was completed. The participant was seated at rest
for 2 min before the trial commenced and the flywheel
remained still. The participant initiated a square change in
power, approximating race pace, as is his typical tactical
behavior during competition. A square change in power is
also necessary for the assessment of transient oxygen uptake
kinetics (14, 15).

Data Analyses

Oxygen uptake kinetics was evaluated as a monoexponen-
tial function using a nonlinear regression method previously
applied to elite rowers (14).

The rate of energy expenditure (EE), fat oxidation (FATox),
and carbohydrate (CHOox) oxidation were calculated as per
Jeukendrup and Wallis (16). The training EE and metabolic
equivalent of task (MET) were calculated as per Ainsworth
and colleagues (17). Gross (egross) and net (enet) metabolic effi-
ciency were computed using the methods employed by
Jensen and colleagues (18). O2 pulse and relative O2 pulse
were calculated as described by Billat and colleagues (9).
Anaerobic power reserve was computed as per Sandford and
colleagues (19).

Data analysis and visualization were performed using
RStudio (version 4.1.0, RStudio) and GraphPad Prism (ver-
sion 8, GraphPad Software), respectively.

RESULTS

This projects’ raw data are openly accessible via the fol-
lowing link (https://rb.gy/3kzbz).

The participant’s 1) historical best performances at each
age category of the 2,000-m lightweight (�75 kg) division
world championships, 2) anthropometry, 3) body composi-
tion, and 4) pulmonary function are presented in Table 1.

The participant’s physiological measures can be seen in
Fig. 1, oxygen uptake kinetics in Fig. 2, and metabolic meas-
urements can be seen in Table 2.

Oxygen uptake kinetics in the transition from rest to
steady-state rowing are presented in Fig. 2. A time constant
(s) of 30.2 s and amplitude of 1,032 mL·min�1 was recorded
resulting in an oxygen deficit of 1.0 L before attainment of a
steady-state V_ O2 of �1,250 mL·min�1. The cardiodynamic
phase time delay was 38.9 s.

DISCUSSION

This study outlines the physiological and performance
characteristics of a 92-yr-old four-time master world cham-
pion indoor rower. To the authors’ knowledge, this is the first
analysis of a competitive rower of an advanced age.
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Foremost, the participant demonstrated notably fast oxygen
uptake kinetics (s of 30.2 s), which is similar to a mean value of
30±10 s for master endurance athletes 66–85 yr of age (20) and
young healthy individuals �25 yr of age (15), but greater than
twofold the mean 13.4±4 s reported for Olympic medal caliber
rowers (14). This finding serves as a proxy indicator of a well-
developed aerobic function and may, in part, be associated
with possible training adaptations (e.g., enhanced stroke vol-
ume, mitochondrial function/density, hemoglobin levels, or
angiogenesis) (5, 14, 15). Moreover, the capacity to rapidly
increase oxygen transport and utilization at the start of exercise
is an important determinant of endurance performance (i.e.,
sparing endogenous high-energy phosphagen and glycolytic
fuel reserves) (14, 15). Though the magnitude of age-induced
decline of cardiorespiratory function may exponentiate (2, 5),
the present observations support the contention that this may
be countered by a sufficient adaptive stimulus (7). In parallel,
supportive and adaptive peripheral metabolic capacity (for
instance, muscular oxidative enzyme activity [citrate synthase

and b-hydroxy-acid dehydrogenase]) is reported to be higher in
octogenarians engaged in lifelong endurance training com-
paredwith age-matched untrained counterparts (4), andmech-
anisms such as these could have contributed to the rapid V_ O2
kinetics presently observed. Indeed, appreciably accelerated
V_ O2 kinetics have been demonstrated in older individuals
(77±7 yr) following training, wherein maximal citrate synthase
activity increased without changes in O2 delivery, implying the
former adaptationmay bemore responsive to training and pos-
sibly a key contributor to the V_ O2 kinetics currently reported.
Also noteworthy, the participant’s V_ O2peak was 10.8% higher
than sedentary octogenarians and 47.8% lower than octoge-
narians engaged in lifelong endurance training who were, on
average, 11 yr his junior (4). Although longitudinal data was
unavailable, the participant’s unique training history (i.e.,
commencing training at 73 yr of age) lends support to the pre-
mise that aerobic function remains malleable/plastic and
may be robustly moderated with appropriate exercise stimuli
(5, 6), even without significant development in younger years.

