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Abstract
Purpose of Review This article reviews the current literature on dietary interventions, including time-restricted eating (TRE),
intermittent fasting (IF), and fasting-mimicking diets (FMD) and their effects on weight loss.
Recent Findings Dietary interventions, primarily known for their potential health benefits, are attracting considerable interest also
for their effects on weight loss.
Summary The literature suggests that many popular diets can induce weight loss but only a limited number of studies actually
demonstrate long-term weight loss efficacy. Here we present an update on the latest studies on some of the most popular dietary
interventions able to trigger the physiology of fasting and highlight their impact on weight loss in overweight or obese
individuals.
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Introduction

The number and prevalence of overweight and obese individ-
uals is increasing globally [1]. According to data collected in
195 countries between 1995 and 2015, since 1980 the preva-
lence of obesity has doubled in almost a third of the countries
and has continuously increased in most other countries. In
2015, the Global Burden of Disease study reported that a total
of 107.7 million children and 603.7 million adults were obese.
Although the prevalence of obesity among children has been
lower than that among adults, the rate of increase in childhood
obesity in many countries has been much greater compared to
that in adult obesity [2].

High body mass index (BMI) in overweight and obese
subjects is a major risk factor for many chronic pathologies,
including cardiovascular diseases [3], kidney [4], and liver
chronic diseases [5], diabetes [6, 7], cancers [8], and

musculoskeletal disorders [9]. A BMI > 25 has been associat-
ed with 4 million deaths worldwide, more than 60% of which
occurred among obese people (BMI > 30). Nearly 70% of the
deaths related to high BMI were associated with cardiovascu-
lar disease. Among the factors contributing to the obesity in-
crease are the greater availability of energy-dense foods and
reduced physical activity. Due to the complexity of the food
environment and difficulties in implementing the policies di-
rected at combating the obesity pandemic in the different
countries, most interventions have proven largely ineffective
in reducing obesity rates [10]. These findings highlight the
need for interventions that may function simultaneously as a
preventive as well as a treatment strategy, aimed at reducing
the prevalence of overweight or obese individuals and the
associated disease burden.

Pharmacological interventions, such as orlistat or naltrex-
one/bupropion, can be effective in inducing weight loss [11],
but can be associated with short-term adverse side effects,
especially gastrointestinal distress, and are also likely to con-
tribute to long-term side effects. Novel therapeutic strategies,
focused primarily on dietary interventions, have gained scien-
tific and public attention: time-restricted eating (TRE), inter-
mittent fasting (IF), and periodic fasting/fasting-mimicking
diet (FMD) have emerged as dietary modifications able to
affect many of the pathologies associated with an elevated
BMI [12]. Indeed, animals undergoing different types of
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fasting can live longer than those that eat every day while
simultaneously promoting health benefits [13], including re-
sistance to diabetes [14–16], cancers [17–19], and neurode-
generative disease [20–22]. Moreover, studies in rodents and
humans receiving the FMD combined with standard cancer
therapies have shown that these dietary interventions exert
additive and possibly synergistic effects when combined with
drugs [23]. The efficacy of these interventions could be based
on very different mechanisms but is also likely to rely on
common effects [24].

In this review we provide an overview over the latest stud-
ies using these dietary interventions, focusing our attention on
their impact on weight loss (Table 1).

Time-Restricted Eating

Lifestyle choices, including exercise and healthy nutrition,
have the greatest impact on body weight. The amount of food
but also the timing when food is consumed plays an important
role in body weight regulation. In a study by Arble et al.,
night-active mice fed a high-fat diet during the day gained
significantly more weight than mice fed at night, in spite of
both groups consuming equivalent amounts of calories and
exhibiting similar levels of activity [25]. This finding has rel-
evance to human weight management as well: in a cohort of
420 overweight/obese patients that participated in a 20-week
weight-loss intervention, those study participants who ate
their main meal late (lunch time after 15:00 h) lost significant-
ly less weight than early eaters. The lack of significant differ-
ences in caloric intake, macronutrient distribution, or energy
expenditure between late and early eaters pointed out the im-
portance of the time of day when food is consumed [26].
Similar conclusions have been reported in a rodent study
which adopted a TRE with a 8–10 h feeding window during
the active phase [27], and human studies which either aligned
the feeding window to the early to mid-part of the day [28–31]
or allowed participants to self-select a window [32] as well as
observations on the association between shift workers and
increase in BMI and weight gain [33–35]. However, a recent
clinical study concluded that the amount of calories consumed
and not the time or range of feeding affects weight loss [36].

Thus, the efficiency of metabolic regulation and weight-
loss can be affected by synchronizing feeding/fasting cycles
with light/dark circadian rhythms [12] as energy homeostasis
is maintained by the interaction of peripheral signals with the
CNS and any disruption of the circadian rhythms impacts
metabolic processes, such as body weight control [37]. In
rodent models, restricting food access to the nocturnal phase,
when they are more active, can promote natural feeding
rhythms and restore synchrony with circadian oscillations
and prevent obesity [27, 38, 39]. The circadian clock interacts
with nutrient-sensing pathways as shown in several studies

where time-restricted eating during the active phase restores
cycling of metabolic regulators such as cAMP response ele-
ment binding protein (CREB), mammalian target of
Rapamycin protein (mTOR), and 5’ AMP activated protein
kinase (AMPK) as well as oscillations of circadian clock
genes and their targets. In diet-induced models of obesity,
these parameters are all dysregulated but can be normalized
by time-restricted feeding during the active phase [25, 40].
Interestingly, mice on a high-fat diet become obese under ad
libitum feeding conditions, while time-restricted feeding dur-
ing the active phase prevents obesity despite similar calorie
consumption [15]. Among the factors that influence the circa-
dian rhythm, glucose appears to be a particularly potent
entraining factor [41, 42].

Based on these considerations, in recent years TRE has
emerged as a dietary intervention to maintain a consistent
daily cycle of feeding and fasting to support circadian
rhythms. TRE, particularly eating within 8 to 12 h, in rodent
models and supported by largely observational studies in
humans, has been shown to induce health benefits such as a
reduction in fat mass, increased lean mass and reduction of
inflammation, improved heart function with age, increased
mitochondrial volume, ketone bodies production, and im-
proved repair processes [39].

TRE may also improve body weight regulation by extending
the duration of the fast, i.e., the duration between meals. Many
studies have shown that overweight and obese adults without
metabolic diseases, who habitually eat for more than 14 h, can
achieve weight loss when adopting an 8–10-h interval of TRE
over 12 weeks [32]. Notably, TRE plans differ in the restriction
time window that allows meal consumption which could explain
differences in the degree of effectiveness. Gabel et al. [28] ex-
amined the impact of time-restricted eating on body weight and
metabolic disease in a cohort of 23 obese people. The interven-
tion plan of 8-h time restricted eating (ad libitum feeding between
10:00 and 18:00 h, water fasting between 18:00 and 10:00 h) for
12 weeks decreased body weight by ∼ 3% and reduced systolic
blood pressure relative to a no-intervention historical control
group. This degree of weight loss was comparable to the 3.5%
reduction in body weight achieved in a 10-h time restricted feed-
ing study for 16 weeks [32]. Furthermore, these results are sim-
ilar to those obtained with the 4- to 8-h TRE trials by Moro et al.
[43, 44] which resulted in ∼ 1–3% body weight reductions after
8 weeks.

A pilot study on a small group (N = 10) of overweight
sedentary old women and men who received an intervention
of 16 h of fasting per day for 4 weeks resulted in a 2.6-kg
reduction of mean body weight; however, it remains unclear if
this weight loss relates to fat mass or lean bodymass loss since
the body composition was not measured [45]. No changes on
cognitive and physical function, but an increase in walking
speed were reported. Adverse events were reported by two
study participants who experienced mild adverse events,
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including headaches and dizziness. Overall, TRE is reported
as an acceptable and feasible eating plan for overweight sub-
jects although these conclusions are limited by the small num-
ber of participants, the lack of a control group, and the absence
of a dietary intake assessment.

Several human studies have been published in support
of the efficacy of TRE in overweight people: Wilkinson
et al. [46] evaluated the outcomes of TRE on 19 patients
with metabolic syndrome who limited their calorie intake
to a 10-h window. After 12 weeks of intervention, each
patient improved in at least one of the metabolic syndrome
criteria, including a reduction in waist circumference and
in abdominal fat, and ∼ 3% of weight loss compared to
their baseline. Cienfuegos and colleagues [47] conducted
a clinical trial to compare the effects of two popular forms
of TRF (4 and 6 h) on body weight and cardiometabolic
risk factors. Eight weeks of both TRE interventions result-
ed in comparable reductions in body weight (∼ 3%), insulin
resistance, and oxidative stress. Moreover, a small group of
overweight participants (17 women and 3 men) following a
12-week TRE intervention program significantly reduced
body weight (3.7%), fat mass (4%), lean mass (3.0%), and
visceral fat (11.1%) [48].