Table 1. Participant’s performance, anthropometry, body composition, lung function, nutritional intake, and estimated
energy expenditure

LW (275 kg) 2,000 m Performance WC Best, s World Record, s Change (%) from 279

Senior adult category 356
Sub-79 age category 479.6 444
Sub-84 age category 515.1 460.4 �3.7%
Sub-89 age category 516 493.6 �11.2%
Sub-94 age category 589.9 524.9 �18.2%

Anthropometry Value

Height, cm 162
Body mass, kg 59.2

Body Composition kg % BM Percentile Score

Fat-free mass 50.2 84.8 95th (70–79 yr)
Muscle mass 47.7 80.6
Body fat 9.1 15.4 95th (70–79 yr)
Bone mass 2.5 4.2

Lung Capacity Measurement Value % Pred

Forced vital capacity (FVC, L) 3.36 119
Forced expiratory volume in 1 s (FEV1) 2.52 121
Ratio of forced expiratory volume in 1 s to
forced vital capacity (FEV1%)

78 74

Peak expiratory flow (PEF, L.s�1) 2.8 65

Energy Intake kcal·kg21 BM kcal·kg21 LBM Recommendations

Calories 28.4 ± 1.4 33.4 ± 1.7 >30 kcal·kg�1 LBM

Macronutrient Intake g·kg21 BM g·kg21 LBM

Carbohydrate 3.8 ± 0.2 4.2 ± 0.3 4–6 g·kg�1 BM
Protein 1.9 ± 0.1 2.3 ± 0.1 2 g·kg�1 BM
Fat 0.7 ± 0.1 0.8 ± 0.1 1–1.5 g·kg�1 BM

Estimated Energy Expenditure kcal·kg21 BM kcal·kg21 LBM

Resting metabolism 20.4 24.0
Activities of daily living (20) 4.1 4.8
Thermic effect of food 2.8 3.3
LI rowing training (� 4 METs 35 min/day) 2.0 2.3
HI rowing training (� 7 METs 5 min/day) 0.5 0.6
Resistance training (� 5 METs 10 min/day) 0.7 0.8
Total estimated energy expenditure 30.5 35.8
BM, body mass; LBM, lean body mass; LW, lightweight; MET, metabolic equivalent of task; Pred, predicted; WC, world championship.

Lung capacity predicted values were derived from global lung function equation (26); body composition percentile values were obtained
from the American College of Sports Medicine tables (32); dietary recommendations were obtained from Louis and colleagues (31); MET
calculations for obtained from Ainsworth et al. (17); thermic effect of food calculated in line with recommendations from de Jonee et al.
(33); activities of daily living calculated in line with recommendations from Tremblay et al. (34).
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Noteworthy, the participant demonstrated a high peak rela-
tive oxygen pulse (relative O2pulse) of 0.18 mL·beats/min/kg, a
predictive indicator of health and cardiorespiratory function
(8, 9), which could be underpinned by a number of mecha-
nisms, for example, blood volume expansion and enhanced
cardiac preload/contractility (1, 3). This value was 33% above
predicted maximums for a healthy untrained 80-yr-old (21)
and 67% lower than a 75-yr-old master world record-holding
marathon runner (22). Compared with competitive rowers,
peak relative O2pulse during the trial was �55% lower than the
maximum values reported for young Olympic champions,
who underwent annual physiological assessments from 16 to
27 (23) and 19 to 40 yr of age (8). Indeed, O2pulse constitutes an
indirect marker of stroke volume, and maximal values typi-
cally approximate 0.25mL·beats/min/kg in well-trained young
endurance athletes (3), declining to�0.18 mL·beats/min/kg in
master athletes at 70 yr of age (24). Nevertheless, prior work
demonstrated remarkable values (0.27 mL·beats/min/kg) for a
centenarian cyclist (9). Collectively, these findings suggest
age-related decrements in O2pulse can bemitigated by a contin-
uation of training into later years (5, 8, 9).

During the current 2,000-m trial, peak HR reached 153
beats/min, 10 beats higher than the predicted maximum from
the Tanaka equation (208 � 0.7 � age) (1) and 25 beats higher
than the Fox equation (220� age) (25). With respect to pulmo-
nary capacity, the participant demonstrated an FVC corre-
sponding to 119% and FEV1 of 121% of the age-predicted
norms, respectively (26). In contrast, peak expiratory flow (2.9
L·s�1) was 65% of predicted values (26). It is possible this may,

in part, be explained by age-dependent losses of elastic recoil,
as reported for older active (V_ O2max [44±2 mL·kg·min�1) par-
ticipants (27). The comparably lower peak flow capacity may
help to explain the high average RER values and could consti-
tute a performance limitation by increasing the metabolic
cost of breathing during intense exercise (27).

A trial average egross value of 15.5%was comparablewith a for-
mer Olympic champion rower (18.7%) (8) and well-trained
young female rowers (19.7%) (28) undertaking similar trials,
implying a relatively well-developed and/or preserved meta-
bolic efficiency. It is possible that consistent training spanning
a lengthy career (possibly developing efficient motor control)
and high maximal power capacity (220 W) may be contributary
factors undergirding the current egross values (8, 19). Certainly, it
is reasonable to speculate this high mechanical power may be
underpinned in part by morphological characteristics (muscle
mass: 47.7 kg; 80.6% of bodymass), in addition to possible neu-
ral and technical factors that may have been refined during
training. Undoubtedly, the training and nutritional practices
reported presently, particularly the completion of intense resist-
ance exercises and provision of a large amount of protein
(1.9±0.1 g·kg�1 BM [2.3±0.1 g·kg�1 LBM], 12%–58%beyondmin-
imum recommended intakes (29, 30), was notable. Collectively,
these dietary and training practices have plausibly elicited pro-
tection against the neuro- and myogenic degenerative mecha-
nisms of sarcopenia (1, 6), thereby possibly contributing to the
morphological andmechanical properties exhibited (1, 31).

The analysis is not without limitations, the principal of
which may be the absence of longitudinal physiological data.
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Figure 1. Physiological outcomes recorded during the exercise test. Relative V_ O2 and V_ CO2 (relative to body mass) and power (A), heart rate and power
(B), minute ventilation and respirator rate (C), and respiratory exchange ratio and peripheral oxygen saturation (D). BR, breathing rate; HR, heart rate;
RER, respiratory exchange ratio; SpO2, peripheral oxygen saturation; V_ E, minute ventilation. V_ CO2, carbon dioxide production; V_ O2, oxygen uptake.
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The provision of additional variables, such as muscle fiber
typology and oxidative enzyme activity would also provide
valuable context. Finally, although the exercise protocol
undertaken provided unique insight, an incremental protocol
would have provided other useful results (e.g., FAToxpeak).

Conclusions

The current analysis demonstrates novel findings. The prin-
cipal observation relates to the kinetics of oxygen uptake that
were found to be similar to those reported for healthy young
adults (15). This is a remarkable finding in a 92-yr-old and may
serve to highlight the plasticity of cardiopulmonary and respira-
tory functional capacity, even in persons of advanced age,
when supported by sufficient exercise stimulus. Moreover,
well-developed physiological characteristics, i.e., pulmonary
function, V_ O2peak, O2pulse, maximum power, and egross, were
observed, providing further support to the premise that exercise
training may counteract aging-dependent impairments across
a range of systems. Finally, the training and nutritional prac-
tices of this athlete are also outlined and may confer valuable
insights for researchers and practitioners within the domain.

DATA AVAILABILITY

The data supporting the findings of this study are openly avail-
able at https://rb.gy/3kzbz to help ensure transparency and

reproducibility of the results. Researchers interested in accessing
and utilizing the data are encouraged to visit the above database
and contact the lead author should further information be
required.

SUPPLEMENTAL DATA

The supplemental data supporting the current results are avail-
able at https://rb.gy/3kzbz.
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Table 2. Participant’s metabolic measurements during
rest and exercise

Measure Value

Rest
V_ O2, mL·min�1 165.2
V_ CO2, mL·min�1 136.3
Relative V_ O2, mL·kg·min�1 2.8
Relative V_ CO2, mL·kg·min�1 2.3
Ventilation (V_ ESTPD [L·min�1]) 5.7
RER 0.84
Energy expenditure, kcal/day 1,153.8
Carbohydrate oxidation, g·min�1 0.08
Fat oxidation, g·min�1 0.05
Percentage of energy derived from fat oxidation 59%
Percentage of energy derived from carbohydrate oxidation 41%

Exercise (average values during 2,000 m trial)
V_ O2, mL·min�1 1,264.5
V_ O2, mL·min�1 1,434.4
Relative V_ O2, mL·kg·min�1 21.4
Relative V_ CO2, mL·kg·min�1 24.2
Ventilation (V_ ESTPD [L·min�1]) 59.1
RER 1.14
Energy expenditure, kcal·min�1 7.5
Total energy expenditure, kcal 81.2
Average heart rate, beats/min 137
Oxygen pulse, mL·O2/beats/min 9.2
Oxygen pulse, (mL·O2/beats/min)/kg 0.16
Gross metabolic efficiency, % 15.5
Net metabolic efficiency, % 17.8

Exercise (peak values during 2,000 m trial)
V_ O2, mL·min�1 1,264.5
V_ CO2, mL·min�1 1,434.4
Relative V_ O2, mL·kg·min�1 23.2
Relative _Vco2, mL·kg·min�1 25.1
Heart rate, beats/min 153
Ventilation (V_ E STPD [L·min�1]) 66.9
RER 1.19
Oxygen pulse, mL·O2/beats/min 10.5
Oxygen pulse, (mL·O2/beats/min)/kg 0.18

V_ O2, carbon dioxide production; V_ O2, oxygen uptake; RER, re-
spiratory exchange ratio.
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