Lastly, a recent meta-analysis of 19 randomized controlled
trials showed that TRE significantly reduces body weight and
fat and improves risk factors for cardiometabolic parameters
in short-term interventions. More studies are required to con-
firm long-term effects on cardiovascular disease, type 2 dia-
betes, and mortality [49].

The gut microbiome provides an additional link between
nutrition, TRE, and control of the body weight: nutrition plays
an important role in gut microbiome modulation as different
diets can modify the gut microbial composition. The
microbiome population and their metabolites can have both
beneficial and detrimental effects on host metabolism [50]. A
misalignment in cellular metabolism in combination with nu-
trient quality and unfavorable gut microbiota composition
may predispose to obesity and metabolic syndrome [24].
TRE may in turn coordinate the circadian rhythm between
the host metabolism and gut microbiota. Zeb et al. [51] dem-
onstrated that 16 h of TRE over 25 days can modulate the
circadian gene expression profile and increases gut microbial
diversity in humans by stimulation of Sirtuin 1 (Sirt1)
[52–54]. These studies further establish a positive correlation
between Sirt1 and Prevotellaceae, Bacteroidia, and Dialister.
Bacteroidia are inversely correlated with LDL-cholesterol and
triglyceride levels and exhibit an anti-obesity effect.
Accordingly, a previous study suggested that the increased
abundance of Bacteroidetes species is associated with weight
loss in mice [55]. The abundance of these bacterial species in
the intestine is positively or negatively associated with circa-
dian rhythm, indicating an important role for the microbiome
as an integrator of the effects of TRE.

Despite the promising outcome of TRE, its success could
be compromised by adherence difficulties. In the study by Gill
and Panda, all the participants reduced their eating duration,
but the number of days that participants adhered to their eating
windows is not known. Interestingly, all study participants
expressed an interest in continuing the TRE regimen after
the conclusion of the study. In contrast, in the Antoni et al.
[56] study, participants rated the regimen difficult to follow,
and 57% felt unable to maintain the TRE protocol beyond the
10-week intervention.

It is also important to point out that TRE could result in
skipping breakfast by an extending the morning fast. Skipping
breakfast, associated with low fiber intake in diet, may dimin-
ish gallbladder motility and/or changes in the bile composi-
tion, both of which increase the risk of gallstone formation and
hospitalization, as emerged in the first National Health and
Nutrition Examination Survey (NHANES I) [57]. Moreover,
a prospective cohort study of a representative sample of
American adults showed that skipping breakfast was associ-
ated with an increased risk of mortality from cardiovascular
diseases [58]. For these reasons, skipping breakfast is strongly
discouraged and in the perspective of a restricted time of eat-
ing plan needs to be considered and should be avoided.

In summary, while limited data from short-term trials sug-
gest that TRE appears to promote weight loss similarly to
daily caloric restriction, it may be a difficult intervention to
adhere to long-term and may interfere with lifestyle choices
and/or work hours such as for shift workers. Furthermore, in
order to determine the effect of TRE on body weight and other
metabolic disease variables, future longer-term trials with
larger numbers of subjects will be needed to determine the
degree of weight loss that can be achieved and sustained.

Intermittent Fasting

Intermittent fasting (IF) has been in the focus of lay people and
scientists alike in recent years with many animal studies
pointing towards weight loss benefits and overall health im-
provements in mice maintained on IF regimens [12, 59, 60].
Recently, clinical trials have demonstrated that at least some
of the effects of intermittent fasting observed in animal models
may translate to human health benefits. With the availability
of various fasting regimens, it has become important to iden-
tify which approach is most effective and which group of
individuals is likely to be most responsive [61–73]. Here, we
will discuss recent clinical trials of different IF approaches and
their effectiveness for weight loss. Three major types of IF
plans have been tested in clinical trials: 0% alternate day
fasting (0% ADF, no caloric food is allowed on alternate
days), 25% alternate day fasting (25% ADF, ~ 25% of usual
caloric requirement is allowed on fasting days), 5:2 fasting
(low calorie or zero calorie food is allowed for 2 days a week,
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ad libitum food can be consumed on the remaining 5 days of
the week) [74].

Alternate Day Fasting In a mouse model of diet-induced obe-
sity, mice lose a significant amount of weight when either fed
a high-fat diet (HF) or a low-fat diet (LF) is given in combi-
nation with ADF. Mice on low-fat ADF had the lowest fat
mass and highest lean mass after a 4-week intervention com-
pared to groups fed on HF ad libitum, HF-AFD, or LF ad
libitum [60]. Mice on the ADF diet had a 12% extension in
lifespan and had consistently lower body weight throughout
life compared to ad libitum fed mice (an average of ~ 17.1%
less) [75]. The majority of published human trials employed a
25% ADF, where one low-calorie meal is allowed on fasting
days. Ten out of 10 clinical trials with 25% ADF intervention
consisting of 15–100 subjects and duration ranging from 6 to
12 weeks (except Trepanowski et al. [63] which was for
52 weeks) reported weight loss [74] with 5 studies reporting
a clinically significant weight loss of >5 kg [63, 65, 76–78],
and a weight loss of >3 kg in the remaining studies [79–83].
The effects on lean mass preservation were not conclusive
with three studies reporting a significant reduction [65, 82,
83], and four reporting non-significant reductions [63,
77–79], while one study reported a non-significant trend for
increased lean body mass [80]. Lean body mass was not mea-
sured in the remaining two studies [76, 81]. In a case report to
evaluate ADF as an alternative therapy to insulin for type 2
diabetes, 3 out of 3 patients discontinued insulin after days 5,
13, and 18 respectively. The three patients followed ADF for
7–11 months and were able to lose 9.8 kg of weight on aver-
age; in addition, two out of three patients discontinued all
diabetic medication at the end of this intervention [84].

In order to evaluate the effect of ADF on weight loss and
further weight maintenance and to compare the benefits to
daily caloric restriction (DCR), Trepanowski et al. [63] con-
ducted a randomized clinical trial on 100 metabolically
healthy obese adults with a mean BMI of 34 kg/m2. The par-
ticipants followed 6 months of weight loss diet wherein the
ADF group consumed 25% of their estimated baseline energy
intake on fast days and 125% on feast days, the DCR group
consumed 75% of baseline energy intake on all days. This was
followed by a 6-month weight maintenance period where the
ADF group was instructed to eat 50% on fast days and 150%
on feast days and the DCR group were instructed to eat 100%
of their daily energy needs. Similar weight loss was observed
in both ADF and CR groups at the end of the weight-loss
period (6-month: − 6.8% vs. − 6.8%) and maintenance period
(12-month: − 6.0% vs. − 5.3%). Fat mass, lean mass, blood
pressure, heart rate, cholesterol, triglycerides, fasting glucose,
fasting insulin, insulin resistance, and C-reactive protein
showed improvement in both the groups, but measurements
did not show any significant differences between the groups at
either 6-month or 12-month. Notably, participants in the ADF

group ate more (~ 800–1000 kcal instead of the recommended
400–500 kcal) on fast days and less (~ 1400 kcal instead of the
recommended ~ 2100 kcal) on feast days than prescribed,
while participants in the DCR group met their recommended
energy goals. The dropout rate was higher in the ADF group
(38%), than in the DCR group (29%) or the control group
(26%) [63]; an initially surprising finding since ADF requires
participants to restrict calorie intake only on defined days
which was thought to be potentially more achievable and have
higher levels of adherence than DCR [85]. A number of other
studies have observed similar effects: while ADF is an effi-
cient intervention for weight loss, it is not significantly better
than DCR in terms of weight loss, as well as the majority of
the other health parameters measured [63, 65, 68, 71, 77, 86].

5:2 Fasting 5:2 Dieting is a more popular form of intermittent
fasting in which calorie intake is restricted to ~ 25% of the base-
line energy intake twice a week [64]. In a 6-month randomized
clinical trial of 107 overweight or obese premenopausal women
(BMI 30.6 ± 5.1 kg/m2) to quantify the effects of 5:2 dieting as
compared to DCR [72], the 5:2 diet and DCR were equally
effective in producing weight loss (5:2 group vs. DCR group
reported average weight loss of 6.4 kg and 5.6 kg, respectively).
Another study aimed at comparing 5:2 diet with DCR found no
statistically significant difference in the time to achieve a 5% loss
in body weight between the groups (median time of 59 days for
5:2 diet group vs. 79 days for DCR group) [67].

In a long-term study to evaluate glycemic control and
weight loss in patients with type 2 diabetes over a 12-month
period, 137 participants were randomized into either a 5:2
strategy (n = 70, 500–600 kcal/day for 2 non-consecutive days
every week and normal diet for rest 5 days) or DCR (n = 67,
1200–1500 kcal/day for all 7 days a week) [70]. Weight loss
in both groups was significant with the 5:2 diet group losing
5.0 kg vs. 6.8 kg in the DCR group, but there was no signif-
icant difference between the groups. Interestingly, subjects in
both study arms lost most of the body weight in the first
3 months of the study and then maintained it for the rest of
the study period. Mean weight loss between 3 and 12 months
in the DCR group was 0.4 kg and 0.2 kg in 5:2 group. This is
in line with the results from a pilot study where similar weight
loss was observed during a 3-month study period [69]. A
follow-up study of the same study published at the end of a
24-month observation period demonstrated that both groups
maintained some of the lost weight (3.9 kg lower than the
study’s baseline). In fact, participants in both the 5:2 group
and the DCR group regained the lost weight (DCR and 5:2
group regained 22% and 42.6% of the lost weight, respective-
ly) between 12 and 24 months [62]. Notably, during this
follow-up period, subjects in the 5:2 group lost more fat-free
mass (loss of 0.8 kg and 2.2 kg in DCR and 5:2 group, respec-
tively) than the DCR group at 24 months [62]. This contra-
dicts a previous review reporting better conservation of fat-
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free mass with a 5:2 diet as compared to DCR [87]. This
difference could be partly explained by the length of the die-
tary interventions in the studies: trials by Varady and others
[72, 78, 79, 88] were generally of shorter duration (up to
6 months) whereas the trial by Carter et al. [62] followed the
participants for 24 months.

Although no major adverse effects of intermittent fasting
have been reported, common complaints associated with this
dietary intervention include the following: feeling cold, head-
aches, lack of energy, and occasional dizziness [72, 89].
Intermittent fasting is safe for most individuals, but it would
be difficult to recommend for patients with type 2 diabetes
using insulin/sulfonylureas medication due to the risk of hy-
poglycemia [90]. The risk of a hypoglycemic event is two-
times higher on fasting days as compared to non-fasting days
[91]. Therefore, ADF or 5:2 fasting requires close monitoring
by trained medical professionals and the careful adjustment of
glucose lowering medications to avoid severe adverse events
in people with type 2 diabetes [69].

Fasting Mimicking Diet

Periodic fasting describes periods of water-only fasting, or
very low-calorie diets, for 2 or more days separated from the
next cycle by at least 1 week [12]. Water-only or similar ther-
apeutic fasting induces many metabolic health benefits, but it
must be done in specialized clinics since it is associated with
rapid weight loss, and the risk of malnourishment, hypogly-
cemia, and hypotension if done outside of a clinic [92]. For
these reasons it is normally carried out for periods lasting from
1 week to several weeks once a year in specialized clinic. To
overcome the side-effects and safety concerns associated with
water-only fasting done outside specialized clinics, a plant-
based fasting-mimicking diet (FMD) was developed [23].
The FMD is low in protein and sugar, but relatively high in
fat content. Differently from the therapeutic fasting done for
longer periods once a year or less, the FMD was developed to
be used in periodic cycles from every 2 weeks to every several
months and to last from 4 to 7 days for humans and 2 to 5 days
for mice. The 5-day human FMD provides approximately
55% of the recommended daily calorie intake on day 1 and
35% on the subsequent days 2–5. Studies in mice, as well as a
randomized clinical trial on generally healthy human subjects,
highlight the beneficial effects of FMD cycles on aging and
disease markers and risk factors. In mice, the FMD extends
median lifespan, reduces inflammation and cancer incidence,
enhances cognitive performance, and improves overall health
[22, 23, 93–95].

The efficacy of the FMD in reducing body weight in
humans was first tested in a pilot study conducted on 38 gen-
erally healthy human subjects randomized either to the FMD
for 5 days every month for 3 months (3 cycles) or to a control

group in which study subjects continued to consume their
normal diet. In the FMD group, the body weight was reduced
by 3.1% but the relative lean body mass (adjusted for body
weight) was increased after three FMD cycles [23]. These
pilot study results were confirmed in a larger randomized clin-
ical trial to evaluate the effects of the FMD on risk factors for
metabolic syndrome, cardiovascular diseases, cancer, and ag-
ing. The randomized cross-over study included 100 generally
healthy participants which completed three cycles of 5 days of
FMD per month for 3 months compared to a control arm
during which subjects consumed an unrestricted diet. In the
71 subjects who completed the FMD cycles, a reduction in
body weight, waist circumstance, and BMI was observed. In a
post hoc analysis, the FMD was more effective on elevated
markers in at-risk participants than in those who had risk fac-
tors values within the normal range at baseline: subjects with a
BMI of greater than 30 (obese) experienced a greater reduc-
tion in BMI by the end of the three FMD cycles than those
with a BMI of less than 25 (normal weight) and BMI of 25 to
30 (overweight) [93]. Adverse events reported in this study,
including mild and moderate fatigue and weakness, demon-
strate that the FMD can be considered safe and feasible.

Obesity is characterized by the presence of chronic inflam-
mation and dysregulation of host-microbiota relationship
which affects adiposity and weight-gain through several path-
ways [96–99]. Epidemiological analysis reporting cross-
sectional studies in patients with inflammatory bowel disease
(IBD) showed that about 15–40% of adults with IBD are
obese, and 20–40% are overweight, and that obesity might
contribute to the pathogenesis of IBD through mucosal barrier
dysfunction with bacterial translocation and resulting activa-
tion of adipocytes [100]. In a dextran sodium sulfate (DSS)–
induced mouse model of IBD, periodic FMD cycles reduce
systemic and intestinal inflammation, and stimulate the en-
richment in microbial populations and reversion of intestinal
pathology caused by DSS [95]. In this mouse model, the FMD
induces an increase in protective Lactobacillaceae,
Bifidobacteriaceea, and Allobaculummicrobial genus belong-
ing to the Erysipelotrichaceae family, associated with protec-
tion from obesity and insulin resistance [101, 102]. In com-
parison, water-only fasting reduces inflammatory markers but
without reversing IBD pathology. These studies indicate that
the nutritional composition of the FMD itself, and not just the
calorie restriction associated with it, is a key regulator of mi-
crobial and anti-inflammatory changes [95]. However, despite
the promising results, further preclinical and clinical studies
are necessary to clarify the effect of FMD on the gut and
related diseases, as well as diabetes and other degenerative
diseases. In fact, in mouse models of type 2 and type 1 diabe-
tes, FMD cycles have shown to modulate b cell regeneration,
and promote insulin secretion and glucose homeostasis
confirming the potential of FMD in the treatment of metabolic
dysfunctions related to obesity [16].
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Conclusions

Dietary interventions involving some form of fasting have
emerged as potential therapeutic regimes for the prevention
of a wide range of pathologies, including metabolic diseases,
cardiovascular diseases, cancer, neurodegenerative diseases,
and obesity. However, long-term studies, including random-
ized controlled trials with a follow-up of more than 1 year, are
needed in order to confirm their lasting effects on health and
how to address compliance. While animal studies and some
clinical trials can control food intake patterns, having a set
time window to consume food may remain very challenging
for humans. A meta-analysis conducted on 121 randomized
studies including 21,942 overweight and obese patients com-
pared the efficacy of popular chronic dietary interventions on
weight loss and improvements in cardiovascular risk factors
[103]. These diets showed that after 6 and 12 months the
differences in weight loss achieved were modest and were in
100% unsuccessful in terms of weight reduction maintenance
at the 12 months follow-up. In long term, only the
Mediterranean diet has shown to maintain the improvements
in cardiovascular risk factors. Taken together, despite the po-
tential capability of each diet to be effective in reducing body
weight, the choice of a weight loss plan should be based on the
ability of each patient to adhere to it. However, the extreme
difficulty of adhering to a chronic dietary program, including
IF and TRE, inevitably directs our attention to the develop-
ment of interventions with a high efficacy based on short-term
intervention periods to have long-term success.
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